
Deep Embedding Network for Clustering

Peihao Huang, Yan Huang, Wei Wang, Liang Wang

Center for Research on Intelligent Perception and Computing (CRIPAC)

National Laboratory of Pattern Recognition, Institute of Automation

Chinese Academy of Sciences, Beijing 100190, China

{phhuang, yhuang, wangwei, wangliang}@nlpr.ia.ac.cn

Abstract—Clustering is a fundamental technique widely used
for exploring the inherent data structure in pattern recognition
and machine learning. Most of the existing methods focus on mod-
eling the similarity/dissimilarity relationship among instances,
such as k-means and spectral clustering, and ignore to extract
more effective representation for clustering. In this paper, we
propose a deep embedding network for representation learning,
which is more beneficial for clustering by considering two
constraints on learned representations. We first utilize a deep
autoencoder to learn the reduced representations from the raw
data. To make the learned representations suitable for clustering,
we first impose a locality-persevering constraint on the learned
representations, which aims to embed original data into its un-
derlying manifold space. Then, different from spectral clustering
which extracts representations from the block diagonal similarity
matrix, we apply a group sparsity constraint for the learned
representations, and aim to learn block diagonal representations
in which the nonzero groups correspond to its cluster. After
obtaining the learned representations, we use k-means to cluster
them. To evaluate the proposed deep embedding network, we
compare its performance with k-means and spectral clustering
on three commonly-used datasets. The experiments demonstrate
that the proposed method achieves promising performance.

I. INTRODUCTION

It is very important to learn good features for achieving
good performance in computer vision and pattern recognition
tasks. Taking object recognition for an example, inspired by
human visual system, an object can be represented by multiple
level features, e.g., bar-like edges or object parts. Generally, the
high-level features are made up of the low-level ones, which
can achieve better recognition performance since they are more
closely related to the abstract semantic concept. To obtain these
multiple levels of features, many efforts have been put forward
to design various hierarchical feature extractors. Deep neural
network (DNN), as a typical hierarchical model, had been
utilized for feature learning for a period of time in the 90’s,
which was abandoned afterwards due to the disadvantages of
high computational cost, easily getting stuck in local optimum
and over-fitting.

However, DNN has recently attracted much attention again
since Hinton et al. [1] proposed an efficient learning algorithm
for so-called deep belief nets (DBN). The algorithm utilizes
a layer-wise unsupervised learning strategy to provide a good
initialization for the network, which can greatly alleviate the
drawbacks mentioned above. Thus, variants of DNN have
exhibited their powerful ability in representation learning and
achieved great success in many fields. For example, Lee et al.
[2] propose a convolutional version of DBN to learn hierarchi-
cal representations for high-dimensional images, which obtain

great improvement in visual recognition tasks. To fuse multiple
modalities and obtain their shared representations, Ngiam et
al. [3] propose a multimodal deep auto-encoder which can be
learned by pretraining and fine-tuning successively. Krizhevsky
et la. [4] design a very deep convolutional network for large-
scale high-resolution image classification which largely out-
performs the previous state-of-the-art. To better model the
emission distribution of hidden Markov models, Mohamed et
al. [5] replace the Gaussian mixture models with DBN and
achieve better speech recognition results. However, to the best
of our knowledge, there exists few literature which applies the
widely used deep neural network for clustering.

Clustering can be considered as one of the most important
unsupervised learning problems, which has been widely used
in various fields from computer science to social science. The
goal of clustering is to group similar data into the same cluster
through measuring the distances between data points. Tradi-
tionally, k-means[6] is one of the most popular and simplest
clustering methods, which iteratively assigns data to its nearest
centroid and updates k centroids until convergence. Unlike the
hard assigning of k-means, the mixture of Gaussians models
each cluster as Gaussian distribution and represents the entire
data set by a mixture of Gaussians. Without making any as-
sumption on the distribution of the clusters, spectral clustering
[7] makes use of the spectrum of the similarity matrix of data
to perform dimensionality reduction before applying k-means.
Most of the existing clustering methods focus on modeling
the similarity/dissimilarity relationship among instances and
ignore to extract more effective representation which largely
influences the clustering performance. A few kernel methods,
such as kernel k-means [8], apply a non-linear transformation
to original data and generally measure the similarity in a
high-dimensional representation space. However, these kernel
methods heavily depend on the choice of the kernel, which is
more experience-guided.

