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Abstract—This paper focuses on the problem of tracking
multiple humans in dense environments which is very chal-
lenging due to recurring occlusions between different humans.
To cope with the difficulties it presents, an offline boosted multi-
view upper-body detector is used to automatically initialize a
new human trajectory and is capable of dealing with partial
human occlusions. What is more, an online learning process is
proposed to learn discriminative human observations, including
discriminative interest points and color patches, to effectively
track each human when even more occlusions occur. The offline
and online observation models are neatly integrated into the
particle filter framework to robustly track multiple highly
interactive humans. Experiments results on CAVIAR dataset as
well as many other challenging real-world cases demonstrate
the effectiveness of the proposed method.
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I. INTRODUCTION

Multiple object tracking in video is of fundamental im-
portance for many applications, such as visual surveillance,
traffic safety monitoring, human computer interaction, etc.
This could be an easy task when the objects are isolated
from each other in a relatively clean background. However,
real-world cases often go against this assumption by posing a
complex background and serious occlusions among different
objects.

To track multiple objects in complex situations, some
early methods track motion blobs and regard each individual
blob as one human [5], [11]. These methods usually assume
the background is fixed and use background subtraction
[7] to provide relatively robust object motion blobs. The
foreground blob based methods are not discriminative and
is likely to fail when the background changes suddenly.
Recently, object detection researches have resulted in many
promising detectors of particular object classes, e.g., faces
[9] and humans or pedestrians [2], [10]. They can provide
good observations for detection-based tracking algorithms.
By applying object detectors into particle filter [4] frame-
work, impressive results of tracking one single object have
been achieved in [6]. In multiple object tracking, detection
based methods suffer from the occlusion problem which
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Figure 1. System overview.

prevents the detector collecting reliable observations. To
cope with this problem, Wu et al. [10] use one full body
detector and three part detectors to detect and track partially
occluded humans. However, part detector is hard to train
and still may fail when object part is not fully visible
in more dense situations. What is more, employing more
part detectors increases the computation load of the system
proportionally. In this paper, only one part detector with
a suitable size and discriminative power is used to search
for partially occluded objects and a more powerful online
discriminative learning process is proposed to deal with
much more serious object occlusions.

The rest of this paper is organized as follows. Section 2
presents the proposed tracking algorithm by describing the
learning process of its two components and the implemen-
tation in the particle filter framework. Section 3 gives the
experimental results and Section 4 concludes the paper.

II. OUR APPROACH

As shown in Figure 1, the proposed multiple human
tracking algorithm learns two different kinds of observation
models to track humans. The first kind is an offline learned
multi-view upper-body detector (MVUD) while the other
is online learned discriminative models (including discrim-
inative interest point (DIP) and discriminative color patch
(DCP)). These models are neatly coupled together in the
particle filter framework to guide the tracking process under
different occlusion situations.
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Figure 2. Tree structured multi-view human upper body detector.

A. Multi-View Upper-Body Detector

Part detectors have been proved to be an effective way to
detect and track partially occluded objects [10]. Generally
speaking, the smaller a part is, the larger probability it will
be fully visible. From this prospective, a smaller object
part has a larger traceability. However, smaller object part
detector becomes harder to learn since it provides less
information for learning. Although employing multiple part
detectors of different size will remedy this problem [10], the
computation cost will increase simultaneously. In this paper,
we only train one part detector covering the upper-body area
which is the most informative region of the human body. To
deal with the view variances of the upper-body, the training
samples are divided into three different views, i.e., frontal-
rear, left profile and right profile, and trained using the
method in [3]. The multi-view upper-body detector provides
a very discriminative model. Figure 2 shows the structure
of the detector. For details about the training process, please
see [3].

B. Online Discriminative Learning

Although part detector could detect many partially oc-
cluded humans, it is likely to fail when more serious
occlusions happen which prevent the part region from fully
visible. What is more, the general human detector tends
to drift when humans are close to each other due to its
congenital deficiency at distinguishing different humans.
To address these problems, an online learning process is
proposed to effective collect the discriminative features of
each human and be used to track a human under more
serious dense situations.

During the online discriminative learning process, two
different types of features are explored, the discriminative
interest points and the discriminative color patch. The in-
terest points are those have an expressive texture in their
respective localities which provide the local information of
one object and could be visible in very dense situation, while
the color patch could be one salient image region (e.g. the
clothes region) which provides the global information of one
object and could be used to re-track the object after long time
full occlusion.

