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Abstract

Despite significant improvement has been made for visual tracking in recent

years, tracking target with variant deformable appearance is still a challeng-

ing problem. In this paper, we present an approach based on weighted part

models that can efficiently handle target appearance change and occlusion

during tracking. The object appearance is modeled by mixture of deformable

part models with a graph strcture. To adjust the contribution of different

parts in the whole tracking process dynamically, we add a weight for each

part based on the its Gaussian mixture distribution. The weights of the

parts assist to adjust the importance of the discriminative appearance mod-

els by sustained appearance temporal distributions. Proper training samples

are sampled from the Gaussian mixture distributions of the related parts for

model parameter updating. Experimental results show that our approach im-

proves tracking performance by refining part appearance models with part

weights involve in.
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1. Introduction

Visual tracking is one of the fundamental problems in computer vision

and serves as a preprocessing step for many applications including human

machine interaction, video surveillance, or higher tasks like scene under-

standing and action recognition. In recent years, significant progress has

been made for visual tracking. However, designing a robust tracker for gen-

eral object tracking is still a major challenge, especially when occlusion and

appearance variation of the target object happens. Many approaches have

been developed to address the challenge caused by object occlusion and ap-

pearance variations, such as tracking-by-detection approaches proposed by

Avidan (2004). This kind of solutions treat the tracking problem as a de-

tection task and transferred a great deal of detection ideas to tracking as

proposed by Blaschko and Lampert (2008); Yao et al. (2013); Zhang and

van der Maaten (2013). Through online training a classifier, it distinguishes

the target from the background. During the tracking process, the classifi-

er is used to locate the object with maximum classification score and collect

proper samples for parameter updating. By leverage the detection techniques

into tracking, the tracking-by-detection solutions yield great improvements

in recent years. However, these kind of approaches can often hardly deal

with the problems such as object part occlusions or classifier generalization.

Due to the huge success achieved by the part based object detection ap-

proaches proposed by Felzenszwalb et al. (2010), tracking object with parts

also shows its advantage as shown by Yao et al. (2013). During tracking, tar-

get object together with its related parts and the inherent structures among

them are modeled together in a uniform framework. The usage of part based
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models shows favorable properties such as robustness to partial occlusion and

articulation. The existing part based tracking approaches as proposed by Yao

et al. (2013); Zhang and van der Maaten (2013) often adapt same part sam-

ple selection strategies and update the part appearance parameters controlled

by the appearance scores. However, with time varying, object appearance

variation is not a uniform process, different parts may change significantly

different from each other due to the 2D view of the frame, the change rates

of different parts vary significantly. Therefore, it is not appropriate to treat

each part’s contribution in the same way as this may cause tracking failure

when drastic appearance variation occurs. Take the “lemming” sequence as

a example, in the first row of Fig.1 we can see that the appearances change

differently for different parts with the target moving. This indicates that

in the tracking process, different parts of the target should have different

updating strategies with respect to their contribution to the tracked target.

In this paper, we present a weighted part models based tracking approach.

A weight is introduced for each part to adjust its contribution to the tracker.

Based on the temporal distributions of the part appearance, the weighted

part appearance models together with the spatial constrains among them

enhance the final tracking result. The dynamic evolution of each part is

modeled with a Gaussian mixture distribution that serve as complements

to the discriminative part appearance models. The proposed weighted part

models exceed normal part models for two reasons: the weights of the parts

assist to adjust the importance of the part appearance models by measuring

their fitness to the related appearance temporal distributions. They also con-

trol the sample selections for model parameter updating by judging whether
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the samples are fit for the appearance history distributions. The second and

the third row of Fig.1 illustrate the weights and the final tracking results

respectively.

The main contribution of this paper is summarized as follows,

1. We propose weighted part models tracker to enhance the deformable

part models based tracking approaches.

2. We use the Gaussian mixture distributions to model the temporal dis-

tributions of the object part, which serve as the weights of the object

part.

