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Abstract

The autoencoder algorithm and its deep version as tra-
ditional dimensionality reduction methods have achieved
great success via the powerful representability of neural
networks. However, they just use each instance to recon-
struct itself and ignore to explicitly model the data relation
so as to discover the underlying effective manifold structure.
In this paper, we propose a dimensionality reduction method
by manifold learning, which iteratively explores data rela-
tion and use the relation to pursue the manifold structure.
The method is realized by a so called “generalized autoen-
coder” (GAE), which extends the traditional autoencoder
in two aspects: (1) each instance xi is used to reconstruct
a set of instances {xj} rather than itself. (2) The recon-
struction error of each instance (||xj−x′

i||2) is weighted by
a relational function of xi and xj defined on the learned
manifold. Hence, the GAE captures the structure of the
data space through minimizing the weighted distances be-
tween reconstructed instances and the original ones. The
generalized autoencoder provides a general neural network
framework for dimensionality reduction. In addition, we
propose a multilayer architecture of the generalized autoen-
coder called deep generalized autoencoder to handle highly
complex datasets. Finally, to evaluate the proposed method-
s, we perform extensive experiments on three datasets. The
experiments demonstrate that the proposed methods achieve
promising performance.

1. Introduction
Real-world data, such as images of faces and digits, usu-

ally have a high dimension which leads to the well-known

curse of dimensionality in statistical pattern recognition.

However, high dimensional data usually lies in a lower di-

mensional manifold, so-called “intrinsic dimensionality s-

(a) (b)

Figure 1. Traditional autoencoder and the proposed generalized

autoencoder. (a) In the traditional autoencoder, xi is only used

to reconstruct itself and the reconstruction error ||xi − x′
i||2 just

measures the distance between xi and x′
i. (b) In the generalized

autoencoder, xi involves in the reconstruction of a set of instances

{xj , xk, ...}. Each reconstruction error sij ||xj −x′
i||2 measures a

weighted distance between xj and x′
i.

pace”. Various methods of dimensionality reduction have

been proposed to discover the underlying manifold struc-

ture, which plays an important role in many tasks, such as

pattern classification [9] and information visualization [16].

Principal Component Analysis (PCA) is one of the

most popular linear dimensionality reduction techniques

[10][17]. It projects the original data onto its principal di-

rections with the maximal variance, and does not consider

any data relation.

Linear Discriminant Analysis (LDA) is a supervised

method to find a linear subspace, which is optimal for dis-

criminating data from different classes [2]. Marginal Fisher

Analysis (MFA) extends LDA by characterizing the intra-

class compactness and interclass separability [19]. These

two methods use class label information as a weak data re-

lation to seek a low-dimensional separating subspace.

However, the low-dimensional manifold structure of re-
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al data is usually very complicated. Generally, just using

a simple parametric model, such as PCA, it is not easy to

capture such structures. Exploiting data relations has been

proved to be a promising means to discover the underly-

ing structure. For example, ISOMAP [15] learns a low-

dimensional manifold by retaining the geodesic distance be-

tween pairwise data in the original space. In Locally Linear

Embedding (LLE) [12], each data point is a linear combi-

nation of its neighbors. The linear relation is preserved in

the projected low-dimensional space. Laplacian Eigenmap-

s (LE) [1] purses a low-dimensional manifold by minimiz-

ing the pairwise distance in the projected space weighted by

the corresponding distance in the original space. They have

a common weakness of suffering from the out-of-sample

problem. Neighborhood Preserving Embedding (NPE) [3]

and Locality Preserving Projection (LPP) [4] are linear ap-

proximations to LLE and LE to handle the out-of-sample

problem, respectively.

Although these methods exploit local data relation to

learn manifold, the relation is fixed and defined on the o-

riginal high-dimensional space. Such relation may not be

valid on the manifold, e.g. the geodesic nearest neighbor on

a manifold may not be the Euclidian nearest neighbor in the

original space.

The autoencoder algorithm [13] belongs to a special fam-

ily of dimensionality reduction methods implemented using

artificial neural networks. It aims to learn a compressed

representation for an input through minimizing its recon-

struction error. Fig.1(a) shows the architecture of an autoen-

coder. Recently, the autoencoder algorithm and its exten-

sions [8][18][11] demonstrate a promising ability to learn

meaningful features from data, which could induce the “in-

trinsic data structure”. However, these methods just con-

sider self-reconstruction and ignore to explicitly model the

data relation.

