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ABSTRACT

People counting in indoor environment is a challenging task due to the coexistence of
moving crowds with stationary crowds, recurrent occlusions and complex background
information. The performance of existing crowd counting methods drops significantly for
indoor scene since the stationary people are missed due to moving foreground segmen-
tation and the counting results are often disturbed by occlusions. To address the above
problems, in this paper we propose a counting approach for indoor scenes, which can
count not only moving crowds but also stationary crowds efficiently. Firstly, a foreground
extraction assisted by detection is introduced for crowd segmentation and noise removal
with a feedback update scheme. Then we build a multi-view head-shoulder model for
people matching in the foreground and estimate the number of people with an improved
K-mean clustering approach. Finally, to reduce the disturbance of occlusions, we present a
temporal filter with frame-difference to further refine the counting results. To evaluate the
performance of the proposed approach, a new indoor counting dataset including about
570,000 frames was collected from four different scenarios. Experiments and comparisons
show the superiority of the proposed approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

[8-10], they have shown promising results for people
counting in outdoor scenes. However, due to the coex-

Counting people from videos draws a lot of attentions
because of its wide range of applications, such as building
security, room resources adjustment, market research,
intelligent building, etc., as shown in Fig. 1. Most existing
approaches pay more attention to outdoor scenes or part
of indoor scenes like passageway, and the motion infor-
mation in these scenes can be utilized to reduce error. In
recent years, the state-of-the-art methods based on
supervised learning or semi-supervised learning can be
classified into three categories: counting by detection [1-
5], counting by clustering [6,7] and counting by regression
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istence of moving crowds with stationary crowds, recur-
rent occlusions and complex background information, the
performance of existing crowd counting methods drops
significantly for indoor scene since the stationary people
are missed due to moving foreground segmentation and
the counting results are often disturbed by occlusions.
Different from outdoor scene, indoor scene has its own
characteristics, which make the counting task more challen-
ging: (1) There exists stationary or slightly moving people in
most indoor scenes and they will be classified as background
by traditional foreground segmentation. Foreground seg-
mentation is an indispensable step for most existing crowd
counting approaches [3-5] to reduce background noise,
removing foreground segmentation will lead to more com-
putation burden and increase the risk of false alarms for
complex background. (2) Frequent occlusion is another key
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obstacle that holds back accurate crowd counting, which
happens more often in indoor scenes than outdoor ones. For
example, when people get together, we will extract some
large blobs with several people inside, which lack object level
information and are hard to be segmented. Some state-of-
the-art methods [8-10] adopt regression-based techniques to
learn a mapping between low-level features and the number
of people, so as to circumvent explicit object segmentation
and detection in these blobs. But these techniques generally
involve a time-consuming frame-wise labelling process (even
head-position annotations [3]) to train a regression model.
What's more, the trained regression model is not easily
adapted to a new scene. (3) The number of people often
remains stable even with internal movement in indoor space
when no one enters or exits. This kind of dynamic stability
provides an important cue for accurate counting.

As analysis above, we propose a head-shoulder detec-
tion based crowd counting framework for indoor scenes.
Firstly, for accurate foreground segmentation and back-
ground noise removal, we propose an update by detection
method to conduct human-blob segmentation. Secondly,
we introduce a multi-view head-shoulder model, which is
generic, with no need for re-training, and useful to reduce
the impact of occlusions. Thirdly, to reduce the disturbance
of occlusions, we present a temporal filter with frame-
difference to further refine the counting results by the
state of dynamic stability in indoor scenes.

2. Related work

Various approaches for crowd counting have been pro-
posed, which broadly fall into three categories [11]: counting
by detection, counting by clustering and counting by regres-
sion. For counting by detection, some whole pedestrians
detection based methods [1,2] are not effective because fea-
tures of whole pedestrian are not obvious in densely crowded
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scenes. This problem has been addressed by some approaches
based on part-based detectors [12], especially head-shoulder
detectors [3-5]. Moreover, the counting accuracy can be fur-
ther improved by post-processing methods, such as
[4,13,14,12]. Zhao and Nevatia [4] treated problem of seg-
menting individual humans in crowds as a model-based
Bayesian segmentation problem and presented an efficient
Markov Chain Monte Carlo (MCMC) method to get the solu-
tion. Wang et al. [13] built a spatio-temporal group context
model to model the spatio-temporal relationships between
groups, formulating the problem of pedestrian counting as a
joint posteriori maximum one. Zhang and Chen [14] used
group tracking to compensate weakness of multiple human
segmentation, which can handle complete occlusion.