In this paper, we propose a deep neural network based
model named deep embedding network (DEN), which learns
clustering-oriented representations by imposing two special
constraints. First, utilizing the deep autoencoder [9] to obtain
good representations from the raw data by minimizing the data
reconstruction error. To uncover the intrinsic manifold from
the learned representations, we apply a locality-preserving
constraint which preserves the local structure property of the
original data. To further facilitate the clustering and make
the representations contain cluster information, we also use
a group sparsity constraint which aims to diagonalize the
affinity of representations. The nonzero values of the rep-
resentations correspond to its cluster. After obtaining the

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.272

1532

learned representations, we use k-means to cluster them. To
evaluate the proposed deep embedding network, we compare
its performance with k-means and spectral clustering on three
commonly-used datasets. The experiments demonstrate that the
proposed method achieves promising performance.

The rest of this paper is organized as follows: Section
II will introduce some related work about deep learning and
clustering methods. The proposed deep embedding network for
clustering will be described in detail in Section III followed
by some experimental results in Section IV. We conclude the
paper in Section V.

II. RELATED WORK

In this section, we briefly review the existing literature that
closely relates to the proposed deep embedding network. First,
we will introduce the existing deep neural network methods
for clustering. Then, we review current deep neural network
methods for nonlinear embedding, which aims to learn robust
representations for various tasks. Considering that binary units
are used in the top hidden layer of the deep embedding
network, deep embedding network seems to become able
to learn hash codes, and some related networks need to be
introduced below.

Deep neural network for clustering Currently, there
is only a little work on deep neural network for clustering.
Song et al. [10] propose an autoencoder-based data clustering
method, which defines a new objective function by considering
the reconstruction error from an auto-encoder network and
restricting the distance in the learned space between data and
their corresponding cluster centers. This model follows the
two-step iteration procedure of k-means. During optimization,
data representation and clustering centers are updated itera-
tively. Different with their work, our deep embedding network
aims to learn effective representation for clustering, but not to
simulate any existing clustering methods.

Deep neural network for nonlinear embedding Tra-
ditional autoencoder is an artificial neural network method
for dimensionality reduction, which aims to learn a com-
pressed representation for an input through minimizing its
reconstruction error [11]. More recently, several autoencoder
variants are proposed to learn robust features. Sparse auto-
encoder imposes a sparsity constraint on hidden representation
to model the sparse coding of primary visual cortex [12].
Denoising autoencoder transforms a corrupted input into a
hidden representation, and then tries to recover the original
input from this representation [13]. Contractive autoencoder
adds a regularization term that is the sum of squares of all
partial derivatives of the hidden representations with respect
to the input, which penalizes the sensitivity of the hidden
representation to the input [14]. Hinton et al. propose an
efficient pretraining algorithm for multilayer autoencoders (so-
called deep autoencoder) [15]. In our deep embedding network,
we use multilayer autoencoder to model the reconstruction
term, and also adopt the pretraining strategy in [9]. Another
similar work to our deep embedding network is the nonlinear
extension of neighborhood component analysis (nonNCA)
[16][17], which uses a deep neural network as the non-linear
transformation function and preserves the class neighborhood
structure by exploiting class label information. The main

difference between our method and nonNCA is that our deep
embedding network is an unsupervised representation learning
method while nonNCA is a supervised one.

Deep neural network for learning hash codes Both
[18] and [19] use deep autoencoder to learn hash codes by
assuming that the top hidden layer only contains binary units.
The former, [18] aims to learn a representation for each
document while the later [19] for images. During the fine-
tuning procedure, they use backpropagation to find codes that
are good at reconstructing the word-count vector or original
raw-pixel image but are as close to binary as possible. In
order to make the codes binary, they add Gaussian noise to
the bottom-up input received by each code unit, and make
these bottom-up inputs to be large and negative for some
training cases while large and positive for the others. With this
binarization strategy, our deep embedding network can also be
used to learn hash codes.

III. CLUSTERING WITH DEEP EMBEDDING NETWORK

Existing popular clustering methods such as k-means or
spectral clustering, use either raw or linear transformed data
for clustering. However, it would be insufficient when dealing
with most datasets which have complex statistical properties.
Recently, deep learning has drawn much attention because its
highly nonlinear architecture can help to learn powerful feature
representations. Thus, to take advantage of it, we propose a
deep embedding network which utilizes deep neural network
to learn clustering-oriented representations from raw data,
and then performs clustering with k-means. To achieve the
clustering-oriented representations, we impose two constraints
on the learned representations of deep embedding network.
One is a locality-persevering constraint which aims to embed
original data into its underlying manifold space. The other one
is a group sparsity constraint which aims to learn block diag-
onal representations in which the nonzero groups correspond
to its cluster.