In this paper, we propose a method of dimension re-

duction by manifold learning, which extends the tradition-

al autoencoder to iteratively explore data relation and use

the relation to pursue the manifold structure. The proposed

method is realized by a so called “generalized autoencoder”

(GAE). As shown in Fig.1, it differs from the traditional au-

toencoder in two aspects, (i) the GAE learns a compressed

representation yi for an instance xi, and builds the relation

between xi and other data {xj , xk...} by using yi to recon-

struct each element in the set, not just xi itself. (ii) The

GAE imposes a relational weight sij on the reconstruction

error ||xj − x′
i||2. Hence, the GAE captures the structure of

the data space through minimizing the weighted reconstruc-

tion error. When replacing the sigmoid function in the GAE

with a linear transformation, we show that the linear GAE

and the linear graph embedding [19] have similar objective

functions. This indicates that the GAE can also be a general

framework for dimensionality reduction by defining differ-

ent reconstruction sets and weights. Inspired by existing

dimensionality reduction ideas, we derive six implementa-

tions of GAE including both supervised and unsupervised

models. Furthermore, we propose a deep GAE (dGAE),

which extends GAE to multiple layers.

The rest of the paper is organized as follows. In Section

2, we first introduce the formulation of the generalized au-

toencoder and its connection to graph embedding, then pro-

pose the generalized autoencoder as a general framework of

dimensionality reduction and derive its six implementation-

s. In Section 2.3, we illustrate deep generalized autoencoder

as a multilayer network of GAE. The experimental results

on three datasets are presented in Section 3. Finally, we dis-

cuss the proposed method and conclude the paper in Section

4.

2. Dimensionality Reduction by Manifold
Learning

2.1. The method

Algorithm 1 shows the proposed method. (1) We initial-

ize the data relation by computing the data pairwise sim-

ilarity/distance in the original high dimension space, then

determine a “relation/reconstruction” set Ωi for each data

point xi. For example, the set can be composed of k-nearest

neighbors. (2) Local manifold structure around each data is

learned from its reconstruction set using the proposed “gen-

eralized autoencoder” (GAE) introduced below. (3) On the

learned manifold, data relation is updated according to the

pairwise similarity/distance defined on the hidden represen-

tation derived from the GAE. Step (2) and (3) are iterated

until convergence or the maximum iteration number being

reached.

2.2. Generalized Autoencoder

The generalized autoencoder consists of two parts, an

encoder and a decoder. As shown in Fig. 1 (b), the encoder

maps an input xi ∈ Rdx to a reduced hidden representation

yi ∈ Rdy by a function g(),

yi = g(Wxi) (1)

where g() is either the identity function for a linear projec-

tion or a sigmoid function 1
1+e−Wx for a nonlinear mapping.

The parameter W is a dy × dx weight matrix. In this paper,

we ignore the bias terms of the neural network for simple

notation.

The decoder reconstructs x′
i ∈ Rdx from the hidden rep-

resentation yi
x′
i = f(W ′yi) (2)

The parameter W ′ is another dx × dy weight matrix, which

can be WT . Similar to g(), f() is either the identity function
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Algorithm 1 Iterative learning procedure for Generalized

Autoencoder

Input: training set {xi}n1
Parameters: Θ = (W,W ′)
Notation: Ωi: reconstruction set for xi

Si: the set of reconstruction weight for xi

{yi}n1 : hidden representation

1. Compute the reconstruction weights Si from {xi}n1 and

determine the reconstruction set Ωi, e.g. by k-nearest

neighbor

2. Minimize E in Eqn.4 using the stochastic gradient

descent and update Θ for t steps

3. Compute the hidden representation {yi}n1 , and update

Si and Ωi from {yi}n1 .

4. Repeat step 2 and 3 until convergence.

for a linear reconstruction or a sigmoid function for a binary

reconstruction.