Clustering based crowd counting consists of identifying
and tracking visual features over time. Feature trajectories
that exhibit coherent motion are clustered, and the num-
ber of cluster centers is regarded as an estimate of the
number of moving objects. For example, Rabaud et al. [6]
relied on KLT tracker and agglomerative clustering, Bros-
tow et al. [7] used an unsupervised bayesian to decide the
number of moving objects.

The third category estimates the crowd density or
crowd count with a regression function [8,9] and various
features of the foreground pixels, including total area [15-
17], edge count [16,18,17], or texture [19]. The regression
function is also various. For example, Chan and Vascon-
celos [10] segmented the scene into different regions with
different motions, and extracted various features from
each segment. Then a Gaussian process regression was
used for estimating the pedestrian count for each segment.
Kong et al. [20] applied neural networks to the histograms
of foreground segments and edge orientations.

Some detection or clustering based methods cannot work
well in most indoor environment because they rely on the
movement of crowd, but most indoor scenes often have some
stationary crowd with few movements. Khemlani et al. [21]

Fig. 1. Examples of indoor scenes.
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Fig. 2. Overall framework of people counting in indoor scenes.
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counted people by exploiting the spatio-temporal coherence
among small body part movements. Another solution [22] is
to utilize semi-supervised learning and transfer learning to
reduce the amount of manual annotation and make the
model more applicable. However, the accuracy rate of people
counting decreased with annotating only a handful of frames,
and counting results were inevitably influenced by back-
ground noise. A preliminary version of our work was pre-
sented in [23]. This paper is an extension of [23], where we
add a feedback scheme in the counting framework and more
experimental comparisons.

3. Indoor people counting

In this section, we introduce the proposed indoor
people counting framework. As illustrated in Fig. 2, our
approach mainly includes three modules: blob segmenta-
tion, head-shoulder detection and temporal refinement.
Given an input video sequence, we first segment the video
into several blobs of interest. The corresponding gradient
map in original frame and contours of blobs are extracted
simultaneously. Next, a trained multi-view head-shoulder
model is used for head-shoulder detection. Head detection
and Head-shoulder detections can help find the candidates
of people, vice versa, detection results can help update the
background model. Finally, the characteristic of dynamic
stability in indoor scenes is applied to estimate occlusions
and refine counting results.

3.1. Background modeling and blob segmentation

Traditional background subtraction approaches aim to
divide video frames into stationary pixels and moving
pixels, which are generally applied by pedestrian counting
methods to segment crowds. These methods build and
update the background model with stationary pixels as a
reference of moving pixels. Foregrounds are segmented
based on difference between background model and cur-
rent frames. Inspired by traditional approaches, in blob
segmentation stage, we treat the frame as a combination
of pixels on and off human bodies. If the background
model is updated from pixels off human's bodies, pixels on
bodies (including moving bodies and stationary ones) will
always be segmented as foreground. Hence, our idea is to
build a new updating procedure for people-related fore-
ground segmentation. In this way, we can remove the
background noise, meanwhile keep the crowd complete.

Classify by Detection
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3.1.1. Background modeling

A initial version of blob segmentation is introduced in
[23]. Due to the imprecise updating way, the blob seg-
mentation in [23] is unstable and easy to be influenced by
dynamic change in background. Inspired by Hofmann et al.
[24], we propose an improved blob segmentation method
by adding a feedback scheme to update the background
model. The background model, named B, is formed by a
series of pixel models, each of which contains a set of N
recent background samples and a local updating rate T,:

B(x) = {b1(x), b2(%), ..., bn(x), T(x)} (1

3.1.2. Blob segmentation

These samples b,(x) are matched with their observation
on the current input frame, depicted as I(x) at time t
respectively, to classify corresponding pixels as foreground
1 or background 0.

S — 1 if {dist(I¢(x), bn(x)) <R, ¥n} < min
tX) = { 0 otherwise

)

where S; is the segmentation result, dist(I;(x), b,(x)) mea-
sures the distance between a given background sample
and corresponding current observation. R is the distance
threshold and min is the minimum number of matches
required for a background classification.