DIP

(a) Learn discriminative interest points from candidate points.

DCP

(b) Learn discriminative color patch among different objects.

Figure 3. Discriminative learning process.

A DIP is assumed to have these properties: (1) it is an
interest point and could be easily tracked; (2) it belongs
to one object only; (3) and its motion coincides with the
object’s motion. To get a certain number of discriminative
interest points that meet these requirements, we first generate
a large pool of interest points using the KLT algorithm [8]
within the bounding box of the object, and then learn the
discriminative ones among them by filtering with the above
properties in a greedy strategy. Denote the interest point
set generated by KLT algorithm as I = {Il}Ll=1 and the
discriminative interest point set as Id = {Idl }

Ld

l=1. First, the
learning process selects one interest point with the highest
traceability (denoted as wl which can be obtained by KLT
algorithm) from I, and then checks whether the location of
the point lies on the object and its velocity has the same
direction with the object it belongs. If the checking passed,
this point is regarded as a discriminative point and added
to Id; else it is removed from I and turns to the next point
in I with the highest traceability. This process iterates until
enough discriminative points have been selected (e.g., Ld =
30). Figure 3 (a) gives a typical case of the DIP learning
process.

As for a DCP, it is supposed to have the ability to re-track
one object after it has been fully occluded by other objects.
So it should have a distinguished color distribution covering
a relative small range of color values. Usually one object
has multiple color modes and can be represented by a set
of color patches as C = {Cm}Mm=1 and Cd = {Cd

m}
Md
m=1

corresponds to the discriminative color patch set. The DCM
learning process learns Cd from C when the object is
detected and isolated from other object and then updates
Cd during the tracking process. For a human in most visual
surveillance scenarios, the color patch covering the cloth
region is most likely to be the discriminative one that differs
from other humans. Figure 3 (b) gives a typical case of the
DCP learning process.
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C. Particle Filter Implementation

We couple the offline trained multi-view upper-body de-
tector and the online learned DIP and DCP model in the
particle filter [4] framework which has been widely used
in object tracking. Denoting the object state sequence as
s1:t = {s1, . . . , st} and the observation sequence as o1:t =
{o1, . . . ,ot}, object tracking is formalized as a sequential
Bayesian estimation problem by a two-step recursion of
Prediction (P) and Update (U):

P : p(st|o1:t−1) =

∫
D(st|st−1)p(st−1|o1:t−1)dst−1 (1)

U : p(st|o1:t) ∝ L(ot|st)p(st|o1:t−1), (2)

where D(st|st−1) is the dynamic model and L(ot|st) is the
observation model that gives a likelihood of one observation
in the state space. The filter distribution p(st|o1:t) usually is
complicated which leads to analytical intractability, particle
filter provides a neat way to approximate it by a set of
weighted particles:

p(st|o1:t) =
N∑

n=1

πn
t δsnt (st), (3)

where N is the number of particles and δs(·) denotes the
delta-Dirac function at position s.

In dense environments, it is hard to predict and update
the object state using only one observation model since the
recurring occlusions often fail the observation model (e.g.
detector model often drifts when two objects are close to
each other). In this paper, we are more confident to over-
come this problem because we have got several observation
models at hand, including one offline learned detector model
and the online learned DIP and DCP models, which could
deal with different occlusion situations. Represent the three
models as LD(ot|st), LI(ot|st) and LC(ot|st) respectively,
the tracking algorithm dynamically employs the suitable
model according to the occlusion state of the object.

To find the occlusion status of one object, a visible score
is calculated for each object which is defined as the quotient
between the number of visible pixels and the number of total
pixels within the elliptical object bounding box. When two
objects are overlapped, the visible one is decided by the
DCP model by calculating the histogram distance between
the occlusion region and DCP model. Based on the object
visible score, the algorithm switches to the best observation
model to track it: if the upper-body region is visible, the
MVUD model is used to track the object; if the upper-body
region is not visible but a certain number of interest points
are visible, the DIP model is used to track the object; if
the upper-body region is not visible and not enough interest
points are visible, the DCP model is used to track the object.

In the particle filter framework, the observation model
needs to give a confidence reflecting the human likelihood
when evaluating a particle. Considering the characteristic

Table I
HUMAN TRACKING ALGORITHM.