To model the relation between data, the decoder recon-

structs a set of instances indexed by Ωi = {j, k...} with

specific weights Si = {sij , sik...} for xi. The weighted

reconstruction error is

ei(W,W ′) =
∑

j∈Ωi

sijL(xj , x
′
i) (3)

where L is the reconstruction error. Generally, the

squared error L(xj , x
′
i) = ||xj − x′

i||2 is used for lin-

ear reconstruction and the cross-entroy loss L(xj , x
′
i) =

−∑dx

q=1 x
(q)
j log(x

′(q)
i ) + (1− x

(q)
j )log(1− x

′(q)
i ) for bi-

nary reconstruction [5].

The total reconstruction error E of n samples is

E(W,W ′) =
n∑

i=1

ei(W,W ′) =
n∑

i=1

∑

j∈Ωi

sijL(xj , x
′
i) (4)

The generalized autoencoder learns the parameters (W,W ′)
via minimizing E.

2.2.1 Connection to Graph Embedding

Graph embedding [19] is known to be a general framework

for dimensionality reduction, of which each data is repre-

sented as a graph node in a low-dimensional vector, the

edges preserve similarities between the data pairs. The sim-

ilarities characterize certain statistical or structural proper-

ties of data distribution. The formulation of graph embed-

ding is

y∗ = arg min
yTBy=c

∑

i,j

sij ||yi − yj ||2, (5)

where y is the low-dimensional representation. sij is the

similarity between the vertex i and j, usually, sij = sji. c

is a constant and B is a constraint matrix to avoid a trivial

solution 1.

The linear graph embedding (LGE) assumes that the

low-dimensional representation can be obtained by a linear

projection y = XTw, where w is the projection vector and

X = [x1, x2, ..., xn]. The objective function of LGE is

w∗ = arg min
wTXBXTw=c
or wTw=c

∑

i,j

sij ||wTxi − wTxj ||2 (6)

Similarly, the hidden representation of the generalized

autoencoder induces a low-dimensional manifold of data

when dy < dx, on which the relation/similarity/distance

between data pairs is defined through one reconstructing the

others. From Eqn.2,1,4, the total reconstruction error E is

(W,W ′)∗ = argmin
∑

i,j

sij ||xj − f(W ′g(Wxi))||2 (7)

In the linear reconstruction case, if W ′ = WT (like [11])

and assuming only one hidden node in the network, i.e.

dy = 1, W degenerates to a column vector w, the objec-

tive function Eqn. 7 becomes

w∗ = argmin
∑

i,j

sij ||xj − wwTxi||2 (8)

Let wTw = c and yi = wTxi, Eqn. 8 becomes

w∗= arg min
wTw=c

∑

i,j

sij(||wTxi − wTxj ||2 + (
c

2
− 1)y2i ) (9)

Compared with the linear graph embedding (LGE) Eqn.

6, we can see that the generalized autoencoder (GAE) has

an additional term which controls different tuning behaviors

over the hidden representation y by varying c. If c = 2, the

GAE has the similar objective function to LGE. If c > 2,

this term prevents y being too large, even if the norm of w
could be large. If c < 2, this term encourages y to be large

enough when w is small.

The linear version of the above models just illustrates

the connection between the generalized autoencoder and the

graph embedding. In real applications, g() in the general-

ized autoencoder is usually preferred to be nonlinear due to

its powerful representability.

2.2.2 Implementation of the GAE Variants

As can be seen from the above analysis, the generalized au-

toencoder can also be a general framework for dimensional-

ity reduction through defining different reconstruction sets

and weights. In the following, we derive six implementa-

tions of the GAE inspired by previous dimensionality re-

duction ideas, namely PCA [10], LDA [2], ISOMAP [15],

LLE [12], LE [1] and MFA [19].