3.1.3. Feedback loop

In traditional background modeling, all the pixels have
the same updating rate. The blob segmentation is unstable
and easy to be influenced by dynamic change of the scenes
such as light. Therefore we introduce a pixel-level feed-
back scheme to adaptive update the background model for
accurately extracting the human blobs. The background
model B is updated based on the “time subsampling fac-
tor” T(x) [25]. Arandomly selected sample in B has a 1/T(x)
probability to be replaced by current observation I;(x). At
the same time, one sample of the neighbors of B(x) is also
replaced by I/(x) with probability 1/T(x). Instead of
imprecise updating way in [23], we build a feedback loop
based on updating rate map T in this update process:

T(x)+_ ]( if Sx)=1
mm X
T(x) = ; 3)
T(x)—= if S(x)=0
® dmin(x) 1 (X)

where d;, is the average value of minimal decision dis-
tances. It is a measure of the background dynamics:

Fig. 3. Foreground refinement from S(x) to S'(x). Some blobs without people inside are removed through head-shoulder detection, the “time subsampling

factor” map T(x) is calculated according to S'(x).
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Hmin(x)=l/NZka(x). Dy(x) is the historical array of
minimal decision distances:

Di(X) < dmin(®),  dinin(X) = rrgjn dist(I¢(x), bn(x)) 4)

As shown in Fig. 3, S'(x) is refined from S(x). Given a
segmentation result S(x), blobs are divided into several
blocks based on connected component analysis. Head-
shoulder detection classifies the image patches corre-
sponding to these blocks in original frame as blocks with
or without people inside. Blocks without people inside will
be removed from S'(x). Using the feedback loop (3), blobs
without people inside will get a smaller T(x), meaning that
these pixels will be more likely to be updated into B(x).
Similarly, it is hard to update blobs with people inside into
the background model. Because we always update the no-
human pixel into the background model, both moving and
stationary people can be extracted through this process.

3.2. Multi-view head-shoulder detection

Inspired by the multi-view learning for object [26-29],
we present to build a multi-view head-shoulder model for
head-shoulder parts are rarely occluded in a crowd. The
shape of blobs can provide us with priori knowledge about
the number of people in these blobs, which can benefit
crowd counting greatly. As illustrated in Fig. 4(b) and (c),
we detect head candidates and head-shoulder candidates
from the boundary of foreground and gradient maps
respectively. Counting results are estimated by the dis-
tribution of these candidates.

Head candidates are detected based on two conditions:
it is the local vertical peak of the boundary, and there are
enough foreground pixels under it [4]|. Head-shoulder
candidates are extracted using a trained multi-view
head-shoulder model. As shown in Fig. 4(a), the training
process of this model is a collection of the probabilities of
the key points' appearances in the sampling images. Dif-
ferent from the training process in [30], our method can
avoid the error brought by key points selection. Firstly, we
sample a lot of head-shoulder image patches from sur-
veillance video dataset. These training samples are classi-
fied as two representative categories: back view and side
view. After manual refinement for the extracted edges, we
normalize all the samples to a fixed size and project them
into a grid-model which is partitioned into several smaller
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blocks. Note that the top point in this model is selected as
the reference point and all the head points in samples are
aligned to this reference point in the projecting process.
Finally, we compared the number of edge points fell into
each block, selecting some blocks with more edge points
as positions of key points. A Parzen Windows method is
used to assign each pixel a weight in each block. Assuming
the window function obeys a Gaussian distribution, the
weight is computed as follows:

n /X—xc
wioo= o (5o )

where n represents the number of edge points in each
selected block, N is the number of edge points in key
blocks, x is the coordinate of arbitrary point in a block, x. is
coordinate of the center pixel in the block, hy is the var-
iance of the Gaussian distribution, ¢ is the window func-
tion, i.e. the Gaussian distribution in our case. Except for
fuzzy probabilities of the key points' appearances, the
model also stores the average unit normals v; from sam-
ples. Unit normals are calculated according to coordinate
value of neighbor edge points [4]. So in our model, the
appearance probability expresses relative locations of key
points, and corresponding unit normal expresses the
shape of the model. What's more, the block-wise way
makes this model more flexible to slight scale change and
shape change. We extract head-shoulder candidates by
matching the trained model with the gradient map of
foreground area based on sliding windows. The matching
score is defined as

k
S y)= > Wivix0; (6)
i=1

where O; stands for gradient vector in gradient map, k is
the number of key points. When the matching score is
larger than a threshold value, these matched key points
are selected as head-shoulder candidates. After head-
shoulder detection, we choose K-means clustering with
max and min distance to estimate the number of people.
The clustering centers are filtered by checking if there are
enough head-shoulder candidates inside. The number of
remained clustering centers is the final output of people
count. Uncertainty of initial center points limits the con-
vergence speed and effect of K-means. therefore, we select
the head candidates as the initial center point to accelerate
the clustering process.

