
SCENE TEXT RECOGNITION WITH DEEPER CONVOLUTIONAL NEURAL NETWORKS

Yuqi Zhang1,Wei Wang1,Liang Wang1,Liuan Wang2

1Center for Research on Intelligent Perception and Computing,
National Laboratory of Pattern Recognition,Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China
2Fujitsu R&D Center Co., Ltd. China

zhangyuqi1991@gmail.com,{wangwei, wangliang}@nlpr.ia.ac.cn,liuan.wang@cn.fujitsu.com

ABSTRACT
Scene text recognition plays an important role in many appli-
cations such as video indexing and house number localization
in maps. Recently, some feature learning methods have been
proposed to handle this problem, which often exploit deep
architectures with no more than 5 layers and relatively large
receptive fields. Meanwhile, to avoid model overfitting, they
generally take advantage of large amount of additional data.
Inspired by the great success of GoogleLeNet with a deep-
er network and VGG networks with smaller receptive fields
in the ImageNet competition, in this paper, we adopt a much
deeper network with up to 15 layers and smaller receptive
fields (3×3) to learn better features for scene text recognition.
Particularly, even without additional training data, our mod-
el can achieve better performance. Experiments on scene text
datasets (ICDAR 2003, SVT, Chars74K) demonstrate that our
method achieves the state-of-the-art performance on character
classification and competitive performance on cropped word
recognition.

Index Terms— scene text recognition, convolutional neu-
ral networks, receptive field

1. INTRODUCTION

With the great improvement in computer vision these years,
the problems such as face detection and pedestrian detection
have been well studied. Scene text recognition, however,
seems to fall behind compared with other computer vision
tasks. Text varies in fonts, texture, background and lighting,
which makes the problem hard to solve. Commercial OCR
products which are successful in scanned text recognition
could not handle the problem well. Scene text recognition
has many potential uses, such as helping guide robotic ve-
hicles by reading text from the streets [1]. So great efforts
should be taken on this task.

There are mainly two kinds of approaches in scene
text recognition [2]: region-grouping-based and object-
recognition-based approaches. Region-grouping-based meth-
ods group small components into larger components succes-

(a) Character examples (b) Cropped word examples

Fig. 1. Character and cropped word examples. (a) Character
examples from ICDAR. Top: CH-tight. Bottom: CH-loose.
(b) Cropped word examples from ICDAR.

sively until all blocks are identified [3]. These methods are
fast to compute and have been successful in scene text de-
tection tasks [4, 5]. However such methods have difficulties
in reading scene text images with noise or in low resolution.
Object-recognition-based methods regard scene text recog-
nition as common object detection and classification tasks.
These methods [3, 6] extract features from the region and
then use a classifier for recognition. Our proposed method in
this paper belongs to object-recognition-based methods.

Hand-crafted features designed by a lot of prior knowl-
edge used to be prevalent. Recently feature learning meth-
ods have gained great success in various vision application-
s such as object detection, image classification and localiza-
tion [7, 8, 9, 10]. Researches [6, 11, 12] have shown that
feature learning, which just learns features from data, can be
more effective in scene text tasks compared with hand-crafted
features.

Wang et.al. [12] use SVM to classify features learned by
unsupervised learning with a relatively large filter size (8×8
for the first layer). Their experiments also show that more
learned features could lead to better performance. Jaderberg
et.al. [13] make great improvements with convolutional neu-
ral networks (CNNs) by using much more training data and
sharing features among case-insensitive, case-sensitive and
bigram classifiers. Lee et.al. [2] learn features by choosing
the most informative filters from many templates. The shape

2384978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015

Fig. 2. An illustration of our deeper CNN architecture. There are 15 layers in total: 12 convolutional layers plus 3 fully-
connected layers.

of the selected filters is not limited to square in their work,
which is quite different from the methods above.