1Original constraint i �= j is not used here, because i = j does not

violate the objective function
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Table 1. Six implementations of the generalized autoencoders inspired by PCA [10], LDA [2], ISOMAP [15], LLE [12], LE [1] and MFA

[19]

Method Reconstruction Set Reconstruction Weight

GAE-PCA j = i sij = 1
GAE-LDA j ∈ Ωci sij =

1
nci

GAE-ISOMAP j : xj ∈ X sij ∈ S = −HΛH/2
GAE-LLE j ∈ Nk(i), sij = (M +MT −MTM)ij if i �= j;

j ∈ (Nk(m) ∪m), j �= i if ∀m, i ∈ Nk(m) 0 otherwise

GAE-LE j ∈ Nk(i) sij = exp{−||xi − xj ||2/t}
GAE-MFA j ∈ Ωk1(ci), sij = 1

j ∈ Ωk2(c̄i) sij = −1

GAE-PCA: an input xi is used to reconstruct itself with

unit weight, i.e. Ωi = {i}, sii = 1. Given the constraint

wTw = 1, Eqn. 8 can be rewritten as

w∗ = arg max
wTw=1

∑

i

wTxix
T
i w (10)

which is the formulation of traditional PCA with zero mean

[2].

The neural network implementation of GAE-PCA is ex-

actly the traditional autoencoder [5], which is a special case

of the proposed GAE.

GAE-LDA An input xi is used to reconstruct all the

data from the same class as xi, i.e. j ∈ Ωci where Ωci is the

index set of Class ci, which xi belongs to. The weight sij
is inversely proportional to the sample size nci of class ci,
sij = 1

nci
. The one-dimensional linear GAE-LDA follows

Eqn. 9. It should be noted that the GAE-LDA does not need

to satisfy the following two constraints as the traditional L-

DA: (1) data in each class follow Gaussian distribution. (2)

The projection dimension is lower than the number of class-

es.

GAE-ISOMAP An input xi is used to reconstruct all

the data X . Let DG be the geodesic distances of all the data

pairs [15]. The weight matrix S = −HΛH/2, where H =
I − 1

nee
T , e is the n-dimensional 1-vector, Λij = D2

G(i, j)
[19]. The one-dimensional linear GAE-ISOMAP follows

Eqn. 9.

GAE-LLE An input xi is used to reconstruct its k-

nearest neighbors and some other inputs’ k-nearest neigh-

bors which xi belongs to, i.e. j ∈ {Nk(i), Nk(m),m} and

j �= i if ∀m, i ∈ Nk(m), where Nk(i) is the index set of the

k-nearest neighbors of xi. Let M be the local reconstruction

coefficient matrix, and
∑

j∈Nk(i)
Mij = 1, Mij = 0 if j /∈

Nk(i) [12]. The weight matrix Sij = (M+MT−MTM)ij
if i �= j; 0, otherwise [19]. The one-dimensional linear

GAE-LLE follows Eqn. 9.

GAE-LE An input xi is used to reconstruct its k near-

est neighbors, i.e. j ∈ Nk(i). The reconstruction weight is

sij = exp{−||xi − xj ||2/t}, where t is a tuning parameter

[1]. Given that the objective function of LE is similar to

Eqn. 5, the one-dimensional linear GAE-LE follows Eqn.

9.

GAE-MFA An input xi is used to reconstruct its

k1-nearest neighbors of the same class, and its k2-nearest

neighbors of other classes, i.e. if j ∈ Ωk1
ci , sij = 1 and if

j ∈ Ωk2
c̄i , sij = −1, where Ωk1

ci is the index set of xi’s k1-

nearest neighbors in Class ci and Ωk2
(c̄i) is the index set

of xi’s k2-nearest neighbors in all the other classes. Sim-

ilar to MFA, the positive reconstruction characterizes the

“intraclass compactness” while the negative reconstruction

characterizes the “interclass separability”.

We give a summary of the reconstruction sets and

weights of the six methods in Table 1. As can be seen

from this table, we can easily devise new algorithms in

this framework by combining the ideas of these method-

s. For example, when introducing class labels to GAE-LE

(or GAE-LLE) and choosing the k-nearest neighbors of the

same class as xi, we can obtain a supervised GAE-LE (or

supervised GAE-LLE).

2.3. Deep Generalized Autoencoder

To handle more complex dataset, we extend the general-

ized autoencoder to a multilayer network called deep gen-

eralized autoencoder (dGAE). It contains a multilayer en-

coder network to transform the high-dimensional input da-

ta to a low-dimensional hidden representation and a multi-

layer decoder network to reconstruct the data. The struc-

tures of the two networks are symmetric with respect to the

low-dimensional hidden representation layer. For example,

Fig. 2(a) shows a five-layer dGAE on a face dataset used

in Section 3.3. It has a three-layer encoder network and a

three-layer decoder network labeled with a box. They are

symmetric with respect to the second hidden layer of 100

real-valued nodes.