A. Deep Autoencoder

In this section, we will briefly review the traditional deep
autoencoder (DAE) [9], which is the foundation of our pro-
posed deep embedding network.

Taking the four-layer neural network in Fig. 1 (a) for ex-
ample, the network serves as an encoder which transforms raw
input data (digit 9) to a powerful representation (top layer with
100 units). Particularly, let X = {xi : xi ∈ R

n×1}i=1,2,···,N
denote the set of input data, and W = {Wi}i=1,2,3 for
the weights of the encoder network. The encoder defines a
transformation f(·) : Rn×1 → R

d×1 which transforms an input
x to a d-dimensional representation f(x):

f(x) = WT
3 φ(WT

2 φ(WT
1 x)) (1)

where φ(·) is the activation function φ(x) = 1/(1 + e−x).
For simplicity, we drop the bias term bi for each layer in the
formulation.

Unrolling the four-layer encoder network, we obtain a
deep autoencoder with a symmetric decoder as shown in
Fig. 1 (b). The decoder also defines a transformation f̂(·) :
R

d×1 → R
n×1 which uses the transformed representation f(x)

1533

500

100

1000

��

��

��

Encoder

Decoder

Encoder

1000

500

100

500

1000

��

��

��

��

�

��

�

��

�

��

��

��

��

�

��

�

��

�

1000

500

500

1000

��

��

��

��

�

��

�

��

�

1000

500

500

1000

10 ⋯ 10 10 10 ⋯ 10 10
1000

500

RBM

500

100

RBM

1000

GRBM

��

��

��

(a) Deep neural network (b) Unrolling the network (c) The proposed deep embedded network (d) Pretraining

Fig. 1. (a) A four-layer deep neural network. The number in each layer represents the number of units, W1, W2 and W3 are the weights of the network, the
bottom digit image represents the input data, and the top layer with 100 units is the learned representation. (b) Unrolling the network. The encoder and decoder
are marked as two dashed rectangles, the top digit image is the reconstruction of the bottom digit image. (c) The proposed deep embedding network. The top
layer with 100 units is divided into 10 groups, each of which contains 10 units. (d) The pretraining procedure. The network can be trained successively as a
GRBM and two RBMs.

to reconstruct the original input x. When the input is binary-
valued, the reconstructed input is

f̂(x) = φ(WT
1 φ(WT

2 φ(WT
3 f(x)))) (2)

When the input is real-valued, the reconstructed input is

f̂(x) = WT
1 φ(WT

2 φ(WT
3 f(x))) (3)

After obtaining the reconstructed input, we can define an
objective function Er when the input is real-valued:

Er =

N∑

i=1

‖xi − f̂(xi)‖2 (4)

where ‖ · ‖ denotes the Euclidean norm. When given binary-
valued input, the corresponding objective function is defined
as cross entropy:

Er = −
N∑

i=1

[xi log f̂(xi) + (1− xi) log(1− f̂(xi))] (5)

The network weights W = {Wi}i=1,2,3 can be learned
via gradient descend. We can compute the derivatives of the
objective function with respect to all the weights using the
backpropagation algorithm [9].

B. Objective Function of Deep Embedded Network

Deep neural network and its variants have been suc-
cessfully applied to many pattern recognition tasks such as
dimensionality reduction, classification and retrieval([14], [20],
[18]). They can learn expressive representations for very

complex data with their deep and nonlinear architectures. In
this paper, we aim to learn clustering-oriented representations
by imposing locality-preserving and group sparsity constraints.

Locality-preserving Constraint: To make the learned
representations suitable for clustering, they are expected to be
embedded into their intrinsic manifold, which preserves their
local property. Specifically, we introduce a locality-preserving
constraint as follows:

Eg =
∑

i,j∈k(i)
Sij‖f(xi)− f(xj)‖2 (6)

where k(i) is the set containing the indexes of k nearest
neighbors of data xi, f(·) is defined in (1), and Sij is the
similarity measure between xi and xj . Here we use the heat

kernel Sij = e−
‖xi−xj‖2

t (t is a tuning parameter).