In this paper, we propose very deep convolutional neu-
ral networks to classify characters and further recognize
cropped words as shown in Figure 1. The key to our method
is the depth of the network and the smaller filter size. We
demonstrate the state-of-the-art results on ICDAR03 [14],
SVT-char [15] and Chars74K [16] in terms of scene charac-
ter classification and competitive results on ICDAR03 and
SVT [17] in terms of cropped word recognition. It should
be noted that our models are trained only with the data from
ICDAR03 for most of our experiments.

Section 2 describes the proposed CNNs architecture. Sec-
tion 3 details the training and testing algorithms for character
classification. Section 4 describes cropped word recognition
briefly. Section 5 shows the results of our experiments prior
to conclusion in Section 6

2. ARCHITECTURE

Figure 2 describes our deeper convolutional neural networks.
There are 15 layers in total: 12 convolutional layers plus 3
fully-connected layers. We will discuss the characteristics of
our architecture in the following.

2.1. Deeper Architecture

The winner in the ImageNet 2014 Competition indicates that
depth of the network is of vital importance [9]. Different from
ImageNet which has large-scale datasets in high resolution,
we deploy deeper networks in relatively small-scale datasets
in low resolution. Several deep architectures with 5,8,10 and
12 convolutional layers are experimented respectively while
keeping other settings the same. Our experiment results il-
lustrate that 12 convolutional layers achieve the best perfor-
mance. Adding more layers seems to make no difference. See
Section 5.1 for details.

2.2. Smaller Receptive Fields

Existing feature learning methods often extract features at the
first layer with a larger filter size (for example 8×8). It is

found in 2014 ImageNet Competition that using stacked con-
volutional layers with small receptive fields can make the de-
cision function more discriminative and can be regarded as
regularization on the larger filters [8]. We take stacked con-
volutional layers with receptive fields of 3×3 in our experi-
ments.

2.3. Overall Architecture

As illustrated in Figure 2, there are 15 layers with weights
to be learned: the first 12 convolutional layers plus the last 3
fully-connected layers. A 62-way (52 English case-sensitive
characters + 10 number digits) softmax layer takes the output
of the last fully-connected layer to give a distribution over the
62 class labels. We use cross-entropy loss function for this
classification task.

All convolutional layers share the same receptive fields
of 3×3. The convolution stride is fixed to 1 pixel. 1 pixel
padding is used to keep the spatial resolution unchanged. Lo-
cal Response Normalization (LRN) layers are adopted follow-
ing the first and second convolutional layers. Max-pooling is
used following the 4th and the 12th convolutional layers. The
max-pooling stride is 2 and the size is 3×3. The neurons in
the fully-connected layers are connected to all neurons in the
previous layer. We apply dropout [18] to the first two fully-
connected layers with 256 channels each to prevent overfit-
ting. And we use Rectified Linear Unit (ReLU) [19] as the
activation function.

3. TRAINING DEEPER NETWORKS

To make comparison with other methods, we adopt the 28×28
gray scale image as input. Data augmentation is performed
to avoid overfitting. Each image is resized to 32×32, and
then randomly scaled and rotated. Next we randomly crop
28×28 patches from the 32×32 gray image. Although the
patches are highly correlated, data augmentation does benefit
the performance.

As shown in Table 1, we propose several deep architec-
tures with different depths: base model with 5 convolutional
layers, model A with 8 convolutional layers, model B with 10

2385

base model model A model B model C model D
4×conv 4×conv 4×conv 4×conv 4×conv
pooling pooling pooling pooling pooling
1×conv 4×conv 6×conv 8×conv 8×conv
pooling pooling pooling pooling pooling
FC-256 FC-256 FC-256 FC-256 FC-4096
FC-256 FC-256 FC-256 FC-256 FC-4096
FC-62 FC-62 FC-62 FC-62 FC-62

softmax softmax softmax softmax softmax

Table 1. Model configurations. Conv represents convolution-
al layers with a filter size 3×3, stride 1 and 128 channels.
Pooling represents overlapping max-pooling layers with size
3×3 and stride 2. LRN(omitted in the table) is used after the
first and second convolutional layers.