In order to obtain good initial weights of the network,

we adopt the layer-wise pretraining procedure introduced

in [5]. When pretraining the first hidden layer of 200 bi-

nary features, the real-valued face data in the input layer is

modeled by a Gaussian distribution. The first hidden lay-

er and the input layer are modeled as a Gaussian restrict-
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Figure 2. Training a deep generalized autoencoder (dGAE) on the

face dataset used in Section 3.3. (a) The dGAE consists of a

three-layer encoder network and a three-layer decoder network.

A reconstructed face is in the output layer. (b) Pretraining the

dGAE through learning a stack of Gaussian restricted Boltzmann

machines (GRBM). (c) Fine-tuning a deep GAE-LDA.

ed Boltzmann machine (GRBM) [5]. When pretraining the

second hidden layer of 100 real-valued features, the first

hidden layer is now considered as the input to the second

hidden layer. The first and second hidden layers are com-

bined to form another GRBM as shown in Fig. 2(b). These

two GRBMs can be trained efficiently using Contrastive Di-

vergence method [5].

After pretraining, we obtain the weights {Wi}i=1,2 for

both the encoder and the decoder. We further fine-tune them

by backpropagating the derivatives of the total reconstruc-

tion error in Eqn.4. Fig.2 (c) illustrates the fine-tuning pro-

cedure of a deep GAE-LDA (dGAE-LDA) through recon-

structing the other faces in the same class.

3. Experimental Results
In this section, we discuss two applications of the GAE,

one for face recognition and the other for digit classifica-

tion. First, we show the effectiveness of manifold learning

by the GAE and its extensions.

3.1. Data Sets

Experiments are conducted on three datasets. (1) The

face dataset F1 contains 1,965 grayscale face images from

the frames of a small video. It is also used in [12]. The size

of each image is 20 × 28 pixels. (2) The CMU PIE face

database [14] contains 68 subjects in 41,368 face images.

The size of each image is 32 × 32 pixels. These face im-

ages are captured under varying poses, illumination and ex-

pression. (3) The MNIST dataset contains 60,000 grayscale

images of handwritten digits. The size of each digit image

is 28 × 28 pixels. Considering that computing the recon-

struction weights of some of the six GAE implementations,

e.g. the geodesic distance of the GAE-ISOMAP, is time

consuming when the dataset is large, we randomly selec-

t 10,000 images to use in our experiments. For each digit,

Figure 3. The changes of nearest neighbors during the iterative

learning. Each row shows the 18 nearest neighbors of an input

data during in one iteration of learning. The faces in the colored

boxes belong to other persons. The color indicates the identity

of the persons. We can see that along the iterative learning, the

nearest neighbors of a data converges to its own class.

500 images are for training and the other 500 are used for

testing.

3.2. Manifold Learning

Generally, high-dimensional real data is considered to

lie in a low-dimensional space, such as face images and

handwritten digit images. Similar to the previous methods

[15][1][12], the GAE provides an effective means to discov-

er the nonlinear manifold structure.

Firstly, we explore the ability of the GAE in local man-

ifold structure discovery by checking the changes of the

k-nearest neighbors of a data during the iterative learning

process. Fig.3 shows the changes of a face’s 18 nearest

neighbors during the first 20 iterations of our unsupervised

dGAE-LE learning on the CMU PIE dataset. Each row

shows the 18 nearest neighbors of the input during in one

iteration of learning. The faces in the colored boxes belong

to other persons. The color indicates the identity of the per-

sons. From the result, it can be seen that along the iteration,

the nearest neighbors of the face converges to its own class,

and the same person’s faces under similar illumination are

moving forward. We also compute the average “impurity”

change of the 18 nearest neighbors across the dataset dur-

ing the learning. The impurity is defined as the ratio of the

number of data from other classes to 18. Fig. 4 shows the

decreasing impurity of the first 20 iterations. It indicates

that our GAE is able to find more and more reasonably sim-

ilar neighbors along the learning. Consequently, this may

result in a more meaningful local manifold structure.