_-—
- -zf = A
5 ﬂ' v '".“ 25 (@ova:

Fig. 4. (a) A toy example of Head-shoulder model. (b) Head candidates (marked in red points). (c) Head-shoulder candidates (marked in green points).(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Given a head candidate sequence A = {ozj}]’,‘/'= ; and a head-
shoulder candidate sequence B = {/3]-}]’.": 1» the task is to find
clustering center sequence C = {yj}jl,(: with the initial clus-
tering center A. In order to reduce the impact of occlusions,
we defined a maximum cluster radius Ry, and a minimum
cluster radius Ry, The detailed clustering process is given in
Algorithm 1. For these points in B without head candidates, a
standard K-means is used to clustering.

Algorithm 1. Dynamic programming for K-means
clustering.

Input: A= (a,-)]’."’z - B= (ﬁj}]’."z .-

Output: cluster center sequence C.

1: fori=1;i<N;i++ do

2: for j=1; j<M; j+ + do

3: if distance(aj, fj) < Rmax then
4: delete g;;

5: Rmax = distance(a, §;);

6: else

7. Rmax = Rmax;

8: end if

9: if distance(a, fj) > Ryin then
10: C—aj;

11: else

12: delete g;;

13: end if

14: end for

15: end for

16: return C;

3.3. Temporal refinement

Except for entrances or exits, most indoor scenes exist
dynamic stability state during most periods. Although we
cannot get an accurate count due to occlusion at some points,
by making use of dynamic stability in indoor scenes, we can
infer the accurate count gradually through a couple of frames.
When the number of people remains stable, occlusion is the
main cause for fluctuations on the counting number. We
regard this as two representative states: one is that the
counting number increases as the occlusion disappears. The
other is that the counting number decreases when the occlu-
sion happens. In any case, there are some moving pixels,
which can be used to estimate whether the change of counting
number is caused by occlusions. We mainly consider two kinds
of occlusions: moving people occluded by stationary people
and stationary people occluded by moving people.

Take Fig. 5 as an example, there are two stationary
people and four moving people in this frame. An occlusion
is occurring between one stationary people and one moving
people. We use the frame-difference method to get moving
pixels and or operations between two contiguous frame-
difference results to enhance them. According to the con-
nective relations, moving pixels are divided into different
sequences {(x;, y;)}7_ ;- Through matching clustering centers
C= {yj}JI.; between neighbouring frames by the nearest
neighbor method, when the counting number decreases,
we can know historical location of the disappeared clus-
tering center ;. For the case of stationary people occluded
by moving people, the historical position of disappeared
clustering center will be surrounded by one moving pixels
sequence. The judgement rule is described as follows:

min(x;) <x,, < max(x;)

1 if min(y;) <y, < max(y;) 7

Oy =
0 else

where x; and y; are the coordinate of moving pixels in one
sequence. x,, and ¥y, is the historical coordinate of the dis-
appeared clustering center. If O(y;) equals to 1, we consider
that y; is occluded. The counting result will ignore the
change brought by this disappeared clustering center. For
the case of moving people occluded by stationary people,
occlusions are easier to be found because the disappeared
clustering center was moving before. Furthermore, if the
number of moving pixels is less than a threshold in one
frame, we think the state in this indoor space is steady and
keep the counting result unchanged.

4. Experimental results
4.1. Experiment setup

Since there is no available standard database of people
counting for indoor scenes, we collect a dataset with HD
cameras mounted at different indoor scenes. This dataset
contains four types of indoor scenes, over 570,000 frames
(about 380 minutes), including classroom, meeting room,
office and mess hall. These are typical representatives for
indoor scenes, which reflect the characteristic events for
indoor scenes like entering, existing, gathering, discussion,

m@’ué PE - W"i}ﬂ; B

Fig. 5. Temporal refinement for people counting: (a) occlusion is occurring; (b) some information of head-shoulder disappeared and (c) moving pixels.
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etc. The following criterion is used to evaluated the per-
formance over all the indoor dataset:

®)

RMSE = J %kz (numg(i)— num[(i))z

where n is the total number of frames in the test video.
numyg(i) is the ground truth of the ith frame, and numi) is
the test result of the ith frame.

