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ABSTRACT

Scale adaptation is crucial to object tracking as the visual size
of the target changes continuously. Many existing tracking al-
gorithms, however, simply ignore scale changes either for the
consideration of tracking efficiency or the lack of principle
ways to scale estimation. In this work, we present an efficien-
t and effective scale adaptive tracking algorithm by propos-
ing a correlation filter based tracker in the joint spatial and
scale space. We find that the exhaustive template searching
in this joint space can be well modeled by a block-circulant
matrix. With the properties of the block-circulant matrices,
we prove that the expensive template matching can be trans-
formed to efficient dot product in frequency domain by fast
Fourier Transform. Based on these findings, our new tracker
significantly improves the robustness and adaptability of pre-
vious competitive spatial correlation trackers. On the latest
single object tracking benchmark, our tracker advances the
state-of-the-art tracking results with a very large margin.

Index Terms— Object tracking, scale adaptation, block-
circulant matrix, Fast Fourier Transform (FFT)

1. INTRODUCTION

Visual object tracking is a difficult problem in computer vi-
sion and has been extensively studied in the last decades. In
this problem, appearance model and tracking strategy are two
crucial components, to which great efforts in previous work
have been devoted. Early methods select object templates as
the appearance model and perform tracking by matching ob-
ject candidates exhaustively in the next frame with the stored
templates [1, 2, 3]. Although very straightforward, this kind
of tracking techniques is often very time-consuming and suf-
fers from object deformations and occlusions.

To deal with these problems, discriminative learning
based methods have become mainstream in this field [4, 5,
6, 7], which formulates object tracking as a classification
problem and adopts online learning methods to learn a dis-
criminative classifier between the object and backgrounds.
The discriminative classifier increases the tracking robust-
ness towards object deformations and occlusions. To avoid
exhaustively evaluating all possible samples from the object
and backgrounds, these methods usually select a small subset
of samples to learn and update the classifier, as well as esti-

mating the object state. The number of evaluated samples,
therefore, has great impact on the tracking performance.

Recently, a new template matching based tracking tech-
nique [8, 9] has achieved excellent performances on two
largest tracking benchmarks [10, 11] and re-attracts the at-
tention in this field to template matching based tracking
techniques. The key innovation of this technique is to ap-
proximate the spatial exhaustive searching by efficient dot
product in the frequency domain by means of circulant matri-
ces. Its main problem, however, is that scale variation can not
be handled, which leads to lack of flexibility. This is due to
its failure of formulating the circulant structure for multilevel
template matching. On the other hand, if this algorithm is
applied individually to several image layers as mentioned in
[12], the comparison between layers can be ambiguous and
tricky. To surmount this problem, we propose to perform
the exhaustive template searching in the joint scale-spatial
space, and find that this operation can be well modeled by
a block-circulant matrix, which likewise, can transform the
joint scale-spatial template matching operations to efficient
multiplication operations in the Fourier domain. The final
object scale and position are obtained simultaneously from a
joint scale-spatial distribution by simply an inverse Discrete
Fourier Transform. Based on these innovations, our new Joint
Scale-Spatial Correlation (JSSC) tracker significantly outper-
forms previous Spatial Correlation trackers [13, 14] in the
robustness and adaptability respects, and advances the best
performance on the benchmark [10] with a very large margin.

Our contributions are as follows: (1) we find a new s-
cale adaptation scheme which is compatible with the tem-
plate matching based framework, significantly improving the
performance of correlation filter based trackers; (2) we find
that the dense template matching operations in the joint scale-
spatial space imply the block-circulant structure, which helps
transform the exhaustive matching to efficient multiplication
in frequency domain by fast Fourier Transform; (3) the state-
of-the-art results obtained according to recent benchmark [10]
further prove our tracker’s robustness and adaptability.