3. We propose a new online updating algorithm to update the tracker

parameters more efficiently.

2. Related Work

Much of the recent work in model-free tracking focuses on tracking-by-

detection methods. Avidan (2004) used off-line SVM to detect the target

vehicle. Grabner et al. Grabner et al. (2006) used online AdaBoost to update

selected features incrementally. Babenko et al. (2009) used online multiple

instance boosting to collect training samples for online classifier updating.

Kalal et al. (2012) combined tracking and detection results to refine the

final tracking decision. Kwon and Lee (2010) decomposed the tracker into

multiple basic observation models and improved the tracking results by each

of the tracker’s contribution. These approaches leverage the advantages of the

detection methods, but they require carefully design of the training sample

selection strategy for the reason that improper online updating always brings

tracking drift.
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Figure 1: Demonstration of weighted part models tracker. The first shows that object parts

suffer varied change rate due to uncontrolled object deformation; the second row illustrates

part weights adjusted by our weighted part models; the third row shows the tracking results

of weighted part models (red solid box) and the normal part based approach (blue dash

box).

Structured learning approaches make predictions over large output spaces

that have certain inherent structure. Blaschko and Lampert (2008) detected

object locations by structured output predictions. Hare et al. (2011) further

used structured SVM to predict object locations by modelling the problem as

the prediction of the bounding box change between frames. Yao et al. (2012)

adjusted the training sample importance by using weighted reservoir sam-

pling with structural learning framework. These structure based methods

achieve good performance in recent years, however, they neglect the different

contribution of different local parts, and consider that they have equal im-

portance. Our approach benefits from the structural learning methods and
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introduces weighted part models to boost the tracking performance.

Early part based tracking approaches often required manual part initial-

ization as mentioned by Hua and Wu (2006) or prior knowledge proposed

by Kwon and Lee (2009) before tracking. Deformable part models proposed

by Felzenszwalb et al. (2010) is well known in object detection task for its

robust to object appearance changing and easy to extension. The models

formulate the part appearances together with the spatial structure between

parts. The parameters were learned from latent SVM framework. This spring

form spatial constrains were further extended to pose estimation proposed

by Yang and Ramanan (2011), face landmark detection proposed by Zhu

and Ramanan (2012), and then was introduced to visual tracking. Yao et al.

(2013) used part models for visual tracking with a online latent structural

learning method. Zhang and van der Maaten (2013) modeled the spatial con-

strains between parts or multiple targets. Different from these part based

approaches for object tracking, we use the dpm based graph models to track

the object and also adjust the importance of the part appearance models by

introducing a weight for each part. The updating strategy of different parts

also refined by the weights of the parts. This adjustment is based on the

observation that the part deformations are not always the same, different

part models should be weighted and updated differently based both on the

traditional part appearance models and on the deformation rates to their

temporal evolution distributions.
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3. The Proposed Approach

In this paper, we propose a novel approach for online tracking with weight-

ed part models. We first describe the graph structure of the part models used

for online tracking, and then propose the formulation of part weights that

models the temporal evolution distributions of the part appearances during

tracking. After the model inference and learning strategies, we then discuss

the sample selection strategies controlled by the weighted part models.

3.1. Graph Construction for Part Models

The deformable part models (DPM) were presented by Felzenszwalb et al.

(2010), which uses HOG features proposed by Dalal and Triggs (2005) to de-

scribe image patches and formulated the object together with its part appear-

ance models with a graph structure. We first describe the DPM approach

that can be used for object tracking, which formulated object parts together

with their spatial relationships with a structured graph model. We represent

object part i by Bi = {xi, wi, hi} with center location xi = (xi, yi), width

and height. Together with the whole object as the root B0, we can define a

graph G = (V,E) to describe the object. The vertex set V = {B0, B1, ..., Bn}

stands for object parts together with the root. The edges (i, j) ∈ E between

root and different parts represents the spatial relationship. Thus the final

score of a object can be calculated as the sum of the root score and the part

scores together with their spatial constrains:

S(Xt) =
n∑
i=0

Fi · φ(xi)−
n∑
i=1

di · φd(δ(xi)) (1)
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where φ(xi) means the appearance feature of part i, here stands for the HOG

feature Dalal and Triggs (2005) extracted from the corresponding part, x0

stands for the root. As we only consider the part spatial layout to the root,

δ(xi) means the spatial layout between part i and the root. The compatibility

between part i and root φd(δ(xi)) is represents by the spatial layout of part

i with respect to the root:

φd(δ(xi)) = (dx, dy, dx2, dy2) (2)

where δ(xi) = (dx, dy) = (xi − x0) stands for the spatial constraint of the

part i to the root. When the detector is used for tracking in a tracking-by-

detection manner, the target parts together with their spatial distributions

help to assist the final tracking score of the target. The parameter w =

{F0, F1, ..., Fn, d1, ..., dn} need to be updated with an online learning strategy.

Yao et al. (2013) proposed a two stage training algorithm to update the

parameters. Zhang and van der Maaten (2013) slacked the spatial constrains

and used the part models for multiple object tracking. In the next subsection,

we focus on designing a new strategy to assist the part appearance scores and

the part updating process in part weighted manner, further to refine the final

tracker’s performance.

3.2. Weighted Part Models Tracker

In visual tracking, the object and background appearance varies with

time, parts of the object provide different level of information about the

current appearance of the target object and background. To better reflect

the contributions of the parts to the tracked object, we introduce weights
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for different parts to adjust their appearance models due to their different

change rate during tracking. We add a weight λi for part i with appearance

model Sai. The part weights also help to sustain a sample pool used for each

part’s parameter update. Given the part based models in Eq.1, the weighted

part models are formulated as follows:

S(Yt; I,Θ) =
n∑
i=0

λi(xi) · Sai(xi) +
n∑
i=1

Di(xi) (3)

where Y = (B0, B1, ..., Bn) is the output configuration the object together

with its related parts. B0 is the bounding box of the target (root box) and

Bi, i = 1, ..., n are the n part boxes. xi is the relative part feature extracted

from the input image I. Θ is the model parameter. Sai(xi) = Fi · φ(xi)

and Di(xi) = di · φd(δ(xi)) are the appearance score and the deformation

cost separately. λi(xi) is the weight for the object part i. In this case, the

weights serve two purposes: adjusting the importance of the part appearance

models by measuring their fitness to the related temporal distributions of

the parts, and selecting the proper training samples for updating the related

parameters.

3.2.1. Weight formulation.

Here we use the Gaussian Mixture Distributions (GMM models)proposed

by Stauffer and Grimson (1999) to formulate the weight of each part. The G-

MM models describe the part appearance distributions with time varying and

serve as complements for the discriminative models of the part appearances.

For each part i, we have:

λi(xi) =
K∑
k=1

ωk · Ni(xi|µk,Σk) (4)
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where ωk is the weight parameter of the k-th Gaussian component. N (xi|µk,Σk)

is the Normal distribution of the k-th component represented by:

N (x|µk,Σk) =
1

2π
√

Σk

exp(−1

2
(x− µk)TΣ−1

k (x− µk)) (5)

where µk is the mean and Σk = σ2
kI is the covariance of the k-th compo-

nent of the GMM. The GMM models create sample distributions for related

parts, which describe the temporal change of the appearance and response

the confidence level of the parts in the current frame to their history distri-

butions. Thus the GMM models can be used to assist the confidence level

of the SVM based part appearance scores and select proper samples for pa-

rameter updating in a weighted manner. The GMM models describe the

temporal evolution for each part. they build sample distributions for related

parts, which describe the temporal change of the appearance and response

the confidence level of the parts in the current frame to the history distri-

butions. When object deformation and occlusion happen, the GMM models

assign different weights to different parts in the appearance model. Here we

use the raw gray pixel values of the target parts as the input features of the

GMM models for the reason that the gray feature is more robust than the

rgb feature in our experiments.