J. Luo et al. / Signal Processing 124 (2016) 27-35

4.2. Experimental results with temporal refinement

We select two groups of video segments from two
indoor scenes to verify the effectiveness of temporal
refinement, which are named as videol (classroom) and
video2 (mess hall) respectively. Fig. 6 shows the compar-
ison results on videol of our approach with and without
temporal refinement (TR). It is obvious that the counting
result without TR fluctuates more remarkably, especially

30 T
Ground truth|
25 with TR
[l without TR B
20 - -
15 - -
10 - -
5 ,
h 1 L
il ,_DTW ih T OO w L
0 1 1 1 1 1
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Fig. 6. Comparison results with and without temporal refinement (TR).
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Fig. 7. Counting results on videol and video2.
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when the number of people in the room increases. We can 4.3. Comparison with state-of-the-art approaches

see that in Fig. 6, since the occlusion often causes the

decrease on counting results, the counting results with We compare our approach with “single frame” [4],
temporal refinement are a little bigger than the results “Adaptive model” [31], “Regression model” [31] and “Group
without temporal refinement. Furthermore, the counting counting” [13]. As shown in Fig. 7, “Regression model” [31]
results are more stable and smooth. and “single frame” [4] shows poor performance. This can be
Table 1

The comparison results over all the indoor scenes dataset.

Video name RMSE
Our approach [4] [31] [10] [13]
Classroom 1.0225 49142 21847 1.9864 1.5274
Office 1.3879 4.9618 2.7618 21215 22214
Meeting room 1.2613 4.9252 2.0137 2.1861 2.3116
Mess hall 14537 51372 3.4392 2.9101 2.8653
80

I Our approach

70 [N single Frame -
[ Adaptive model
[ Regression model
I Group counting

Speeds (Fps)
S
o
T

Classroom Office Meeting room Mess hall
Datasets

Fig. 8. Average speed comparison on whole indoor scenes dataset.
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[ Head-shoulder detection
- Temporal refinement
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Classroom
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Fig. 9. Time cost distribution on whole indoor scenes dataset.
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Fig. 10. Counting results on indoor scenes dataset, the number of people is marked in green on the top right corner of images, and the clustering result is
marked on the head of human in red points.
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explained by the limitation of traditional foreground seg-
mentation in indoor environment that some blobs with
stationary people inside cannot be extracted by foreground
segmentation. So in most periods the counting results of
“single frame” [4] are below the groundtruth, especially
when most of the people are not moving. As shown in Fig. 7
(a), compared to our approach, “Adaptive model” [31] and
“Group counting” [13] are more sensitive to noises caused
by occlusions. The result of our approach is more smooth.
Although sometimes there are some errors in our results, it
can get closer to the groundtruth slowly after a number of
frames. If the state in the classroom remains stable for a
long time, the refinement on counting results will be con-
stant. Fig. 7(b) shows the comparison results on video2.
Fig. 10 shows several frames with counting results for dif-
ferent scenes. The RMSE comparison with “single frame”
[4], “Adaptive model” [31], “Regression model” [31] and
“Group counting” [13] is given in Table 1. which shows that
our approach achieve the state-of-the-art performance on
the indoor scenes.

4.4. Speed

Without any optimization for the c/c+ + implementa-
tion, our approach runs an average of over 70 frames
per second on classroom dataset (the resolution is
704 x 576) on a Intel i7 CPU at 3.4GHz with no
architecture-specific instruction. Because of changing
density in scenes, the counting speed is unstable. For
comparison, we compute the average speeds of our
approach, [4,31,10] and [13] on whole classroom datasets
(about 380 min), which is illustrated in Fig. 8. In addition,
as shown in Fig. 9, the time cost of the whole counting
process is mostly determined by the blob segmentation,
since the head-shoulder detection and temporal refine-
ment in our approach is efficient. The speed of whole
process can be further accelerated by optimizing blob
segmentation method.

5. Discussion and future work

In this paper, we proposed a fast and accurate counting
people method for indoor scenes. Through applying a
feedback update-by-detection scheme in foreground seg-
mentation, our method approach a balance between
background noise removing and stationary people seg-
mentation. Comparative experiments show that tradi-
tional approach improved by our segmentation can reach a
better performance in indoor scenes. The head-shoulder
detection is the key problem in our approach, because it is
linked closely with blob segmentation and clustering. A
generic and flexible head-shoulder model is trained from a
large number of samples. Head detection is treated as a
prior to accurate the counting result and accelerate the
counting process. To deal with occlusions, our method
focuses on filtering the counting result in a number of
frames based on the spatial temporal information between
frames. Compared with [4,31,10] and [13], our approach
achieves a better performance in the indoor environment.

In future work, two potential improvements will be
considered. First, the head-shoulder model has a poor
performance on detecting people with strange clothes and
hats. Hence more robust features should be combined into
head-shoulder model. Second, clustering in a circular
region doesn't consider distribution characteristic of head-
shoulder points, which leads to false positives or false
negatives. The clustering process could be more robust by
considering spatial distribution.
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