convolutional layers and model C with 12 convolutional lay-
ers. We experiment with these models for two reasons. First,
we can explore how the depth effects the performance. Sec-
ond, as mentioned in [8], very deep convolutional networks
are hard to train at the beginning stage due to a large number
of rectification non-linearities. So we first train a shallow net-
work with five convolutional layers as a base model. Then we
gradually add convolutional layers at the top. We initialize
the weights and biases of the deeper network with the shal-
lower one. The base model and the newly-added layers are
initialized from a zero-mean Gaussian distribution with stan-
dard deviation 0.01. Different from [8] which only initializes
some of the layers, we initialize all possible layers from the
shallower network. In this way, we could train very fast since
the initialized layers have been well learned. All layers share
the same learning rate which means the initialized layers also
need to learn as a whole.

To optimize the networks, we use stochastic gradien-
t descent (SGD) with mini-batch 128, momentum 0.9 and
weight decay 0.0005. The initial learning rate is set to 0.01
for weights and 0.02 for biases. We decrease the weights
learning rate by a factor of 0.16 every 100 epochs and the
biases learning rate by a factor of 0.1 every 200 epochs until
the network converges at around 400 epochs.

For character classification, we crop 9 patches (top-
left, top-middle, top-right, middle-left, middle, middle-right,
bottom-left, bottom-middle, bottom-right) from the 32×32
images and average their predictions as the final results.

4. CROPPED WORD RECOGNITION

In this Section, our goal is to recognize the words which have
been cropped out accurately with the given bounding box-
es. We follow the postprocessing methods of [12] to make
use of our learned character classifier. For a given cropped
word image, we first resize it so that the height is 32 and then

compute the 62-way probability for each position in a sliding
window manner. It should be noted that we do not perform
the multi-view test but simply take the center 28×28 patch of
each 32×32 window. By padding properly, we get a 62×N
score matrix M, where N is the width of the resized image.
Non-maximum suppression is performed at matrix M to se-
lect the columns of candidate characters. Then we go through
the whole lexicon to find the word with the highest matching
score. See [12] for more details.

5. EXPERIMENTS

5.1. Character Classification

We evaluate our character classifier on ICDAR03 [14], SVT-
char [15] and Chars74K-15 [16]. Note that there are sev-
eral versions of ICDAR03 character datasets due to differ-
ent cropping methods. The original character classification
dataset from ICDAR03 [14] crops out characters tightly and
has a testing set of 5379 images. We call this CH-tight. Oth-
er works [11, 12, 13] crop out characters loosely, which add
some other characters together with the corresponding ground
truth. They also ignore some obscure characters in the test-
ing set, resulting in a testing set of 5198 images. We call
this CH-loose. Our models are tested on both CH-tight and
CH-loose. Chars74K-15 contains 15 examples per character
class: 930 images for training and 930 images for testing in
total. SVT-char has only 52 alphabet classes taking no con-
sideration into numbers. It consists of 3796 characters from
SVT-WORD [17]. We crop out characters loosely according
to SVT-char bounding boxes. In the following experiments,
we implement our methods with cuda-convnet2 [20].

Table 2 lists the character classification results on CH-
tight and Chars74K, which share the characteristic of severe
distortions after resizing. We train models with different
depths on CH-tight to illustrate the importance of network
depth. Models on Chars74K-15 are fine-tuned from the cor-
responding models on CH-tight. It can be seen that base
model has already shown better performance compared with
other methods [2, 17, 21]. Model A further improves the
performance compared with base model, which means the
3 more convolutional layers in the middle does help learn
better features. Considering model B and model C, we find
that CH-tight benefits more from deeper networks while
Chars74K-15 does not. This is possibly because model A has
already learned necessary features for this relatively small
dataset Chars74K-15. Our model C achieves the best perfor-
mance with an accuracy of 84.9% on CH-tight and 78.8% on
Chars74K-15.