GMM Initialization In this paper, we build one Gaussian Mixture

model for each part of the target. The initialization of the GMM parameters

are relatively sensitive. For K Gaussian mixtures, we set one of the them as

the “main Gaussian”, the mean of which is initially computed from the mean

of the initial training samples. The weight of the “main Gaussian” is set to be

higher than Gaussian mixtures. Here we do not use the uniform weight value

for initialization for that the “main Gaussian” benefit most from the initial
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training samples and represents the initial distribution of the particular part.

All the other K−1 Gaussian mixtures are initialized with random generated

means with a range of 0 ∼ 255 and a length controlled by target part size.

The variances define the capacities of the Gaussian mixtures, here we set the

value of the “main Gaussian” to be 60 and randomly generate the variances

of other mixtures from 50 to 70. During the implementation, we set the

number of Gaussian mixtures to be three for each GMM model of the part.

The initial weights are set to be 0.4, 0.3, 0.3 for the “main Gaussian” and all

the other Gaussian mixtures of each GMM. Details about GMM initialization

parameter settings will be discussed in section 4.

3.2.2. Inference.

Given the parameters of the tracker and a new frame, tracking the target

is to find the most likely object configuration to maximize Eq.3:

Ŷt = argmax
Yt

S(Yt; I,Θ) (6)

The root together with the parts form a tree structure (star structure) as

suggested by Felzenszwalb et al. (2010), so the problem in Eq.1 can be effi-

ciently solved by the dynamic programming strategy. To find the best output

configuration Y in Eq.6, we use a modified distance transform approach used

by Felzenszwalb et al. (2010) with GMM function of each part involved in.

The outputs of the GMM models serve as the weight of the part appearance

scores of the target. Whenever the object appearance changes drastically

such as moving with occlusions or deformations, the GMM models help to

adjust the importance of the part appearance results by measuring its fitness

to the temporal distributions. When finding the most suitable parts for the
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tracked target, GMM models help to decide whether the part samples can

be used for parameter updating, details are described below.

3.2.3. Learning.

After observing an image I and the inferred object configuration Y in

Eq.6, we update the parameters using the sample pool sustained by the

GMM models. The parameters in Eq.3 can be denoted by Θ:

Θ = [λT1 , ..., λ
T
n , F

T
0 , F

T
1 , ..., F

T
n , d

T
1 , ..., d

T
n ]T

where λi =
∑

k (ωk, µk,Σk), k = 1, ..., K stands for the GMM model pa-

rameter of part i, Fi and di are related to appearance and deformation

parameters in Eq.1 respectively. For the t-th frame, we learn the param-

eter Θt with training samples from sample pool. In our implementation,

we found it more efficient to update the GMM and the part model pa-

rameters separately, here we update Θ with a two stage manner. By s-

plitting parameters into Θt = [Θgmm,Θparts], where Θgmm = [λT1 , ...λ
T
n ]T and

Θparts = [F T
0 , F

T
1 , ..., F

T
n , d

T
1 , ..., d

T
n ]T are the GMM and part model parame-

ters respectively.

During the first stage, the update of Θgmm is inspired by the background

modeling method proposed by Stauffer and Grimson (1999). For certain part

sample xit+1 of part i that suits the part appearance model, it can be used to

update the k-th Gaussian model if satisfying:

|xit+1 − µik| < δiσik (7)

where δ is the matching threshold for part i. we can then update the Gaussian
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model by:

ωik,t+1 = (1− αi)ωik,t + αi

µik,t+1 = (1− ρi)µik,t + ρixit

(σik,t+1)
2 = (1− ρi)(σik,t)2 + ρi(xit − µik,t)T (xit − µik,t)

ρi =
αi

ωik,t

(8)

where αi and ρi are the learning rate of the model and the parameters re-

spectively for the i-th part GMM λi. The new GMM score of the sample xit

is computed by using Eq.4 and then be used for updating the sample pool of

the part i.