2. RELATED WORK

Scale variation is a very common problem in visual objec-
t tracking. Most previous tracking methods [4, 5], however,
ignore the scale changes of the object during tracking. The



reason lies partly in the ambiguity in sample generation and
labeling for neighboring image layers. Furthermore, with the
incorporation of scale estimation, the workload of training
and detection of the classifier increases dramatically. For gen-
erative methods, Danelljan et al.[15] proposed a two-stage al-
gorithm, ranking first on the basis of benchmark [11]. They
learn separate filters for position and scale estimations. Un-
fortunately, once the location ambiguity occurs when the tar-
get is undergoing large appearance variation, the unconvinc-
ing result of the position filter will adversely affect the per-
formance of the scale filter. Thus, tracking error accumulates
over time. In the framework of particle filtering, most track-
ing algorithms (e.g. VTD [2], SCM [16], and ASLA [17])
either neglect scale evaluation in the principal training pro-
cess, or just treat samples from different scale levels equally.
Over time, though, this can degrade the model and cause drift.

Compared to other scale adaptation methods, our algo-
rithm has merits. Firstly, general in Bayesian framework, our
motion model is based on the scale prior obtained from last
frame. So the detection is executed on several scale layer-
s. Besides, we modify the Bayesian framework by inserting
the scale factor into the observation model. Consequently,
the interaction between samples from different scale levels is
carefully considered in the training process. In addition, the
joint scale-spatial response is defined as a multivariate Gaus-
sian distribution. This special structure of response weights
training samples diversely and permits our algorithm to es-
timate the position and scale simultaneously. We use linear
interpolation to ensure continuity of scale estimation.

3. PROPOSED ALGORITHM

To incorporate scale estimation into visual tracking, it is ideal
to extract image patches continuously from the joint scale-
spatial space. Fortunately, a block-circulant structure is dug
out for this process and further works out the impact on the
Kernelized Ridge Regression algorithm. It turns out that the
kernel matrix of the joint space exhibits block-circulant struc-
ture. Considering the property of block-circulant matrices,
we diagonalize the kernel matrix with the Discrete Fourier
Transform (DFT) matrix and transform templates matching
to efficient multiplication operations. We also prove the ef-
ficiency of our scale adaptation scheme under the Bayesian
framework in a holistic view.

3.1. Dense Sampling and Circulant Matrices
The performance of sparse sampling based trackers is often
limited by the number of samples. We thus intend to use
all the samples in both training and detection process. As-
sume a 1D image and a single-channel feature. Then the base
sample is defined as a particular image patch whose center is
located at the estimated position of the target. When we sam-
ple continuously around the target, without considering the
boundary effect, the translation of the search window can be

approximately considered as the cyclic shift of the base sam-
ple. Thus, the universal set of samples for an image can be
represented as an circulant matrix [18]:

C(c) =


c1 c2 · · · cn
cn c1 · · · cn−1

...
...

. . .
...

c2 c3 · · · c1

 , (1)

where each row is a cyclic shift of the row above it, defined
as row(i)=P i−1c, P is a cyclic shift operator, base sample
c is the first row. The structure can also be characterized by
noting that the (k, j) entry of the circulant matrix is given by

Ck,j = c(j−k)modn. (2)
A very good property of the Circulant matrices is that it can
be diagonalized via the DFT matrix F :

C(c) = F diag(ĉ)FH , (3)
where ĉ denotes the DFT of the base sample, ĉ=F c. From
now on, we use a hat as shorthand for the DFT of a vector.
Since scale estimation is incorporated, we finally arrive at S
circulant matrices defined as
X=(XT

1 , X
T
2 , · · · , XT

S )T=(C(x1)T, C(x2)T, · · ·, C(xS)T )T ,

where S denotes the size of the scale space and xi∈Rn(i=
1, 2,. . . ,S) represent base samples of different scale levels.

