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ABSTRACT

Cross-modal retrieval has become one of interesting and im-
portant research problem recently, where users can take one
modality of data (e.g., text, image or video) as the query
to retrieve relevant data of another modality. In this paper,
we present a Multi-modal Unified Representation Learning
(MURL) algorithm for cross-modal retrieval, which learns u-
nified sparse representations for multi-modal data represent-
ing the same semantics via joint dictionary learning. The /;-
norm is imposed on the unified representations to explicitly
encourage sparsity, which makes our algorithm more robust.
Furthermore, a constraint regularization term is imposed to
force the representations to be similar if their corresponding
multi-modal data have must-links or to be far apart if their
corresponding multi-modal data have cannot-links. An itera-
tive algorithm is also proposed to solve the objective function.
The effectiveness of the proposed method is verified by exten-
sive results on two real-world datasets.

Index Terms— Cross-modal retrieval, unified represen-
tation learning, joint dictionary learning, multi-modal data

1. INTRODUCTION

In recent years, there has been a massive explosion of mul-
timedia data on the web. Multimedia information comes
through multiple input channels, and different types of data
representing the same semantics usually exist together. For
example, images or videos are often associated with text or
tags in the webpage (as shown in Figure 1). We refer to such
different types of data as multi-modal data. With the rapid
growth of multimedia data, it is very desirable to support
similarity search across the multi-modal data (called cross-
modal retrieval), e.g., the retrieval of textual documents given
a query image or vice versa. However, we cannot measure
the similarity between different modalities of data directly
due to heterogeneity gap. Hence, the key of the cross-modal
retrieval is to reduce such heterogeneity gap.
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Fig. 1. An example webpage including mult-modal data (text
and image) from Wikipedia.

Recently, several subspace learning methods are proposed
to reduce the heterogeneity gap, such as Canonical Correla-
tion Analysis (CCA) [1, 2, 3] and Partial Least Squares (PLS)
[4,5]. In [6], Rastegari et al. apply CCA to model correlations
between text and image, which learns two projections to map
texts and images into a latent subspace. Sharma and Jacob-
s [5] use PLS to linearly map images of different modalities
to a latent linear subspace in which they are highly correlat-
ed. Recently, Sharma et al. [7] propose a supervised version
of CCA for cross-modal retrieval, referred to as Generalized
Multiview Analysis (GMA). Lu et al. [8] and Wu et al. [9]
formulate the cross-modal retrieval as a problem of learning
to rank. However, supervised methods [7, 8, 9, 10, 11] gen-
erally need class information or rank lists, which are very ex-
pensive to obtain in the real-world applications.

As mentioned above, different modalities of data repre-
senting the same sematics usually exist together, which form
a multi-modal document. A practical way for modeling cross-
modal correlations is to explore the co-occurrence informa-
tion and the links between multi-modal documents. Motivat-
ed by representation learning [12, 13], different modalities of
data in a multi-modal document should have a unified repre-
sentation. Furthermore, if multi-modal documents have must-
links, their representations should be similar, and if they have
cannot-links, their representations should be far away from
each other.
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Based on the above considerations, this paper presents
a joint dictionary learning method for cross-modal retrieval,
named Multi-modal Unified Representation Learning (MURL),
which learns unified representations for different modalities
of data which represent the same semantics. The ¢;-norm
and a constrained regularization term are further imposed on
the unified representations, which makes our algorithm more
robust and be able to capture more relationships. Different
from previous works which usually map different modalities
of data into different latent spaces of the same dimension, our
method converts different modalities of data into a unified
representation, which is more interpretable. The experimen-
tal results show the effectiveness of the proposed method
when applied to the cross-modal retrieval task.

2. THE OVERVIEW OF OUR APPROACH

Suppose that we have a collection of data from M differ-
ent modalities, i.e., X? = [x},x5,...,x}] € R¥*N p =
1,2,..., M, where N is the number of samples, and d,, is the
feature dimension. Let z;= {x},x7,...,xM} denote a multi-
modal document, in which the data from M modalities rep-
resent the same underlying content or objects. Given a query
from one modality, the goal of the cross-modal retrieval is to

return the top & closest matches in another modality.