For each tracked object with the particle set {s(n)t−1, π
(n)
t−1}Nn=1 at the

previous time step t− 1, proceed at time t:
• Resample: simulate αn ∼ {π(n)

t−1}Nn=1, and replace

{s(n)t−1, π
(n)
t−1}Nn=1 with {s(αn)

t , 1/N}Nn=1

• Predict: s(n)t ∼ D(st|s(n)t−1)
• Update: set particle weight according to object occlusion state:

– If the MVUD region is visible, π(n)
t = LD(ot|st)

– Else If enough points are visible, π(n)
t = LI(ot|st)

– Else, π(n)
t = LC(ot|st)

• Output: ŝt ←
∑N
i=1 π

(n)
t · s(n)t

of a boosted object detector, the likelihood given by the
detector is calculated as:

LD(ot|st) =
ηexp(S)

exp(LT − LP )
, (4)

where LT is total layer number of the cascade detector,
LP is the layer number the observation passed, S is sum
of the marginal distance when passing one layer, and η is
a normalization factor which makes the likelihood to be
a distribution. For the DIP model, the human likelihood
is modeled by calculating the weighted track ratio of the
interest points, which can be represented as:

LI(ot|st) =
∑Ld

l=1 wlI
d
l∑L

l=1 wlIl
. (5)

And for the DCP model, the human likelihood is modeled
as the Bhattacharyya coefficient between the particle region
and DCP region:

LC(ot|st) =
B∑

b=1

H(b)H ′(b), (6)

where B is the bin number of the histogram, H(b) is the
b-th bin value of histogram in the particle region and H ′(b)
is the b-th bin value in the DCP region.

Table I gives the overall flowchart of the proposed tracking
algorithm.

III. EXPERIMENTS

Experiments are carried out on a public dataset CAVIAR
[1] and some more challenging real-world video data col-
lected with a hand-held camera.

A. Experiment Settings
The multi-view upper body detector is trained from 7504

front-rear, 6986 left profile and 6986 right profile samples
with the normalized size 24 × 24. For the DIP model, 50
best KLT interest points per each object are detected for
discriminative learning and if less than 5 features are visible,
the DIP model is stopped. And for the DCP model, the color
patch is represented by a 32 × 32 × 32 color histogram in
RGB color space.
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Table II
TRACKING COMPARISON ON CAVIAR.

Algorithm GT MT ML Frmt FAT IDS
Wu et al.[10] 189 140 8 40 4 19

Proposed 189 152 6 37 6 16

GT: ground-truth; MT: mostly tracked; ML: mostly lost; Fgmt: trajectory fragment;
FAT: false alarm trajectory; IDS: ID switch.

B. Evaluation Metrics

We adopt the same metrics for evaluating tracking perfor-
mance as in [10] which are defined as:
– Number of “mostly tracked” trajectories (more than 80%

of the trajectory is tracked);
– Number of “mostly lost” trajectories (more than 80% of

the trajectory is lost);
– Number of “fragments” trajectories (a result trajectory

which is less than 80% of a ground-truth trajectory);
– Number of “false trajectories” (a result trajectory corre-

sponding to no real object);
– The frequency of “identity switches” (identity exchanges

between a pair of result trajectories).

C. Results

The CAVIAR dataset consists of 26 sequences with over-
all 36,292 frames in the size 384×288. The sequences con-
tain intensive inter-object occlusion and frequent interactions
between humans. We evaluate our algorithm and compare
it with the method in [10]. Table II gives the comparison
results from which we can see that our algorithm obtain an
improvement on most of the metrics yet only employing one
part detector. Some typical tracking results on the sequence
OneStopMoveEnter1cor.mpg are showed in Figure 4 (a).

The real-world videos contain very complex background
with serious occlusions between different objects which are
much more complex than those in CAVIAR dataset. As
examples, some tracking results on two typical sequences
are shown in Figure 4 (b).

IV. CONCLUSION

In this paper, we propose a robust multiple occluded
human tracking algorithm in common visual surveillance
environments. Observations collected from both an offline
boosted multi-view upper-body detector and online learned
discriminative features are tightly integrated into the particle
filter framework to track humans of different occlusion
degrees. Experiment results on public dataset and chal-
lenging real-world video data demonstrate the effectiveness
of our method. Future work could be focused on mining
more discriminative features, e.g. object texture and motion
features, to increase the robustness and adaptability of the
system.

(a) Tracking results on CAVIAR sequence OneStopMoveEnter1cor.mpg.

(b) Tracking results on two real-world video sequences.

Figure 4. Typical tracking results. Points: DIP model; rectangle: DCP
model; ellipse: final result (zoom in for a better view).
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