Table 3 lists classification accuracy on CH-loose and
SVT-char. We fine-tune the pre-trained model C with the
CH-loose dataset and achieve an accuracy of 87.2%. This
is higher than [13], which uses about 0.1 million images as
training set and 2.6 million parameters for case-insensitive

2386

Method CH-tight Chars74K-15
Lee et.al. [2] 79.0 64.0
Native-Ferns [17] 64.0 54.0
Synth+Ferns [17] 52.0 47.0
GHOG+SVM [21] 76.0 62.0
LHOG+SVM [21] 75.0 58.0
base model 82.2 75.5
model A 84.3 78.7
model B 84.6 78.7
model C 84.9 78.8

Table 2. Character classification accuracy on CH-tight and
Chars74K(%).

Method CH-loose SVT-char
Wang et.al [12] 83.9 -
Jaderberg et.al [13] 86.8 80.3
model C 87.2 77.2
model D 90.1 85.1

Table 3. Character classification accuracy on CH-loose and
SVT-char(%).

classifier. However, we use fewer images (6113 images in
CH-tight for pre-training plus 5980 images in CH-loose for
fine-tuning) and 1.7 million parameters in model C, which
proves the importance of better feature representation. It
should be noted that for SVT-char, we directly test with
model C from CH-loose because SVT-char has no training
set for further fine-tuning. We achieve a lower accuracy of
77.2% (case-insensitive), which illustrates the importance of
fine-tuning.

To make the best use of big data, we also train a larg-
er model called model D with the 0.1 million training data
from [13]. Model D, which initializes its convolutional layers
from model C, expands the fully-connected layers with 4096
channels. We achieve 90.1% on CH-loose and 85.1% (case-
insensitive) on SVT-char with model D. In the following, we
use model D for cropped word recognition tasks.

Method ICDAR ICDAR SVT
(Full) (50) (50)

SYNTH+PLEX [17] 62.0 76.0 57.0
Lee et.al. [2] 76.0 88.0 80.0
Jaderberg et.al. [13] 91.5 96.2 86.1
Wang et.al. [12] 84.0 90.0 70.0
model D 92.3 96.4 88.4

Table 4. Cropped word recognition accuracy on ICDAR and
SVT(%).

(a) First convolutional layer (b) Third convolutional layer

Fig. 3. Visualization of the filters from model C.

Figure 3 illustrates the learned convolutional filters from
model C. Using Deconvnet described in [10], we could visu-
alize in pixel space what causes the maximum activation in
the third convolutional layer.

5.2. Cropped Word Recognition

We follow the same evaluation methods as [17], which ig-
nore words shorter than 2 characters and provide a lexicon
for each word. In Table 4, ICDAR-Full represents the lexicon
with all the words in the testing set while ICDAR-50 means
the lexicon with true tags plus additional 50 random distrac-
tor words. Similarly we define SVT-50 for the SVT cropped
word dataset.

Table 4 lists the results of cropped word recognition. We
achieve 92.3% for ICDAR-Full and 96.4% for ICDAR-50
with model D. The excellent character classifier makes great
contribution to the performance. Although [22] has obtained
better results, they take advantage of millions of synthetic
word images as additional training data. We do not list it here
to make fair comparisons with other methods which only use
character images.

6. CONCLUSION

In this paper, we have used very deep convolutional neural
networks with very small receptive fields for scene charac-
ter classification and cropped word recognition. We demon-
strate that the proposed network with fewer parameters can
outperform the existing models without additional training
data in the character classification task. We also used the
powerful character classifier in the cropped word recognition
and achieved competitive performance with very simple post-
processings.

7. ACKNOWLEDGMENTS

This work is jointly supported by National Natural Science
Foundation of China (61175003, 61135002, 61202328), Na-
tional Basic Research Program of China (2012CB316300).
We would also thank NVIDIA for donating GPU K40.