2.1. Formulation

The purpose of our approach is to learn unified representa-
tions Z = [z1,z2, ..., zy] € RE*Y for multi-modal data via
joint dictionary learning. D? = [d,d5,...,d}] € R&»*K
denotes the learned dictionary from the p-th modality data
and K is the size of the dictionary. The objective function for
learning unified representations is defined as follows:

M
min Y [|X? — DPZ[} + A | Z],
Dpr,Z p=1

2 2
+A2< > lzi—zlT e X 7z >
(x5,x;)€S (xq,x5)€D

st |25 < 1,¥p=1..M,k=1..K

)]
where S and D denote the similarity constraints and dissim-
ilarity constraints between different multi-modal documents,
respectively. As shown in Eq.(1), the ¢1-norm is conducted
as a penalty to explicitly encourage sparsity on the unified
representations, and the third term is a constraint regulariza-
tion term, which ensures that the representations are similar if
their corresponding multi-modal documents belong to same
class (i.e., have must-links) while the representations are far
away from each other if their corresponding multi-modal doc-

uments are of different classes (i.e., have cannot-links).
The constraint regularization term of the objective func-
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tion can be reformulated as:

N N
AZ) =Y wijllz —z|)* =tr(ZLZT) (@)
i=1 j=1
where
1, (xj,zj) €S
—a, (z4,z;) € D
0, otherwise

Wij = 3)
and L = D — W is the Laplacian matrix. D is a diagonal
matrix, D;; = Zj Wij.

2.2. Optimization

As shown in Eq.(1), the objective function is non-convex with
respect to DP and Z, but it is convex with respect to D? while
fixing Z and vice versa. Therefore, we present an iterative
algorithm to solve the objective function.

Algorithm 1 The optimization of updating the unified repre-
sentations.
Input: Initialized Z, and the maximum iteration number g;
Output: Z;

VAR Zo,t,1 = O,to =1;

2: fori =1toqdo

300 i = (tice —1)/tic1,Si = Zi + pi(Z; —

4:  while true do

5: Compute Z* = arg min P(Z) where;
P(Z) = /(S) + |Z],

Zi_1);

6: . 5
+(Vf(8),Z-8)+ % |Z -S|

7: if f(Z*) < P(Z*) then break the while loop

8: else v; = v; X 2;

: end if
10:  end while
1 Zip1 =27 %41 =
12:  if stopping criteria satisfied then break the for loop

144/1+4t2_
13ty = —Y5——

14: end for
15: Z = Zi+1

The optimization of unified representations. Firstly, we
optimize Z with fixed DP, the problem in (1) becomes
M
min Y " |X? = DPZ| 7+ Ail|Z]], + Aotr(ZLZT) - (4)
p=1
In (4), the ¢1-norm is not differentiable at zero and gradient
doses not exist, so the gradient descent method is not avail-
able to solve the formulation. Here, we adopt the accelerated
gradient method [14, 15] to solve the formulation. The key
idea is to solve the proximal operator associated to ¢;-norm.
Denote the smooth part in Eq.(4) as:
M
f(Z) =" |X? — DPZ||% + Aotr(ZLZ")

p=1

&)



The optimization of updating unified representations is de-
scribed in Algorithm 1 and we adopt the implementation in
the MALSAR package [16].

The optimization of dictionaries. Fixing unified repre-
sentations Z, the problem in (1) becomes the least squares
problem with quadratic constraints which can be solved using
Lagrange dual [17]. We compute D? alternately when other
dictionaries are fixed.

min | X? - DPZ|[2.  s.t.||d2|2 < 1,Vk=1..K (6)

Consider the Lagrangian:

N
2
g(D”, 1) = X7 = D¥Z5 + 3 i (IRl — 1) (D)
=1

where p; > 0 is the Lagrange multipliers. Letting the deriva-
tive of (7) with respect to D? equal to zero, the analytical
solution of DP can be computed as:

D = X*ZT(Z2Z" + ©)~! ®)

where © is a diagonal matrix ® = diag(y) and it is obtained
by optimizing the Lagrange dual problem as follows:

min tr (XPZT(ZZT o) '(xrzh) + 9) )

The Lagrange dual in (9) can be solved by using Newton’s
method or conjugate gradient.

The overall optimization of our approach is summarized
in Algorithm 2.

Algorithm 2 The overall optimization

Imput: XP,p = 1,.., M, initialized dictionaries D?,p =
1,.., M via K-SVD [18];
Output: The learned dictionaries DP,p =1, .., M;
1: Utilize the must-links and cannot-links to construct L;
2: while not convergent do
3:  Fix dictionaries D?,p = 1,.., M, update the unified
representations Z via Algorithml;
4:  Fix Z, compute the dictionary D? one by one with oth-
er dictionaries fixed by solving (6).
5: end while

2.3. Extension to Out-of-Sample

For different modalities of data in the training dataset, we
have obtained their corresponding unified representations. To
compute the representations of new data, the learned dictio-
naries are exploited.

