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Abstract
This paper focuses on tracking multiple vehicles in

real-world traffic videos which is very challenging due
to frequent interactions and occlusions between differ-
ent vehicles. To address these problems, we fall back on
superpixel which recently has received great attention
in a wide range of vision problems, e.g. object segmen-
tation, tracking and recognition, for its ability of cap-
turing local appearance characteristics of objects and
their spatial relations. As a mid-level feature, however,
superpixel itself is unable to carry semantic informa-
tion which may restricts their use in these problems.
To this end, we introduce semantic information into su-
perpixel from an offline trained semantic object detec-
tor and successfully deploy it into the multiple vehicle
tracking problem. The benefits of semantic superpixel
include: 1) it gains better temporal coherency of su-
perpixel; 2) the effectiveness and robustness of occlu-
sion handling are improved; 3) benefited from semantic
analysis, false targets and false trajectories are signifi-
cantly reduced. Experiments show significant accuracy
improvements of our approach in comparison with ex-
isting tracking methods.

1. Introduction

Multiple objects tracking in video is of fundamental
importance for surveillance system and provides great
potentials for many applications, such as visual surveil-
lance, traffic safety monitoring, intelligent scheduling,
etc. The difficulties behind multiple object tracking,
however, are also pronounced, the major one of which
is occlusions between different objects which are often
encountered and cause tracking failure.

The performance of tracking algorithm depends
much on observations of targets. According to differ-
ent observations, the state-of-the-art approaches can be
mainly categorized into three classes: low-level, mid-
level and high-level observation based approaches. Al-
though low-level observations have great potentials in
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Figure 1: System overview.

occlusion handling, they are usually unstable. Kanade-
Lucas-Tomasi (KLT) [9] tracks corner features frame-
to-frame, however, it is unreliable under conditions of
video blur or abrupt motion. ST-MRF based block prop-
agation [6] requires vehicles to be identified separately
before occlusion happens. Similar adjacent pixels are
clustered into superpixels to compute local features. As
mid-level observation, superpixel has been proven to be
effective representation in image segmentation [4] and
object recognition [8]. In [11], a discriminative appear-
ance model based on superpixels is presented to facil-
itate a tracker to distinguish the target and the back-
ground. But it may lose effectiveness when background
is similar or multiple targets appear, since it neglects
of semantic information. Recently, the fast develop-
ment of object detection techniques have resulted in
many promising detectors, e.g., faces [10][5], pedes-
trians [3][12] and vehicles [7]. These object detectors
provide good observation models for detection based
tracking algorithm. Although these high-level observa-
tion based approaches facilitate themselves with global
description of target classes, they are very sensitive to
object occlusions.

In this paper, we focus on multiple vehicles tracking
with interactional occlusions which is quite common in
surveillance application. As shown in Fig. 1, superpixel
propagation is utilized to exploit effective visual cues
for vehicle tracking with occlusions. Semantic analysis
guides the superpixels to model and track targets in se-

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 2222



mantic level (semantic superpixel), which performs su-
perpixel propagation smoothly and accurately to main-
tain temporal coherency, and furthermore reduce false
targets and false trajectories greatly.

2. Semantic Superpixel Tracker

Semantic Superpixel Tracker (SST) couples seman-
tic analysis and superpixel propagation tightly together
to multi-target tracking. Although our superpixel prop-
agation is effective of handling occlusions, it is igno-
rant of what an object is, which may lead to the fail-
ure of multiple targets tracking. In this section we first
reveal the deficiency of superpixel propagation in case
of multi-target tracking, and then introduce the details
of semantic analysis, finally describe how the semantic
analysis guides the superpixel propagation.

2.1. Semantic Analysis

Superpixel propagation is unable to ensure that the
group of superpixels it tracked is a part of a target or ad-
jacent targets or a true target. When the group of super-
pixel becomes disconnected, there may be two possibil-
ities: 1. the disconnected parts are different true targets
since the targets entered the scene adjacently and were
mistaken as a target; 2. the disconnected parts belong to
a single target due to occlusions or bad foreground ex-
traction. Since low-level cues cannot catch which case
it is, without semantic guidance, it will eventually leads
to tracking loss. Therefore, semantic analysis is em-
ployed to guide the superpixel propagation, in which
detectors are adopted to exploit semantic information.
The semantic consists of two aspects: reconstruct su-
perpixel groups and cooperate with vehicle components
to provide accurate motion vector.