3.2. Ridge Regression with Kernel Trick
When we match the object template with the universal set of
training samples from the joint scale-spatial space, assume
the matching scores obey a multivariate Gaussian distribution.
The goal of training is to get the template that minimizes the
squared error over sample response and the defined match-
ing scores. We use regularized Ridge Regression to achieve
this and get the closed-form solution in the dual space for the
Kernelized Ridge Regression [19]:

α = (K + λISn)−1Y, (4)
where the (S×n)×1 vector Y is the universal set of matching
scores. The S×S block matrix K is a collection of the kernel
matrices generated between different scale layers. Concisely,
a block Kij(i, j=1, 2, . . . , S) denotes the n×n kernel matrix
calculated from the scale layersXi andXj . Additionally, the
output of the kernel function for each pair of samples from
the two scale layers can be given by:
Kij(q, l) = κ(P q−1xi, P l−1xj), (q, l=1, 2, . . . , n). (5)

3.3. Block-circulant Structure
It is hard to handle the inverse of the large non-sparse matrix
in (4). However, if the block matrixK implies block-circulant
structure, the matrix inversion can be significantly simplified.
Theorem 1 Given circulant matrices Xi and Xj , the ker-
nel matrix Kij is circulant if the kernel function satisfies
κ(xi, xj)=κ(Mxi,Mxj), for any permutation matrix M .
We use the Gaussian kernel and obtain that each block of the
matrix K is circulant [9]. Then, we select elements from the



same place of each block of K and store them in an S×S
matrix. Finally, we will get an n×n block-circulant matrix
K̄. To further confirm the conclusion, we have

K̄ql={Kij(q, l)}Si,j=1={κ(xi, P (l−q)modnxj)}i,j . (6)
Similarly, we refer to the first row of the block-circulant ma-
trix as the base block sequence, denoted [Ψ1,Ψ2, · · · ,Ψn].
As in [20], the block-circulant matrix is diagonalized as:

K̄ = W diag(g(u0), g(u1), · · · , g(un−1))WH , (7)

g(x) = Ψ1 + Ψ2x+ · · ·+ Ψnx
n−1, (8)

W = F ⊗ IS , (9)

uk = exp(−j 2πk

n
), (10)

where g(x) calculates the DFT of the base block sequence.

3.4. Model Training
Since we obtain a block-circulant matrix after the rearrange-
ment of block matrix K, the JSSC solution in the Fourier do-
main is extended as

ˆ̄α∗=(diag(g(u0), g(u1), · · ·, g(un−1)) +λISn)−1 ˆ̄Y ∗, (11)

g(uc) =


k̂x1x1
c k̂x1x2

c · · · k̂x1xS
c

k̂x2x1
c k̂x2x2

c · · · k̂x2xS
c

...
...

. . .
...

k̂xSx1
c k̂xSx2

c · · · k̂xSxS
c

 , (12)

kxx̃ = exp(− 1

σ2
(‖x‖2 + ‖x̃‖2 − 2F−1(x̂� ˆ̃x∗))), (13)

where kxixj
c is the c-th element of the base sample of the Gaus-

sian kernel matrix Kij , the horizontal bars represent the re-
arrangement, F−1 denotes the Inverse DFT and � denotes
element-wise product.

3.5. Modeling Testing
Similar to the training section, we wish to match the object
template with the universal set of candidates from the joint
scale-spatial space.The template matching scores for all the
candidate patches can be computed as:

f(Z) = KZXα. (14)
The asymmetric kernel matrices between all candidate patch-
es and training patches are stored in the block matrix KZX=
(C(kzixj ))Si,j=1. Considering the block-circulant matrix prop-
erties, the full detection response is given by

ˆ̄f(Z)=diag(h∗(u0), h∗(u1), · · · , h∗(un−1)) ˆ̄α, (15)

h(uc) =


k̂z1x1
c k̂z1x2

c · · · k̂z1xS
c

k̂z2x1
c k̂z2x2

c · · · k̂z2xS
c

...
...

. . .
...

k̂zSx1
c k̂zSx2

c · · · k̂zSxS
c

 , (16)

Intuitively, the detection process can be considered as a
spatial filtering over the kernel values (k

zixj
c )nc=1 . Moreover,

a filtering operation over the DFT of kernel values (k̂
zixj
c )Sj=1

deals with the correlation between different scale levels.