2387

8. REFERENCES

[1] I. Posner, P. Corke, and P. Newman, “Using text-
spotting to query the world,” in Proc. Conf. Intelligent
Robots and Systems, 2010, pp. 3181–3186.

[2] C. Lee, A. Bhardwaj, W. Di, V. Jagadeesh, and R. Pira-
muthu, “Region-based discriminative feature pooling
for scene text recognition,” in Proc. IEEE Intl Con-
f. Computer Vision and Pattern Recognition, 2014, pp.
4050–4057.

[3] K. Jung, “Neural network-based text location in color
images,” Pattern Recognition Letters, vol. 22, no. 14,
pp. 1503–1515, 2001.

[4] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text
in natural scenes with stroke width transform,” in Proc.
IEEE Intl Conf. Computer Vision and Pattern Recogni-
tion, 2010, pp. 2963–2970.

[5] X.C. Yin, X. Yin, K. Huang, and H. Hao., “Robust text
detection in natural scene images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 36, no. 5, pp.
970–983, 2014.

[6] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-
column deep neural networks for image classification,”
in Proc. IEEE Intl Conf. Computer Vision and Pattern
Recognition, 2012, pp. 3642–3649.

[7] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in neural information processing systems,
2012, pp. 1097–1105.

[8] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arX-
iv preprint arXiv:1409.1556, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going deeper with convolutions,” arXiv
preprint arXiv:1409.4842, 2014.

[10] M. Zeiler D and R. Fergus, “Visualizing and understand-
ing convolutional networks,” in ECCV 2014, 2014, pp.
818–833.

[11] A. Coates, B. Carpenter, C. Case, S. Satheesh.,
B. Suresh, T.Wang, D. J. Wu, and Andrew Y. Ng, “Text
detection and character recognition in scene images with
unsupervised feature learning,” in Proc. IEEE Intl Con-
f. Document Analysis and Recognition, 2011, pp. 440–
445.

[12] T. Wang, D.J. Wu, A. Coates, and Andrew Y. Ng, “End-
to-end text recognition with convolutional neural net-
works,” in Proc.IEEE Intl Conf. Pattern Recognition,
2012, pp. 3304–3308.

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep fea-
tures for text spotting,” in ECCV, 2014, pp. 512–528.

[14] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and
R.Young, “Icdar 2003 robust reading competitions,” in
Proc. IEEE Intl Conf. Document Analysis and Recogni-
tion, 2003, pp. 682–682.

[15] A. Mishra, K. Alahari, and C.V. Jawahar, “Top-down
and bottom-up cues for scene text recognition,” in Proc.
IEEE Intl Conf. Computer Vision and Pattern Recogni-
tion, 2012, pp. 2687–2694.

[16] T.E.de Campos, B.R. Babu, and M. Varma, “Character
recognition in natural images,” in Proc.Conf. Computer
Vision Theory and Applications, 2009.

[17] K. Wang, B. Babenko, and S. Belongie, “End-to-
end scene text recognition,” in Proc. IEEE Intl Con-
f.Computer Vision, 2011, pp. 1457–1464.

[18] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R.R. Salakhutdinov, “Improving neural networks
by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[19] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proc. 27th In-
ternational Conference on Machine Learning, 2010, pp.
807–814.

[20] A. Krizhevsky, “cuda-convnet2,” https://code.google.
com/p/cuda-convnet2/.

[21] C. Yi, X. Yang, and Y. Tian, “Feature representations
for scene text character recognition: A comparative s-
tudy,” in Proc. IEEE Intl Conf. Document Analysis and
Recognition, 2013, pp. 907–911.

[22] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zis-
serman, “Synthetic data and artificial neural networks
for natural scene text recognition,” arXiv preprint arX-
iv:1406.2227, 2014.

2388

