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incorporate with high level applications such as “who

passed this spot” or “select persons going west” .

2. Online Tracking based Video Synopsis

The framework of our approach is illustrated in Fig-

ure 2. Objects are stored into tubelet (a short tube seg-

ment in the space-time volume) pool once tracked and

they are then rearranged into the map (a mapping of

tubelets from original video to synopsis video) based

on energy minimization. A frame generating condition

(FGC) is predefined to determine when to generate syn-

opsis frames. Once it is satisfied, several frames are

generated according to the final map and the tubelet

pool is cleared afterwards. This procedure is iteratively

performed to generate frames which are finally pushed

into the stream of synopsis video. As a result, the to-

tal synopsis video is the assembling of short synopsis

clips, each of which is generated from one certain pe-

riod of input video.
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Figure 2: The framework of our approach

2.1. Problem Formulation

The original video with No frames is represented in

a 3D space-time volume as I(x, y, t), where (x, y) are

the spatial coordinates of the pixel and 1 ≤ t ≤ No.

The synopsis video with Ns frames is represented as

S(x, y, t) in the same way, where 1 ≤ t ≤ Ns. Each ac-

tivity (tube) Ai is a dynamic object and its correspond-

ing information is obtained from a tracking procedure (a

sophisticated tracking algorithm[5] is adopted) to adapt

to various high level applications, which produces a se-

quence of rectangle bounding boxes {Ri
t} denoting its

spatial locations, moving trajectories {T i
t } and speed

vectors {Si
t} over its existing time interval tis ≤ t ≤ tie,

formally,

Ai = (tis, t
i
e, {R

i
t}, {T

i
t }, {S

i
t}) (1)

A tubelet b is a short activity segment with prede-

fined length L. several tubelets can be derived from an

activity Ai as follows,

Ai = ({bij}1≤j≤l, l =

⌈

tie − tis
L

⌉

) (2)

where bij=(t
ij
s , t

ij
e , {R

ij
t }, {T

ij
t }, {Sij

t }), tijs ≤t≤t
ij
e .

Each synopsis clip is generated from a local spa-

tiotemporal mapping M which arranges each tubelet b

from original video into one tubelet b̂ in synopsis video

by shifting in both the temporal domain from its original

time tbi
j
= [tijs , t

ij
e ] to the time segment t̂bi

j
= [t̂ijs , t̂

ij
e ]

in the synopsis video and the spatial domain from its

original spatial location sbi
j
= {Rij

t } to the location

ŝbi
j
= {R̂ij

t } in the synopsis video. M(b) = b̂ indicates

the time and space shifts of the tubelet b , and when b is

not mapped, M(b) = ∅. We optimize this local map M

by minimizing an energy function defined on it.

2.2. Energy Definition

Let B represent the tubelet set in one synopsis clip,

an energy function is defined over the local map M.

E(M)=α
∑

b∈B

Ea(b̂)+β
∑

b,b′∈B

Ec(b̂, b̂′)+γ
∑

b∈B

Es(b̂) (3)

where Ea(b̂) is the activity cost, Ec(b̂, b̂
′) is the colli-

sion cost and Es(b̂) is the spatial location cost. Weights

α, β and γ are set by users according to their relative

importance for a particular query.

1) Activity cost: we prefer “older” tubelets to be pre-

served since new tubelet may appear in the next synop-

sis clip and thus is not likely to be lost. We add one

exponential term into the formulation of activity cost

in [2], increasing the cost of “older” tubelets.

Ea(b̂) =
∑

x,y,t

χb(x, y, t) · exp(−
t− ts

σtime

) (4)

where t and ts are the current frame and the start frame

of the tubelet b, respectively. σtime is the parameter to

determine the extent of frame interval.

2) Collision cost: the collision cost calculates the

weighted intersect area between two tubelets as in [2].

Ec(b̂, b̂′) =
∑

x,y,t

χb(x, y, t)χb′(x, y, t) (5)

3) Spatial location cost: we penalize the spatial loca-

tion changing of the tubelet. Since the activity may loss

its content if both spatial and temporal locations vary a

lot, the range of the spatial shift is restricted.

Es(b̂) =
∑

x,y,t

||xs||+ ||ys|| (6)

where (xs, ys) are the coordinate deviations in the spa-

tial domain of center points of the corresponding bound-

ing boxes.

In each synopsis clip generating process, all tubelets

are temporally shifted to the beginning frame. And

there is no any other temporal shift in one clip, which
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largely decreases the high computation cost since each

possible temporal shift causes entire re-calculation of

overlapped tubelets while each possible spatial shift

only results in the re-calculation at current frame. And

it also mitigates the chronological disorders. Ignoring

other temporal shifts is reasonable and practical as spa-

tial shift already can effectively optimize the location

of the overlapped objects and reduce the object conflict

rate. As a result, the temporal consistency cost [2] is

ignored in our approach.

Although considerable objects are omitted to obtain

shorter synopsis video, it would be preferred to show

all dynamic objects in the synopsis video. Since each

dynamic object is detected by tracking with a unique

identity which is attached to each segmented tubelet, no

dynamic object loss can be easily realized by adding

one hard restrain to energy minimization process that

at least one tubelet within each derived dynamic object

is included into the map. In other words, each object

activity is partially maintained.