The second stage is to update the root and part appearance and defor-

mation parameters Θparts, which can be updated by minimizing the following

structured SVM objective function:

g(Θparts, t) =
1

2
‖Θparts‖2 +

C

N

N∑
i=1

ξi

s.t. S(Y ; I,Θpart)− S(Ŷ ; I,Θpart) + ∆(Y, Ŷ ) ≥ 1− ξi i = 1, ..., N

(9)

where ∆(Y, Ŷ ) measures the cost introduced by the predicted output con-

figuration Ŷ , for the object with n parts with respective bounding boxes

Bi, i = 0, ..., n (i = 0 stands for the bounding box of the object). N is the

number of training samples sustained by the sample pool. S(·) is the tar-

get score function in Eq.3 with GMM based weight score λi pre-computed

(λ0 = 1 for the root):

S(Y ; I,Θpart) =
n∑
i=0

λiFi · φi(Xi) +
n∑
i=1

di · φdi(δ(Xi))

= ΘT
parts · Φ(Y )

(10)
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where

Φ = [λ0φ
T
0 , ..., λnφ

T
n , φ

T
d1, ..., φ

T
dn]T .

With the configuration cost ∆(Y, Ŷ ) defined as

∆(Y, Ŷ ) =
n∑
i=0

(1− Bi ∩ B̂i

Bi ∪ B̂i

) (11)

we can write the structured SVM loss L for Eq.9 as suggested in Zhang and

van der Maaten (2013):

L(Θpart; I, Y ) = max
Ŷ

(S(Ŷ ; I,Θpart)− S(Y ; I,Θpart) + ∆(Y, Ŷ ))

= max
Ŷ

(ΘT
part(Φ̂− Φ) + ∆(Y, Ŷ ))

(12)

the gradient of L with respect to θ ∈ Θpart is given by:

5θL(Θpart; I, Y ) = 5θS(Y ∗; I,Θpart)−5θS(Y ; I,Θpart) (13)

in which the configuration Y ∗ is acquired by solving the altered inference

problem:

Y ∗ = argmax
Ŷ

(S(Ŷ ; I,Θpart) + ∆(Y, Ŷ )) (14)

Then the parameter can be updated by the passive-aggressive algorithm

K. Crammer and Singer (2006); Zhang and van der Maaten (2013):

θ = θ − L(Θpart; I, Y )

‖ 5θ L(·)‖2 + 0.5
5θ L(·) (15)

3.2.4. Sample pool update.

Our tracker sustains a pool of training samples of root and all the parts

for the parameter updating. We adopt two strategies to update the sample

pool: the appearance scores of the root and the parts computed by the
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discriminative models, and the temporal distributions of each part indicated

by the part weights. Whenever the appearance score Sai(xi) exceeds a certain

threshold, the sample can be seen as a candidate of the pool for the root

appearance model. Due to the different change and deformation rate for

different parts during tracking, we further use the GMM outputs to control

the candidate selection process for each part. For one particular part, all

the training samples in the part sample pool are sorted by their GMM score

computed through Eq.4, the one with the lowest score is replaced by the

incoming candidate sample. In this way, we can select the certain samples of

the gaussian mixture distributions that best suitable for parameter updating

in the current frame. Here the part appearance scores are responsible for

the coarse sample selection while the GMM models adjust the selection by

checking whether the samples are suitable for the part temporal distributions.

The detailed online algorithm of our weighted part tracker is shown in

Alg.1. For the first frame, model initialization includes the initial part se-

lection strategy, initial sample pool construct, and initial model parameter

learning. Details about initial part selection strategies are discussed in sec.