Superpixel group reconstruction reconstructs su-
perpixel groups based on detection responses, which
guarantees that each group is a true target. We propose
a sampling process to incorporate the semantic informa-
tion into superpixel grouping. As semantic information
provider, our detector will output a value for an image
region. The value, called confidence, describes how
similar to a true target is the image region (the higher
confidence, the more likely it corresponds to a true tar-
get). Based on this, we first gaussianly sample n parti-
cles (image regions) in each superpixel group to capture
the responses of true targets. And then merge the par-
ticles of high confidences into clusters Ci. Therefore
the state of the superpixel group Xt will be divided into
new states Xt,Ci according to the clusters Ci:

Xt,Ci
=
∑

xn
t ∈Ci

ωnxn
t (1)
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Figure 2: Superpixel group reconstruction.

where Xt,Ci
is the new state associated with Ci and xn

t

is a set of weighted ωn particles that belong to Ci. Su-
perpixels will be redistributed according to Xt,Ci

. Two
aspects should be noted here: 1) when two targets over-
lap, the overlap sub-regions will be redistribute to the
one with higher visible score which is the mean parti-
cle confidence of the target; and 2) To prevent detectors
from drifting when vehicles are close to each other, we
remove the new state Xt,Ci

conflicted with existing tar-
gets whose states are predicted from previous states and
motion models. The weight ωn of particle xn

t can be
computed as following:

ωn =
πn∑

xj
t∈Ci

πj
(2)

where πn is the redefined confidence for particle xn
t

since detector outputs are inaccurate. Considering the
characteristic of a boosted object detector, the redefined
confidence is calculated as:

π =
η exp(S)

exp (LT − LP )
(3)

where LT is the total layer number of the cascade detec-
tor, LP is the layer number the particle passed, S is the
sum of marginal distances (differences between detec-
tor outputs and offline learnt thresholds in each layer)
when passing one layer, and η is a normalization factor.

During the tracking procedure, detectors acted as se-
mantic information provider also play a crucial role in
our framework. Split: when a group of superpixels
(with the same target ID) splits into disconnected parts,
should we assign the disconnected regions with new ID
and track them respectively or maintain the old ID and
track them as a single target? In the same token, the
higher redefined confidence sum of scattered particles
is, the more likely it is a true target. Therefore, the
scheme with higher redefined confidence sum will be
adopted. Merge: on rare occasions, a group of super-
pixels which is a part of a true target is tracked as an-
other target. To handle with this, we merge these super-
pixels into the target which contains them for 5 frames.

Motion vector calculation is carried on with the
help of mid-level cues and detection results. The per-
formance of superpixel propagation depends on the ac-
curacy of motion model to a large extent. With accurate
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predicted motion, superpixels will maintain their char-
acteristic over time. But when a region is similar with
its neighboring regions, the motion calculated based on
SSD will be unreliable. So before motion calculation, it
is necessary to cluster superpixels into optimal regions
(vehicle components) which have large discriminative
ability from their neighboring regions.

Given neighboring superpixels Si and Sj , we define
their dissimilarity D(Si, Sj). To calculate the dissim-
ilarity, multiple cues, such as color, edge and texture
information, can be fused together to measure the met-
ric between the two superpixels. In our experiment, we
design the following measurement that is effective for
our problem and yet of high computation efficiency:

D (Si, Sj) = |Mean (Si)−Mean (Sj)|
+ (Var (Si ∪ Sj)−Var (Si)−Var (Sj))
+G (Si ∩ Sj)

(4)

The first term calculates the color distance between the
mean colors of the superpixels, the second term calcu-
lates the variance changes after merging Si and Sj , and
the third term calculates the average gradient magni-
tude of the boundary. With the dissimilarity measure-
ments, we progressively merge neighboring superpixels
that have the minimal dissimilarity values,
•Sort the D values;
•Pick up neighboring superpixels with the lowest D

values and merge them;
• In order to prevent superpixels over-merging, the

procedure is carried on until the lowest D value
exceeds a threshold.

After superpixel merging procedure, we are left with
discriminative regions and SSD is applied to calculate
motion vectors (search for the most similar region in
next frame using dynamic programming). As for a ve-
hicle (rigid object), all pixels within it have the simi-
lar motion vectors. Therefore, we get the superpixels
within each detection bounding box and calculate their
mean motion vector as the motion vector for both the
target and the superpixels.