In addition, we compare the manifold learning results of

different models, i.e., LPP [4], dGAE-PCA and dGAE-LE
2, on the F1 dataset. For visualization, we map the face im-

ages into a two-dimensional manifold space learned from

2Due to limited space, we only show the learned manifolds from

dGAE-PCA and dGAE-LE. dGAE-PCA is actually the deep autoencoder

[5]. We choose the unsupervised form of dGAE-LE to make a compar-
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Figure 4. Impurity change during the iterative learning. Impurity is

defined as the ratio between the number of data from other classes

to the number of the nearest neighbors.

these models. Both of our methods consist of an encoder

with layers of size (20×28)-200-2 and a symmetric decoder.

The 2D manifolds are shown in Fig. 5. The representative

faces are shown next to the data points. As can be seen, the

distributions of the data points of our two methods appear

radial patterns. Along the radial axes and angular dimen-

sion, the facial expression and the pose change smoothly.

We visualize the 2D data manifolds of 0∼9 digit images

of the MNIST dataset learned from two unsupervised meth-

ods, (i.e. the LPP [4], dGAE-LE) and four supervised meth-

ods (i.e. MFA [19], LDA [2], dGAE-MFA, dGAE-LDA).

Fig. 6 shows the results. The data points of the 10 digits are

shown with different colors and symbols. Our three meth-

ods consist of an encoder with layers of size (28×28)-1000-

500-250-2 and a symmetric decoder. As can be seen, the da-

ta points of different digits overlap seriously derived from

LPP, MFA and LDA. Whereas, data points form more dis-

tinctive clusters using the three proposed methods. More-

over, by employing class labels, the clusters from dGAE-

MFA, dGAE-LDA are more distinguishable than dGAE-

LE.

3.3. Application to Face Recognition

In this section, we evaluate the performance of our six

GAEs on the CMU PIE dataset, and compare the results to

other four methods and their kernel versions.

Similar to the experiment setting in [4], 170 face images

of each individual are used in the experiments, 85 for train-

ing and the other 85 for testing. All the images are first

projected to a PCA subspace for noise reduction. We re-

tain 98% of the energy in the denoising step and use a 157-

dimensional feature for each image. In the experiments, we

adopt a 157-200-100 encoder network for the deep gener-

alized autoencoders. After learning the parameters of the

ison with dGAE-PCA. In data visualization, we only show the results of

three representative methods, i.e., dGAE-LE as an unsupervised method,

dGAE-MFA and dGAE-LDA as two supervised methods.

Table 2. Performance comparison on the CMU PIE dataset. ER is

short for “error rate”. The reduced dimensions are in parentheses.

Our models use 100 dimensions. g and pp are short for “Gaussian”

and “polyplus” kernels.

Method ER Our Model ER

PCA 20.6% (150) dGAE-PCA 3.5%

Kernel PCA 8.1% (g)

LDA 5.7% (67) dGAE-LDA 1.2%

Kernel LDA 1.6% (pp)

ISOMAP – dGAE-ISOMAP 2.5%

LLE – dGAE-LLE 3.6%

LPP 4.6%(110) dGAE-LE 1.1%

Kernel LPP 1.7% (pp)

MFA 2.6% (85) dGAE-MFA 1.1%

Kernel MFA 2.1% (pp)

deep GAEs, the low-dimensional representations are com-

puted for all the face images. Then, we apply the nearest-

neighbor classifier on the learned low-dimensional space to

classify the testing data and compute the error rates.

Table 2 shows the recognition results of 14 models on

this dataset, namely (kernel) PCA [10], (kernel) LDA [2],

(kernel) LPP [4], (kernel) MFA [19] and our six dGAEs.

Due to the out-of-sample problem, we cannot give the re-

sults of ISOMAP, LLE and LE. However, considering the

LPP as a popular linear approximation to the LE, we present

the result of the supervised LPP as [4]. Correspondingly,

we use the supervised version of dGAE-LE for comparison.

For the kernel methods, we present the best performance

from Gaussian kernel, polynomial kernel and polyplus k-

ernel3. For the other four non-kernel methods, we select

the manifold dimensions with the best performance, which

is shown in parentheses in Table 2. We select 100 as the

manifold dimension for all our dGAEs.