3.6. Scale Adaptation Scheme
Our scale adaptation scheme is based on the Bayesian frame-
work with some modification of observation model. We insert
the scale factor into observation by modeling it as a rectangu-
lar cuboid of the feature pyramid. If the size of the target
patch is M ×N , the cuboid is then of size M ×N × S and
is centered at the target’s estimated location and scale. The
Bayesian formulation is expressed as

p(Xt|Y1:S
t )∝p(Y1:S

t |Xt)

∫
p(Xt|Xt−1)p(Xt−1|Y1:S

1:t−1)dXt−1,(17)

where Y 1:S
t is the observation at time t and Xt denotes corre-

sponding state. Apparently, several scale levels are compared
with each other in the training process, which contributes to
the sensitiveness to the scale variation. The posteriori proba-
bility is expected to be a multivariate Gaussian distribution. It
is used as scale-spatial sample weighting during model train-
ing. In further detection, we search on different scale lev-
els and adopt linear interpolation according to the posteriori
probability, which ensures continuity of the scale estimation.

4. EXPERIMENTS

4.1. Experimental Settings
Our tracker is evaluated by a recent benchmark [10] that in-
cludes 50 video sequences. It competes with KCF, SSITDT
[21], SAMF [12] and other 29 trackers evaluated in the bench-
mark. We choose HOG descriptors [22]. Let Jt denote the
scale coefficient of the last frame and S be the number of s-
cale layers. We resize the current image with scale factors
Jta

l(l∈{b−S−1
2 c, . . . , b

S−1
2 c}). Here, a = 1.02 restricts the

sampling granularity in the scale space. The scale variance
of the multivariate Gaussian distribution is σ2

s =
σ2
x

0.0142 . Rest
parameters are similar to KCF. We use distance precision (D-
P) at a threshold of 20 pixels and overlap precision (OP) at a
threshold of 0.5 to evaluate trackers’ performance. Besides a
precision plot with DP scores, we also exhibit an extra success
plot using the area under the curve (AUC) criteria.

4.2. Parameter Analyses
The scale layers S is the most important parameter. We
evaluate its effects on the tracking performance when it-
s value varies as S = 3, 5, 7, thus with corresponding
a = 1.0404, 1.02, 1.0133. The scale variance increases with
the number of scale layers. These three variants are denoted
as JSSC 3, JSSC 5 and JSSC 7 respectively. Fig. 1 shows
the tracking results of these three variants using different data
subsets and evaluation metrics as defined in [10]. Obviously,
the 3-layers design is enough for continuous scale estimation.
However, 5-layers design is better for overall performance
evaluation. Since the maximal scale ratio is 1.0404 for con-
secutive frames, the 7-layers design may be too meticulous
for model training and scale change capture, thus degrades the
performance. Based on these analysis, we therefore choose
S = 5 in all the following experiments, while operating at
real-time.



Distance Overlap PDistance Overlap Precision
JSSC_3 80.00% 73.60% 81.70% 75.10%
JSSC_5 79.60% 73.90% 82.00% 76.80%
JSSC_7 78.40% 73.00% 80.10% 74.60%
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Fig. 1: A precision comparison for scale variation and overall perfor-
mance evaluation among three variants of JSSC with different num-
ber of scale layers.

4.3. Scale Adaptation Evaluation
In this section, we focus on all the 28 sequences annotated
with the scale variation attribute in [10]. We use KCF tracker
as a baseline. Our method improves the baseline by 11.8% DP
and 35.6% OP respectively. Table 1 provides a per-video OP
comparison with the top 5 existing trackers and the baseline
tracker. Obviously, the performance of KCF is much poorer
in complex sequences. Since scale evaluation is involved in
the training and detection process, our tracker can be highly
adaptive. The scale levels are updated continuously based on
recent scale estimation, so our tracker follows the target close-
ly with higher OP scores. Moreover, our tracker performs bet-
ter than other 5 trackers on 18 out of the 28 sequences. This
shows that our scale adaptation scheme is compatible with the
template matching based framework.