4.1. After initial root and parts locations are fixed, we sample positive train-

ing samples near the selected parts with 1 to 3 pixels shifted for the root and

parts and 50 negative examples have little to no overlap with them to form

the initial sample pool. And then we train the initial trackers with the initial

sample pool.
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4. Experiments

To evaluate the performance of our tracker, we run our tracker on thir-

teen challenging sequences Wu et al. (2013). These sequences contain var-

ied tracking targets with different challenging situations in object tracking,

which includes partial or full occlusion, shape deformation, illumination, and

pose/scale variation. We evaluate the performance of the trackers with the

following measures: (1) the mean center position error (CLE) per frame and

(2) the correct detection rate (CDR), the average percentage of frames with

correct detection. A correct detection is defined with the Pascal VOC overlap

rate Roverlap ≥ 0.5, where Roverlap = Area(BT

⋂
BGT )/Area(BT

⋃
BGT ), BT

and BGT are the tracking result and the ground truth bounding box respec-

tively. We first evaluate the part initialization strategy and the effectiveness

of the part weight strategy, then we study the performance of our tracker for

single object tracking compared with several state-of-the-art approaches.

Our tracker is implemented in MATLAB on a PC with an Intel Core

i7 3.4GHz processor and 4G RAM. The average running time is about 10

frames per second. The number of Gaussians for each part weighting model

is set to be 3 and the part number is set to be 3 4 for all the sequences.

4.1. Part initialization.

Because only a single bounding box is provided to annotate the object in

the first frame of the video, all parts need to be carefully selected for later

use. Here we implemented three approaches for initial part selection:

Init 1 – Heuristic part selection approach used in Zhang and van der

Maaten (2013). Parts are initialized at the location in which the weights of
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the initial global SVM w are large and positive. The overlap between parts

cannot be more than 50%. Part size is manually set to be 0.4 of the bounding

box size.

Init 2 – Automatic part selection approach. Parts are selected by aver-

agely splitting the bounding box into different sub-boxes.

Init 3 – Automatic heuristic part selection approach. Parts are select-

ed similarly as the method of Init 1, but with a automatic size and shape

selection strategy as proposed byFelzenszwalb et al. (2010).

All the features of the parts are extracted on the same scale as the root

bounding box features as suggested by Zhang and van der Maaten (2013).

To investigate the effect of different part selection methods, We conduct two

experiments with the above three strategy. The experiment results are shown

in Fig.2. The left figure in Fig.2 shows the CLE performance and the selected

parts for different methods in sequence david while the right one shows the

performance in sequence sylvester. The results show that for most frames, the

three initialization methods achieve similar performance, which indicate that

our tracking algorithm is robust to different the part initializing strategies.

We set the rest of our experiments run with init 3 selected parts since we

don’t need to adjust the part size. Due to the recent success achieved by

introducing context information such as recent works proposed by Wen et al.

(2012); Yang et al. (2009); Zhang et al. (2013), we also allow the part box

to cover the area around the target bounding box in the first frame. For the

strategies of init1 and init2, the bounding box is enlarged to be 1.2 times of

the root bounding box when selecting the object parts.
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Figure 2: The center location error of our tracker with different part initialization strategies

on two sequences “David” and “Sylvester”.

4.2. Part weighting model initialization.

Here we discuss initialization strategy for the part weighting models. As

shown in Fig.3, the experimental result shows that the tracker’s performance

can be improved with carefully designed Gaussian mixture numbers for dif-

ferent parts, however, the differences are relatively small. Thus we use three

Gaussian mixtures for each part related GMM model.

Table 4.2 shows the results for different GMM parameter initialization

strategies. For “mean” approach, we set the mean of each Gaussian of one

particular part GMM model to be the mean of the related part samples; for

“random” approach, we randomly initialize the Gaussian means of the par-

ticular GMM model. For both of these settings, the weights of the Gaussian

in each GMM model are set to be equal. Our approach described in section

3.2.1 yields best result. Therefore, we initially set the GMM parameters as

described in section 3.2.1.
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Figure 3: Tracking results comparison with different Gaussian numbers for GMM based

part weighting functions on “Sylvester”.