As can be seen, our methods generally perform much

better than their counterparts. Three supervised methods

dGAE-LDA, dGAE-LE and dGAE-MFA with the error rate

1.2%, 1.1% and 1.1% achieve the best performance. Except

for the dGAE-LLE, all the other four dGAEs have a lower

error rate than dGAE-PCA (which is a deep autoencoder

[5]). This justifies the importance of considering the data

relation on the manifold during the iterative learning, which

is the motivation of this work. Moreover, the low error rate

of dGAE-LDA may indicate that the requirement by the L-

DA - the data of each class follow a Gaussian distribution -

is not longer a necessity.

3.4. Application to Digit Classification

To further evaluate the performance of the proposed

GAEs, we classify digits from the MNIST dataset.

3The form of polypuls kernel is K(x, y) = (x′y+1)d, d is the reduced

dimension.
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(a) LPP [4] (b) dGAE-PCA (deep autoencoder [5]) (c) dGAE-LE

Figure 5. 2D visualization of the face image manifold on the F1 dataset.

(a) LPP [4] (b) MFA [19] (c) LDA [2]

(d) dGAE-LE (e) dGAE-MFA (f) dGAE-LDA

Figure 6. 2D visualization of the learned digit image manifold.

We use the 784-dimensional raw data as the input. In

our deep GAEs, the encoder layers are of the size 784-500-

200-30. We adopt the same testing procedure as the face

recognition experiments, and the manifold dimension is set

to 30 for all the dGAEs.

Table 3 shows the classification results of the 14 meth-

ods. The baseline uses the nearest-neighbor classifier on the

raw data, and its error rate is 6.5%. As can be seen, on this

dataset, (1) our methods still outperform the counterparts.

(2) our methods all perform better than the baseline, but not

all the other 8 methods. This demonstrates that the GAE

may discover more reasonable manifold structure by itera-

tively exploring the data relation. (3) From the error rates

of kernel PCA (8.5%) and PCA (6.2%), it can be seen that

the kernel extensions may not always improve the original

methods, and finding a suitable kernel function is often the

key issue. However, due to the multilayer neural network

architecture, the proposed deep GAE has the universal ap-

proximation property [6], which can capture more compli-

cated data structure.

4. Discussion and Conclusion

It is known that the denoising autoencoder [18] is trained

to reconstruct a data from one of its corrupted versions.
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Table 3. Performance comparison on the MNIST dataset. ER is

short for “error rate”. The reduced dimensions are in the paren-

theses. Our models use 30 dimensions. pp is short for “polyplus”

kernel.)

Method ER Our Model ER

PCA 6.2% (55) dGAE-PCA 5.3%

Kernel PCA 8.5% (pp)

LDA 16.1% (9) dGAE-LDA 4.4%

Kernel LDA 4.6% (pp)

ISOMAP – dGAE-ISOMAP 6.4%

LLE – dGAE-LLE 5.7%

LPP 7.9%(55) dGAE-LE 4.3%

Kernel LPP 4.9% (pp)

MFA 9.5% (45) dGAE-MFA 3.9%

Kernel MFA 6.8% (pp)

In the generalized autoencoder, a data is reconstructed by

those in a specific set. From the denoising autoencoder

view point, the GAE uses a set of “corrupted versions” for

the reconstruction, such as its neighbors or the instances of

the same class, instead of the versions with Gaussian noise

or masking noise [18]. In the future, we will compare the

generalized autoencoder with the denoising autoencoder on

more tasks, such as feature learning and classification, and

also consider incorporating of the merits of both.

As we know, the traditional autoencoder is an unsuper-

vised method, which do not utilize class label. Classifi-

cation restricted Boltzmann machine (ClassRBM) [7] may

provide a solution to explicitly modeling class labels by fus-

ing label vectors into the visible layer. However, training

a neural network with such a visible layer needs a large

amount of labeled data. We argue that the generalized au-

toencoder is able to exploit label information in learning

more flexibly via using/selecting different data into the re-

construction sets. For example, we can build a reconstruc-

tion set according to the labels or just use nearest-neighbors

by ignoring the labels, or even combining both strategies.
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