2.2. Semantic Superpixel Propagation

In order to track superpixels in image sequences, it is
crucial to exploit prior knowledge obtained during the
processing of the previous images. We must guaran-
tee that tracked superpixels have similar characteristics
with previous superpixels. Therefore, we adopt super-
pixel propagation to track superpixels, in which the seg-
mentation result from time t−1 will be the initialization
of the segmentation to be computed at time t:

Si
t−=

{
xit−1+∆x, yit−1+∆y, Li

t−1, a
i
t−1, b

i
t−1
}

(5)

Figure 3: Sample results of semantic superpixel prop-
agation when detectors lose effectiveness (1st row:
source images; 2nd row: the propagation results).

Si
t− , the ith superpixel initialization at time t, contains

five dimension data: its center coordinate at previous
frame

(
xit−1, y

i
t−1
)

and the motion vector (∆x,∆y)
from last section provide the initial center for Si

t− ;{
Li
t−1, a

i
t−1, b

i
t−1
}

is the initial color values from pre-
vious frame in Lab color space. We employ SLIC [1] to
implement superpixel segmentation. In short, our su-
perpixel propagation move superpixels from previous
frame to current frame, and then use their information
as initialization to carry out superpixel segmentation.
With initialization, the superpixel segmentation signifi-
cantly decreases the computational effort. Furthermore
the superpixels will almost be coherent over time.

After superpixel propagation, Si
t will inherit the tar-

get id from Si
t−1. Target Oid updates its state from

Ot−1,id to Ot,id based on its superpixel propagation:{
S1
t−1,id, S

2
t−1,id, ..., S

n
t−1,id

}
→
{
Sl
t,id, ..., S

m
t,id

}
(6)

When occlusion happens, visible superpixels will prop-
agate successfully and occluded ones will be lost (m ≤
n). Therefore, superpixel propagation has great power
in capturing visible cues to handle with occlusions, just
as shown in Fig. 3. When occluded parts reappear grad-
ually, new superpixels should be generated to capture
these parts. We employ consecutive frames subtraction
in foreground to obtain these parts, and then seeds will
be scattered in these parts, after that SLIC superpixel
segmentation is carried out to achieve the new super-
pixels. According to neighborhood relationship and the
semantic analysis, we finally assign target id to them.

3. Experiments

Experiments are carried out on the evaluation
datasets used in [7] and three challenging real-world
videos collected with a hand-held camera. The se-
quences contain frequent interactions and occlusions
between vehicles.
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Table 1: Tracking Comparison

Method GT MT ML FRMT FAT IDS

Ours 215 198 4 17 7 3
Liu et al. [7] 215 187 6 41 3 5
ST-MRF [6] 215 193 4 22 31 6

3.1. Experiment Settings

The vehicle detectors are offline trained in the boost-
ing framework with Joint Sparse Granular Features
(JSGF) [2] which has been proven to be effective for
vehicle detection [7]. We obtain foreground by back-
ground subtraction [6] and do superpixel segmentation
and propagation in foreground. The algorithm also sets
up a start line at each entrance. When a connected fore-
ground region free of ID goes through the start lines, it
will be assigned a new ID, and seeds will be scattered
equably in foreground region to process initialized su-
perpixel segmentation [1].

3.2. Tracking Performance Evaluation

We adopt the same metrics for evaluating tracking
performance as in [12]. These metrics are defined as
following. MT: number of Mostly Tracked trajectories;
ML: number of Mostly Lost trajectories; FRMT: num-
ber of Fragments trajectories; FAT: number of False tra-
jectories; IDS: the frequency of Identity Switches.

We compare our approach with the method in [7] and
ST-MRF in [6] (implemented by ourselves). Table 1
gives the comparison results. Liu et al. [7] employs
high-level observations to track vehicles which cannot
handle occlusions well due to its congenital deficiency
at seizing local features. From the table, we can see
that our approach achieve significant improvements on
FRMT and MT since our approach is robust in occlu-
sion handling and reduce the number of fragments tra-
jectories greatly. On the other extreme, [6] focuses on
low-level cues but neglects of semantics which lead to
many false trajectories (FAT). With semantic feedback
and corresponding operations, our approach can reduce
FAT to a great extent. We attribute these significant im-
provements to the effective fusion of semantic analysis
and superpixel propagation of our approach. Some typ-
ical results are shown in Fig. 4.

4. Conclusion

In this paper, we propose a robust multiple occluded
vehicle tracking algorithm in common traffic surveil-
lance environments. Mid-level and high-level observa-

Figure 4: Some typical results with occlusions.

tions are tightly coupled together to track vehicles with
occlusions. With semantic guidance derived from de-
tectors, our superpixel propagation not only improves
its power in occluded vehicle tracking but also over-
comes the drawback of high false alarms. Experi-
ment results on traffic surveillance datasets and real-
world video data demonstrate the effectiveness of our
approach.
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