The manifold learned from the above constraint is similar
to the one learned from Laplacian Eigenmap (LE) due to the
similar formulation. As we know, LE is closely related to
spectral clustering[21]. That is to say, our method is related
to spectral clustering to some extent, except the nonlinear
transformation implemented by deep neural network.

Group Sparsity Constraint: Inspired by spectral clus-
tering which exploits block diagonal similarity matrix for
representation learning, we aim to diagonalize the learned rep-
resentations to further facilitate clustering by selecting one or
more relevant groups of hidden units which represents inherent
properties of data. As we know, group sparsity constraint as
an effective feature selection method which has been widely
used in many applications. In this paper, we employ group
lasso which leads to sparsity within hidden codes on group
level[22].

1534

In particular, we divide the hidden units into G groups
where G is the assumed number of clusters. When given a
data point xi, we obtain the transformed representation f(xi)
and G grouped units {fg(xi)}Gg=1. Thus the group sparsity

constraint Es can be defined as follows1:

Es =
N∑

i=1

G∑

g=1

λg‖fg(xi)‖ (7)

where {λg}Gg=1 are the weights to sparsity of groups. Gener-
ally, larger weights are given to larger groups and λg is defined
as follows:

λg = λ
√
ng

where ng is the group size and λ is a constant.

As we can see, by imposing this group sparsity constraint,
only a few groups of the learned representation of each data
point can be activated, and the activated groups correspond
to specific cluster. As a result, all the representations can be
block-diagonalized.

Objective function: After introducing the locality-
preserving and group sparsity constraints in detail, we can
derive the objective function of the proposed deep embedding
network as follows:

E = Er + αEg + βEs (8)

where α and β are tuning parameters.

C. Learning

To learn the network weights of the proposed deep embed-
ding network, we utilize a two-stage algorithm which contains
a pretraining procedure to initialize the network weights fol-
lowed by a fine-tuning procedure. It should be noticed that
both of these two procedures are unsupervised.

At first, we briefly review restricted Boltzmann machine
(RBM) [9], which is a basic concept in pretraining. A RBM
consists of a visible layer and a hidden layer. Each node in
the visible layer is connected to each node in the hidden layer,
and values of these nodes are all binary-valued. The energy
function of this model is defined as follows:

F (v,h) = −vTWh− b1v − b2h (9)

where v and h are respectively the visible and hidden nodes,
W is the weight matrix between visible nodes and hidden
nodes, b1 and b2 are the visible biases and hidden biases,
respectively.

RBM can only deal with binary-valued data, while Gaus-
sian restricted Boltzmann machine (GRBM) can handle real-
valued data using real-valued visible nodes. Its energy function
is defined as:

1Noting that for smoothness of the differential of the group lasso reg-
ularizer, it is common to add a small positive ε term to the regularizer
in practice [23] . The formula of regularization term Es then turns to∑G

g=1 λg

√∑
i∈group g h2

i + ε .

F (v,h) =
∑

i

(vi − bi)
2

2σ2
i

−
∑

i

∑

j

vi
σi

Wijhj −
∑

j

bjhj

(10)
Where {W, bi, bj} are model parameters, σi is the standard
deviation of the Gaussian noise for visible node i. The joint
probability distribution of all the nodes is defined as:

P (v,h) =
1

Z
exp(−F (v,h)) (11)

where Z is a normalization factor that scales P (v,h) to
[0,1]. The RBM parameters can be trained by minimizing
the negative log-likelihood −∑

h logP (v,h) via stochastic
gradient descend. Here we use Contrastive Divergence (CD)
[15] to approximate the intractable gradients computation.

Pretraining [9] treats adjacent layers as a RBM and trains
RBMs bottom-up to obtain good initial weights. For example,
in Fig. 1 (d), the weight W1 can be trained by treating the
bottom two layer as a GRBM. The weight W2 can be trained
in the same way by treating the following two layers as a RBM.
Similarly, we can train all the weights in a bottom-up manner.
After the pretraining procedure, we use the backpropagation
algorithm to fine-tune the network weights.

D. K-means for Clustering

Given data points, we first utilize the trained deep neural
network to obtain the transformed representations, and then
employ traditional k-means algorithm to perform clustering.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed deep embedding network, we
perform several experiments on three datasets to demonstrate
the effectiveness of our method in this section.