Assume that given a new data x} from the p-th modali-
ty, using the learned dictionary DP, we can obtain the corre-
sponding representation as follows:

min[|x} — DPz |7 + Mz, (10)

We solve the above problem by using the SLEP (Sparse
Learning with Efficient Projections) package [19].
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Methods | Image query | Text query | Average
PCA 0.1443 0.1093 0.1258
PLS 0.1471 0.1329 0.1400
CCA 0.1580 0.1399 0.1489
MURL, 0.1808 0.1516 0.1662
MURL 0.1884 0.1595 0.1739

Table 1. Comparison of MAP on the Wiki dataset.

’ Methods \ Image query \ Text query \ Average ‘

PCA 0.0903 0.0756 0.0829
PLS 0.1204 0.1101 0.1152
CCA 0.1177 0.1029 0.1103
MURL, 0.1463 0.1268 0.1365
MURL 0.1629 0.1357 0.1493

Table 2. Comparison of MAP on the NUS-WIDE dataset.

3. EXPERIMENTAL RESULTS

3.1. Data Sets

The Wiki image-text dataset [6] consists of 2866 image-text
pairs. In each pair, the text is an article describing people,
places or some events and the image is closely related to the
content of the article. Each pair is annotated with a label from
10 semantic classes. Each image is represented by an 1000-
dimensional bag-of-visual-words vector, and each text is rep-
resented with a 5000-dimensional vector by word frequency.
We take 2146 image-text pairs as the training set and the re-
maining 720 image-text pairs as the testing set.

Another dataset used here is NUS-WIDE dataset [20]. Im-
ages are downloaded from Flickr and each image is associat-
ed with user tags. We select the 15 largest concepts with total
9000 images (600 images for each concept). The images are
represented with 500-dimensional bag-of-visual-words vec-
tors, and the text tags are represented with 1000-dimensional
tag occurrence feature vectors. We take 50% of the data as
the training set and the remaining 50% as the testing set.

3.2. Experimental Settings

Experiments are performed with respect to two cross-modal
retrieval tasks: (1) Image query vs. Text database, (2) Text
query vs. Image database. We compare the proposed MURL
algorithm with several related methods, namely, PCA, PLS
[5] and CCA [3, 6]. Since MURL is semi-supervised, we
don’t compare with supervised methods. For our method, the
must-links and the cannot-links are determined by class labels
with only 1% randomly selected entries observed. The setting
of A1, Ag and ais 0.1, 0.001 and 0.1, respectively.

The mean average precision (MAP) [6] is used to evaluate
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Fig. 3. Precision-scope curves on two datasets for two cross-modal retrieval tasks.

the overall performance of the algorithms. Besides the MAP,
we also use both precision-scope curve [21] and precision-
recall curve [6] to evaluate the effectiveness of different meth-
ods. The scope is specified by the number (k=10 to 700) of
top-ranked documents presented to the users.

3.3. Performance Comparisons

Table 1 and Table 2 show the performance in terms of MAP
for the Wiki dataset and the NUS-WIDE dataset, respective-
ly. To verify the role of the constraint regularization term, we
add a light version of our MURL, namely MURL,, by set-
ting the parameter Ao = 0. Figure 2 and Figure 3 show the
precision-recall curves and the precision-scope curves on the
two datasets, respectively.

From the experimental results, we can make the following
observations:

1) As shown in Table 1 and Table 2, The proposed
MURL, without the constraint regularization term achieves
better performance than CCA, PLS and PCA on both the
Wiki dataset and the NUS-WIDE dataset. The reason is that
different from CCA and PLS, the proposed MURL, converts
the data from different modalities representing the same se-
mantics into a unified representation, which is more effective
for reducing the heterogeneity gap. In general, CCA and PLS
performs better than PCA, This is because that both CCA and
PLS exploit the co-occurrence information (or pairwise in-
formation) in the multi-modal data to model the cross-modal
correlations, which naturally benefits cross-modal retrieval.
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2) The MURL algorithm achieves superior performance
over the MURL, algorithm in terms of MAP on both of the e-
valuated datasets. This observation reveals that the constrain-
t regularization term is truly helpful for learning better uni-
fied representations, which further improves the performance
by exploring the must-links and cannot-links between multi-
modal documents.

3) Both precision-recall and precision-scope curves also
validate the superiority of MURL. The proposed MURL algo-
rithm gets higher precision than other methods for both image
query and text query. It shows that MURL is more effective
to precisely find the top k£ matches.

4. CONCLUSION

In this paper, we have proposed a cross-modal retrieval ap-
proach, named Multi-modal Unified Representation Learn-
ing, which learns unified sparse representations for multi-
modal data via joint dictionary learning. We further present
an iterative algorithm to solve the corresponding optimiza-
tion problem. We have demonstrated the effectiveness of the
proposed method on two benchmark datasets.
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