4.3. Tracking with weighted parts.

We then evaluate the effectiveness of our weight functions. Experiment

results can be found in Fig.4. The results of the first row in Fig.4 show that

the weight of each part contributes to the final target score. With the GMM

based weights participated in, the tracking result on the left figure in Fig.4

is more robust than the one shows on the left without part weights. The left

figure of the first row shows that with GMM weighted part, proper bounding

box of the object yields highest score (red bounding box on the left); the right

figure shows that without part weights, the highest score indicates a shifted

bounding box (red bounding box on the right), the proper target location

(blue bounding box) shows lower score due to part appearance score shift-
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ing. The second row demonstrates the related location of all the parts with

respect to the root location, from which we can see that with weighted part

models, the part related locations are relatively steady compared to the part

related locations without GMM based part weights. This suggests that our

part re-weighting strategy makes the parts more steady during tracing and

more robust to the object appearance changes such as occlusion and pos vari-

ation. As shown in Fig.5, the first row shows the changes of the part weights

(GMM outputs) together with appearance scores of the four parts for first

100 frames. We can see that the part weights computed by GMM models

show different distributions other than part appearance scores acquired by

the discriminative appearance models. The part weights describe the distri-

butions of part appearances in a different view other than the discriminative

appearance models, and serve as complements to the part appearances. The

bottom row is the demonstration of the final tracking result with parts lo-

cated. Part locations are refined by the GMM based part weights to capture

more representative object parts. Thus more reliable samples for parameter

update can be acquired.

Further results for the comparison can be found in Fig.6, the CLE plots

for eight sequences show that the part based models ensures the performance

gain for most of the sequences. We believe that certain parts appearance

scores may be confused with the background thus to make negative contri-

butions to the tracker during tracking. The GMM based part weights can

reduce these phenomenons by sustaining a temporal distributions of parts

during tracking, certain false part scores can be depressed by smaller part

weights.
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Figure 4: Comparison of trackers with and without GMM based part weight strategy on

“sylvester” sequence. The top row shows the top 50 target scores at frame 455. Left:

with part weights; right: without part weights. The second row shows the results of parts

location changing with respect to the root.
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Figure 5: Demonstrations of tracking results with part weighting strategy. The first row

shows the changes of the part weights together with the appearance scores of the four

parts for first 100 frames. The second row is the demonstration of the final tracking result

with parts shown in different colors.
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Figure 6: Per frame CLE comparison of with and without GMM based part weights on

eight sequences. Here we implemented our own version of dpm based tracker and refer it

as “without part re-weighting” method.

4.4. Comparison with state-of-the-arts.

We compare the performance of our tracker with six state-of-the-art track-

ers: the SPOT tracker (SPOT) by Zhang and van der Maaten (2013), the

Struck tracker (struck) by Hare et al. (2011), the MIL tracker (MIL) by

Babenko et al. (2009), the OAB tracker (OAB) by Grabner et al. (2006) and

the TLD tracker (TLD) by Kalal et al. (2012). All trackers’ source code

are available online, here we run all tracker with default configuration (all

trackers but TLD are with single scale), we run each track for five rounds

and report the average results below.

Table.1 and Table.2 show the CLE and CDR results respectively. Our ap-

proach outperforms nine of the fourteen sequences with CLE measurement.

The results in sequences girl and boy are mainly caused by the small target

size. The usage of HOG feature is not suitable for small targets. further im-

plementation with other features Haar feature may further bring performance
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gain. Our tracker achieves good results for the rest of the tested sequences.

The CDR result of sequence singer, david is mainly caused mainly by the

scaled ground truth label, all the trackers except TLD are ran at single s-

cale. Our tracker also achieves reasonable results for the rest of the tested

sequences for the tracking successful rate comparing. Visualized tracking

results of different trackers can be seen in Fig.7, which reveal the potential

benefit of using carefully designed part weights and updating strategy.