A. Description of Datasets

We use three datasets (COIL-20, PIE, Yale-B) to evaluate
the performance of the proposed deep embedding network.
All of these datasets provide ground truth, such as digit label,
object class and person id.

COIL-202 is a dataset for object classification on 20 classes
of objects. Each object has 72 images shot in different angles.
We use the processed version of this dataset in which every
image only contains one object with black background. All
images are rescaled into a size of 32×32 pixels.

CMU PIE [24] and Yale-B [25] are both face image
datasets, which contains faces of different people under varied
poses, illumination conditions and expressions (Yale-B does
not consider expression variation). For computational consider-
ation we resize the images in Yale-B3 to 30×40 pixels. Images
in PIE are preprocessed as in [26].

For all datasets listed above, we normalize the data by
subtracting the mean and then dividing the data by standard
deviation for each feature.

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://markus-breitenbach.com/machine learning data.php

1535

TABLE I. COMPARISON OF NMI AND ACCURACY OF CLUSTERING METHODS ON THREE DATASETS

Method
COIL20 Yale-B PIE

NMI ACC (%) NMI ACC (%) NMI ACC (%)
K-means 0.76±0.02 59.02±4.40 0.70±0.04 65.80±6.18 0.19±0.00 8.36±0.40
Ncut 0.86±0.03 64.57±6.87 0.79±0.03 62.34±6.37 0.25±0.01 9.55±0.65
Proposed 0.87±0.01 72.40±3.39 0.92±0.04 81.73±9.64 0.42±0.00 11.19±0.29

B. Experimental Settings

1) Baselines: We compare the proposed method with two
most popular clustering algorithms: k-means [6] and spectral
clustering [7]. Considering that spectral clustering is an ap-
proximated solution for normalized cut [27] or ratio cut [28].
Here we take the normalized cut (Ncut) version of spectral
clustering as the baseline.

2) Evaluation metric: As the group label of each data
point is available, we can compare clustering results with these
labels to evaluate the performance. Here we use Normalized
Mutual Information (NMI) and Accuracy (ACC) to measure
the effectiveness of clustering methods.

Normalized Mutual Information[29] is a popular metric
used for evaluating clustering tasks. It is defined as follows:

NMI(Ω,C) =
I(Ω,C)√
H(Ω)H(C)

where Ω and C respectively denote clustering label and ground
truth label of any given sample. I(Ω,C) is mutual information
which measures the information gain to the true partition
after knowing the clustering result, H(·) is entropy and the

denominator
√

H(Ω)H(C) is used to normalize the mutual
information to be in the range of [0, 1]. When we partition
the data perfectly, NMI score is 1, and when Ω and C are
independent, NMI score is 0.

Accuracy is defined as:

ACC =

∑N
i=1 δ(map(ci) = yi)

N

where δ(·) is an indicator function, ci is the clustering label
for xi, map(·) transforms the clustering label ci to its group
label by the Hungarian algorithm [30], and yi is the true group
label of xi. ACC measures the consistency between the true
group label and the clustering group label.

Initial centroids have significant impact on clustering re-
sults when utilizing the k-means algorithm. To alleviate this
influence, we repeat k-means for multiple times with ran-
dom initial centroids (specifically, 100 times for statistical
significance). The average NMI and accuracy along with the
corresponding standard deviation are taken as the final result.

TABLE II. PARAMETER SETTINGS ON THREE DATASETS

Dataset Architecture K s α β
COIL20 1024-200-80 20 4 250 0
Yale-B 1200-500-100-30 10 3 0.5 1
PIE 1024-2000-680 68 10 0 0

3) Parameter settings: We manually choose the architec-
ture for each deep embedding network, such as the number of
layers and the number of units in each layer. As for the groups
of the top hidden layer codes in the deep embedding network,

we group adjacent hidden codes together and fix the size of
each group to a constant s (e.g., 3 or 5). Note that there is
no intersection between groups. When partitioning the dataset
into K clusters, we obtain K · s hidden codes in the network.
Detailed settings for all datasets are listed in Table II.

C. Results Analysis

We train the deep embedding network on the datasets and
apply the k-means algorithm on the learned representation.
NMI and Accuracy of all the methods are listed in Table I.