This online processing method relatively decreases

the chronological disorders. Each synopsis clip consec-

utively generated in the chronological order can be in-

dexed to a period of the input video. The disorder is ex-

isted since the tubelets within one synopsis clip concur-

rently appear regardless of real order in the input video.

But it is relatively smaller and more stable than the en-

ergy guided method in [2] which may cause one tube in

the earlier time to be shifted to the end of the synopsis

video.

2.3. Energy Minimization

In order to realize fast online synopsis, we optimize

the map in an incremental manner. Once new objects

are added into the tubelets, we rearrange them into the

last optimized map. We define a predict cost P (b) for

each tubelet b to evaluate the potential of including it

into the map. It is updated once one new object is de-

tected.

P (b) =

{

Epre(b̂) + Emin(r), if M(b) 6= ∅

P pre(b̂) + Emin(r), others
(7)

where Emin(r)=min(Ea(r), Ec(r)−λes(r)). Epre(b̂)

and Cpre(b̂) are the energy cost and the predict cost in

previous frame, respectively. Ea(r) is the activity cost

and Ec(r) is the collision cost of the new object if it is

removed or added into this tubelet. r is the bounding

box of the new object. es(r) measures the number of

objects in the surroundings of this new object. It is also

updated once the map is changed,

P (b) =

{

E(b), if M(b) 6= ∅

P pre(b̂) + Eδ(b), others
(8)

where E(b) is the current energy cost and E∆(b) is the

increased or decreased energy cost under the new map.

The tubelets b of which P (b) is lower than one

threshold (it can be either predetermined or dynamic

obtained by setting one certain proportion of selected

tubelets) is mapped. Once the P (b) of the tubelet b is

updated, we reselect the tubelets. And the map is re-

optimized only when selection of tubelets alters, oth-

erwise we only simply either add or remove the new

added object determined by in which case the energy

cost is smaller. The determination of tubelet selection

based on the predict costs fast forwards the minimiza-

tion process. For re-optimization, we keep arbitrarily

selecting one tubelet and optimizing it by spatial shift-

ing or removing its objects within to achieve local min-

ima energy until the deviation of total energy is small

enough.

2.4. Compact Measurement of Scene

In this paper, the frame generating condition is “the

scene is compact enough” , which indicates that the im-

age space is fully utilized. We sum up both the size of

all stitched objects denoted as Aa and overlapped area

among objects expressed as Ao. Then a simple compact

measurement of scene is denoted as C with the form

C =
a ·Aa − b ·Ao

S(I)
(9)

where weights a and b can be set by the user. S(I) is the

image size of input video. A compact threshold Cthre

is defined. Once C exceeds Cthre, one synopsis clip is

generated according to the map.

3. Experimental Results and Discussions

Assuming that the total dynamic object number and

the total object number in the original video are Do and

Oo while the corresponding numbers in the synopsis

video are Ds and Os, and the amount of conflicted ob-

ject in synopsis video is Oc , we adopt several metrics to

evaluate our method and compare it with our implemen-

tation of the method in [2], which consists of activity

preserve rate (APR), object preserve rate (OPR), object

conflict rate (OCR), condense rate (CR) and chronolog-

ical disorder (CD).

{

APR=Ds

Do
, OPR=Os

Oo
, OCR=Oc

Os
, CR=No

Ns
,

CD= 1
K

∑

Ai,Aj
||1− ds(Ai,Aj)

do(Ai,Aj)
· CR||

(10)

where ds(Ai, Aj) and do(Ai, Aj) are the frame dis-

tances between activity Ai and Aj in synopsis video

and original video. K is the total number of (Ai, Aj).
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(a) (b) (c) (d)

Figure 3: The obtained background image ((a)) and three frames of synopsis video ((b)-(d)).
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Figure 4: Comparison of video synopsis results between our method and Pritch et al.’s method[2]

We test on a public surveillance video [7](720×480)

with 17039 frames and 385 pedestrians, which can be

processed 14-16 frames per second with our approach.

Figure 3 shows the obtained background image and

three frames of synopsis video containing 168 frames.

Figure 4 gives the comparison results from which we

can see the chronological disorder is much less and

more stable with our online approach (Figure 4(a)).

And we guarantee the appearing of all dynamic ob-

jects while the traditional method loses many especially

when the condense rate is high (Figure 4(b)). Also, our

approach achieves much higher condense rate with the

same proportions of objects preserved (Figure 4(c)) and

the object conflict rate is much lower (Figure 4(d)).

Though the spatial location may be altered in synop-

sis video, we record the trajectory information for video

indexing or searching persons who passed a specific

spot. Some other information could be as well recorded

from tracking for high level applications such as the

speed can be recorded to detect over-speeding driving

and moving direction can be kept to filter persons who

specifically go west. The synopsis video therefore could

be even shorter under these specifications.

4. Conclusions

In this paper, we propose a fast online complete

video synopsis approach. The online video synopsis is

formulated in an incremental manner enabling fast scal-

able synopsis of endless video, which furthermore alle-

viates the chronological disorders. The object activities

and high level information are effectively preserved and

recorded based on tracking results to adapt to various

applications. In addition, both spatial and temporal re-

dundancies of video are completely optimized in our ap-

proach. The experiment verifies that our algorithm can

efficiently perform in real time with a mitigated chrono-

logical disorder, a much higher condense rate and a less

conflict object rate. In the future work, we will intro-

duce action recognition into current framework to fur-

ther keep the integrity of object activities in a synopsis

video.
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