5. Conclusion

In this paper, we demonstrated a novel approach for online object tracking

with weighted part models. To balance the varied changing rate for different

object parts, we introduce GMM model based part weights to assist the part

appearance models and guarantee the proper sample selections for parame-

ter updating. GMM based part weights sustain dynamic distributions of the

object parts in a temporal evolution view other than the discriminative part

appearance models and can be used to refine the part appearance contribu-

tions to the final tracker. Experimental results showed that the proposed

weighted part models achieved the state-of-the-art performance.
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Algorithm 1: Weighted Part Models Tracker

Input:

model parameter Θt
gmm and Θt

parts,

sample pool for root and all the parts P ti ,

and the low level image feature xt+1 for the (t+ 1)th frame.

Output: (t+ 1)th frame target tracking result Ŷt+1,

updated model Θt+1
gmm and Θt+1

parts,

updated sample pool P t+1
i

if t = 0 then

Θt
gmm = φ, Θt

parts = φ, P ti = φ;

Do model initialization;

for i = 0, 1, 2, ..., n part do
Compute root and parts appearance score Sai as in Eq.1;

if i > 0 then
Compute part weight λi as in Eq.4;

Solve Eq. 6 described in sec. 3.2.2;

for i = 0, 1, 2, ..., n part do

Update model parameter Θt+1
gmm,i and Θt+1

part,i by using Eq. 8 and

Eq. 15;

Update sample pool P t+1
i as in described in sec. 3.2.4;

Return Ŷt+1, Θt+1
gmm, Θt+1

parts and P t+1
i
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Table 1: Compared results for different Gaussian parameter settings of the part GMM

models on “Sylvester”.

strategies mean random ours

CLE 7.20 8.21 6.44

CDR 0.93 0.92 0.96

Table 2: Compared average center location error (CLE) results on fourteen sequences.

Sequence Ours SPOT Struck MIL OAB TLD

girl 7.20 11.42 4.25 15.03 8.84 8.44

Sylvester 6.44 7.27 8.00 14.33 16.03 12.46

coke 17.11 22.36 15.90 46.39 32.99 31.43

oc. Face1 17.00 18.57 21.12 31.04 30.32 32.93

oc. Face2 7.90 7.73 9.29 16.96 18.55 15.67

tiger1 15.03 15.70 34.21 37.94 99.66 39.80

tiger2 14.82 16.42 21.64 44.03 105.35 31.14

david 4.15 4.00 8.62 18.69 39.58 4.5

trellis 3.45 3.97 16.34 61.80 71.06 27.06

deer 6.82 8.24 7.78 72.39 22.15 25.83

boy 7.38 224 5.17 13.72 28.74 6.84

singer1 13.24 16.82 16.73 22.84 16.51 28.05

fish 7.20 7.41 19.46 29.82 37.68 12.56

lemming 8.97 11.53 50.97 82.10 61.99 88.33

Avg. 9.98 11.65 17.11 36.22 37.24 26.07
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Table 3: Compared correct detection rate (CDR) results on fourteen sequences.

Sequence Ours SPOT Struck MIL OAB TLD

girl 0.9 0.87 0.96 0.57 0.97 0.78

Sylvester 0.96 0.93 0.85 0.73 0.42 0.91

coke 0.81 0.75 0.71 0.22 0.47 0.52

oc. Face1 1 1 0.99 0.78 0.92 0.99

oc. Face2 1 1 0.98 0.91 0.85 0.77

tiger1 0.89 0.89 0.83 0.58 0.25 0.13

tiger2 0.87 0.88 0.81 0.64 0.44 0.27

david 0.62 0.62 0.62 0.61 0.34 1

trellis 0.84 0.82 0.66 0.47 0.56 0.66

deer 1 1 1 0.41 0.93 0.97

boy 0.95 0.03 0.99 0.52 0.90 0.82

singer1 0.46 0.45 0.41 0.37 0.34 0.98

fish 1 0.99 1 0.81 0.72 1

lemming 0.86 0.82 0.68 0.52 0.59 0.5

Avg. 0.87 0.79 0.82 0.58 0.62 0.74
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