The experimental results show that the proposed deep
embedding network performs significantly better than both
k-means and spectral clustering algorithms on all the tested
datasets. It is because k-means can discover more accurate
cluster structure from the representations learned by deep
embedding network than that from raw data. Compared with
normalized cut, our method achieves large improvement on all
these datasets by 0.01/7.83%, 0.13/19.39%, and 0.17/1.64%
(NMI/ACC), respectively. Note that for each dataset, we tune
the parameters of normalized cut to obtain the best result
(including the number of the nearest neighbors for graph
construction and the edge weights).

Fig. 2. Representations learned from 5,850 samples of Yale-B. Horizontal
axis represents the samples while vertical axis represents groups in the learned
representations. Blue lines separate groups in samples and red ones separate
groups in the learned representations. (Best viewed in color.)

We also plot the learned representations of the 5,850
samples from the Yale-B dataset in Figure 2. In this figure, the
horizontal axis denotes the samples and the blue lines separate
the ten group samples from each other. The vertical axis
denotes the learned representation and the red lines separate the
ten group representations. As we can see, the representations
in each sample group show the group sparsity, and different

1536

sample groups show different group sparsity patterns, which
indicates that the proposed method learns good representations
for clustering.

V. CONCLUSION

In this paper, we have proposed the deep embedding
network for clustering, which exploits deep neural network
to obtain clustering-oriented representations by considering
two constraints, namely the locality-preserving and group
sparsity constraints, respectively. The experimental results have
demonstrated the effectiveness of our proposed method.

ACKNOWLEDGMENT

This work is jointly supported by National Natural Sci-
ence Foundation of China (61175003, 61135002, 61202328),
Hundred Talents Program of CAS, National Basic Research
Program of China (2012CB316300).

REFERENCES

[1] G. E. Hinton and S. Osindero, “A fast learning algorithm for deep belief
nets,” Neural Computation, 2006.

[2] H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions,” International Conference on Machine Learning, 2009.

[3] J. Ngiam, A. Khosia, J. Nam, H. Lee, and A. Ng, “Multimodal deep
learning,” International Conference on Machine Learning, 2011.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Infor-
mation Processing Systems, 2012.

[5] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic modeling using
deep belief networks,” IEEE TASLP, 2012.

[6] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained k-
means clustering with background knowledge,” in International Con-
ference on Machine Learning, vol. 1, 2001, pp. 577–584.

[7] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[8] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral cluster-
ing and normalized cuts,” in Proceedings of the tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2004, pp. 551–556.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, 2006.

[10] C. Song, F. Liu, Y. Huang, and T. Tan, “Auto-encoder based data
clustering,” Springer, 2013.

[11] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[12] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area v2,” Advances in Neural Information Processing Systems,
2007.

[13] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” Interna-
tional Conference on Machine Learning, 2008.

[14] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” Interna-
tional Conference on Machine Learning, 2011.

[15] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, 2002.

[16] J. Goldberger, S. T. Roweis, and G. E. Hinton, “Neighbourhood com-
ponents analysis,” Advances in Neural Information Processing Systems,
2004.

[17] R. Salakhutdinov and G. Hinton, “Learning a non-linear embedding by
preserving class neighbourhood structure,” AI and Statistics, 2007.

[18] R. Salakhutdinov and G. E. Hinton, “Semantic hashing,” IJAR, 2009.

[19] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval.” in ESANN. Citeseer, 2011.

[20] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Infor-
mation Processing Systems, 2012.

[21] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering.” in Advances in Neural Information
Processing Systems, vol. 14, 2001, pp. 585–591.

[22] L. Meier, S. Van De Geer, and P. Bühlmann, “The group lasso for
logistic regression,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 70, no. 1, pp. 53–71, 2008.

[23] F. Nie, H. Huang, X. Cai, and C. Ding, “Efficient and robust feature
selection via joint l21-norms minimization,” Advances in Neural Infor-
mation Processing Systems, 2010.

[24] T. Sim, S. Baker, and M. Bsat, “The cmu pose, illumination, and
expression (pie) database,” in Automatic Face and Gesture Recognition,
2002. Proceedings. Fifth IEEE International Conference on. IEEE,
2002, pp. 46–51.

[25] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 23, no. 6, pp. 643–660, 2001.

[26] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition
using laplacianfaces,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 3, pp. 328–340, 2005.

[27] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8,
pp. 888–905, 2000.

[28] S. Wang and J. M. Siskind, “Image segmentation with ratio cut,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 6,
pp. 675–690, 2003.

[29] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 33, no. 3, pp. 568–586,
2011.

[30] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Dover Publications, 1998.

1537