SCM SSITDT ASLA TLD SAMF KCF Proposed
Car4 0.97 0.30 1 0.79 1 0.36 1
David 0.91 0.70 0.96 0.97 0.96 0.62 1
Trellis 0.85 0.71 0.86 0.47 1 0.84 0.96
Soccer 0.24 0.18 0.12 0.12 0.19 0.39 0.48
Matrix 0.30 0.01 0.02 0.07 0.34 0.13 0.45

Ironman 0.13 0.07 0.13 0.07 0.11 0.15 0.13
Skating1 0.42 0.30 0.69 0.23 0.49 0.36 0.80
Shaking 0.90 0.52 0.38 0.4 0.01 0.02 0.02
Singer1 1 0.80 1 0.99 0.58 0.28 1

Boy 0.44 0.99 0.44 0.94 1 0.99 1
Dudek 0.98 0.82 0.90 0.84 0.98 0.00 1

Crossing 1 1 1 0.52 1 0.98 0.99
Couple 0.11 0.62 0.08 1 0.48 0.24 0.54

Doll 0.99 0.84 0.92 0.62 0.67 0.55 0.75
Girl 0.88 0.79 0.91 0.76 0.98 0.72 1

Walking2 1 0.89 0.40 0.34 0.96 0.38 1
Walking 0.96 0.88 1 0.38 1 0.51 1
Fleetface 0.70 0.68 0.61 0.57 0.70 0.00 0.75
Freeman1 0.81 0.60 0.31 0.21 0.30 0.16 0.84
Freeman3 0.93 0.83 0.94 0.58 0.28 0.29 0.77
Freeman4 0.24 0.15 0.17 0.27 0.17 0.17 0.44
CarScale 0.65 0.58 0.69 0.44 0.62 0.44 0.87
Skiing 0.09 0.06 0.11 0.07 0.05 0.07 0.05
Dog1 0.85 0.43 0.92 0.67 0.70 0.65 1
Liquor 0.32 0.40 0.24 0.58 0.41 0.00 0.99

Lemming 0.17 0.32 0.17 0.59 0.90 0.45 0.94
MotorRolling 0.07 0.06 0.10 0.17 0.08 0.01 0.08

Woman 0.86 0.73 0.19 0.16 0.92 0.93 0.85

Average 0.635 0.545 0.544 0.494 0.603 0.383 0.739

Table 1: Per-video overlap precision (OP) on the 28 benchmark se-
quences for scale variation evaluation.

4.4. Overall Performance Evaluation
We evaluate the overall performance on all the 50 sequences.
Our method provides a DP of 82.0% compared to 77.1% ob-
tained by the best existing method SAMF. Meanwhile, an OP
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Fig. 2: Success plots and precision plots over all the 50 sequences.

gain of 7.3% is also achieved compared to 69.5% obtained by
SAMF ranking the first previously. Fig. 2 exhibits the success
plot using AUC criteria and the precision plot containing DP
scores. It illustrates vividly that our tracker performs much
better than other 32 trackers. According to the AUC scores of
the success plots for 11 attributes, our tracker always comes
first except the deformation attribute. We improve the best
results by more than 5% for scale variation, in-plane rota-
tion, illumination variation, background clutter, fast motion
and motion blur. Since the template matching score is expect-
ed to obey a multivariate Gaussian distribution in the join-
t scale-spatial space, the relationship among dense samples
from the joint space is learned carefully. Hence, our track-
er handles background clutter and abrupt motion firmly. As
the updating rate varies with the joint scale-spatial response,
heavy occlusion does not affect the appearance model very
much. Interestingly, compared to TLD [23], a significant gain
of 17.5% success ratio is obtained when tracking out of view
targets. Although there is no re-detection and failure recovery
mechanism, our tracker is still highly adaptable to complex
situations.

5. CONCLUSION
In this work, we dig up block-circulant structure to model
the exhaustive template matching in the joint scale-spatial s-
pace, and prove that expensive templates matching can be
transformed to efficient multiplication operations in the fre-
quency domain. The proposed tracker based on these findings
achieves high performance on a large tracking benchmark. In
future, we plan to further explore the potential of our tracker
to other tracking difficulties, e.g., object rotation changes.
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