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ABSTRACT

Background subtraction plays a key role in many surveillance
systems. A good background subtractor should not only be
able to robustly detect targets under different situations (e.g.
moving and static), but also to adaptively maintain the back-
ground model against various influences (e.g. dynamic scenes
and noises). This paper proposes a novel background model-
ing approach with these good characteristics. By introducing
the “life span” concept into a background model, different
properties of the scene are obtained through different life span
models. Specifically, three different models, i.e., the Long
Life Span Model, the Middle Life Span Model, and the Short
Life Span Model, are online adaptively built and updated in
a collaborative manner. Output of the system gives an adap-
tive, robust, and efficient estimation of the foreground region
which can facility many practical applications. Experiment
results on lots of surveillance videos demonstrate the superi-
ority of the proposed method over competing approaches.

Index Terms— Background subtraction, life span model-
ing, visual surveillance

1. INTRODUCTION

Object detection is of fundamental importance for many vi-
sual surveillance applications [1, 2]. Background subtraction
provides an efficient way to perform this job. By subtracting
background image from the input image and then threshold-
ing the difference image, the moving objects could be iden-
tified. The effectiveness of a background subtraction method
is heavily relied on the background model and the thresholds.
For a short video sequence captured in a simple scene, a fixed
background model and a fix global threshold can be sufficien-
t to detect the moving objects. For real-world surveillance
scenes, however, this choice is likely to fail since the back-
ground often changes gradually and sometimes even sudden-
ly. More sophisticated techniques therefore are needed.

To compensate for the background changes, many previ-
ous algorithms use a constant rate to update the background
model [1, 2]. In [2], distribution of each pixel is represented
by a Mixture of Gaussians (MoG) and an algorithm is adop-
t to update the Gaussian component. Pixel which associates
with uncommon Gaussian or matches no Gaussian is judged
as foreground. The association and the match process usually

depend on a given threshold. The approach has been applied
in many systems and actually becomes a standard for back-
ground modeling [3]. The main problem, however, is that
the potential inefficiency of the constant updating rate. What
is more, this method could also wrongly update a foreground
object into the background when it stays at a place for a while.
To build a robust background model in dynamic scenes, meth-
ods like Bayesian decision [4], non-parametric model [5] and
multi-feature subtraction [6] are proposed. Since the robust-
ness of these methods often comes at the cost of the efficiency,
they are not as widely used as [2] in practical systems.

In this paper, we present a new background modeling
mechanism that is able to surmount most of the problems
in existing methods and can be efficiently integrated into a
visual surveillance system. Inspired by the work in [7], we
introduce the life span concept into the background modeling
process and collaboratively build multiple models with dif-
ferent life spans. Based on the distinct prosperities of a pixel
deduced from different life span models, adaptive updating
schemes are applied on its background models which makes
them converge quickly. The proposed algorithm not only is
able to successfully detect moving background components
and static foreground objects, but also can work robustly
under both gradual and sudden illumination changes.

2. THE PROPOSED APPROACH

The life span of a background model defines both its learn-
ing period and service period (Fig. 1). By building back-
ground models of different life spans, a lot of useful infor-
mation about the scene and object can be obtained. What
is more, by passing information between these background
models, they can be built and updated more efficiently. Based
on these observations, we propose to do background subtrac-
tion through multiple life span modeling. Fig. 1 gives an illus-
tration of our life span modeling approach and the following
parts will provide a more detailed description.

2.1. Model Description
Generally, a life span background model can be represented
by its descriptor θ(t) which describes the background of the
scene, its learning rate η(t), and its threshold set τ(t) used for
foreground segmentation. Therefore, we formalize a life span
background model as:
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Fig. 1. Life span background modeling.

M = {θ(t), η(t), τ(t)}. (1)
It should be noted that, although many previous methods of-
ten treat at least part of these three elements as constants, here
we represent them all as a function of the time t since each
of them can be made adaptive to different video frames. As
shown in Fig. 1, we build three life span models for back-
ground subtraction: the Long Life Span Model (LLSM), the
Middle Life Span Model (MLSM), and the Short Life Span
Model (SLSM). Each of them captures different scene and
object information based on its particular learning period and
service period.

2.1.1. Long Life Span Model

If we observe a video sequence for a long time, we will find
that pixels in every position have enough chances to obtain
sufficient data generated by the background. Based on this
observation, the LLSM uses a long period to learn a robust
and complete background model which contains no objec-
t pixel and is able to captures multiple modes of the back-
ground scene. Corresponded to the learning time, the ser-
vice time of LLSM is also very long. Denoting the LLSM as
ML = {θL(t), ηL(t), τL(t)}, its descriptor can be written as:

θL(t) = {IL,1(t), IL,2(t), . . . , IL,KL
(t)}, (2)

where IL,k(t) = {xL,k,n(t)}Nn=1 is the background image
with mode k at frame t, N is the total number of the image
pixels. Usually KL = 2 is sufficient for most of the scene
which describes each background location with two differen-
t modes. The learning rate ηL(t), for most of the time in-
stance, can be set as a small constant value, e.g. ηL(t) =
1/(10× 60× 30) which means the background model will
be fully updated once in about 20 min. for a 30fps video se-
quence. But when a sudden change of the scene is detected, is
can be temporal set with a large value to enable quick adap-
tion to background modeling switching. The threshold set
τL(t) here only contains one difference threshold DL(t) that
is used to detect the foreground pixels in the difference image.
It is decided by an adaptive scheme which will be described
in Section 2.2.

2.1.2. Middle Life Span Model
The MLSM captures the scene and object information among
the most recent frames which are often paid more attention
by the high level system, e.g., object analysis, event predic-
tion, etc. We use the MoG model as in [2] to describe the
distribution of each pixel. Denoting the MLSM as MM =
{θM (t), ηM (t), τM (t)}, its descriptor can be represented as:

θM (t) = {
KM∑
k=1

ωn,k(t)Gn,k(µn,k(t),Σn,k(t))}Nn=1, (3)

where KM is the component number of the MoG model,
ωn,k(t), µn,k(t) and Σn,k(t) are the weight, mean and co-
variance matrix of the kth Gaussian in the mixture (for clarity,
the subscript n will be suppressed when there is no ambigu-
ity). Unlike a constant updating rate used in [2], we employ
an adaptive learning rate for ηM (t) which can be written as:

ηM (t) = C0β(t)α(t). (4)
Here C0 is the constant learning rate in [2]. β(t) is a boot
term which makes the learning rate faster at the system ini-
tialization stage:

β(t) =

{
1/(C0t), t < 1/C0

1, t ≥ 1/C0
. (5)

α(t) is an adaption term which makes our MoG background
modeling approach distinctly different from other methods.
The details of its computing will be elaborated in Sec. 2.2.

For a standard MoG background modeling routing [2], it
involves four thresholds, the Gaussian match threshold T0, the
background association threshold B0, and the initial weight
W0 and variance V0 for a new Gaussian. In our MLSM,
these four thresholds are viewed as a function of time t in
the threshold set which can be represented as:

τM (t) = {T (t), B(t),W (t), V (t)}. (6)
Determination of these adaptive threshold functions will be
detailed in Section 2.2.

2.1.3. Short Life Span Model
The learning period and the service period of SLSM are both
one frame which put it in a position to capture the motion
changes between two consecutive frames. Here we employ an
efficient frame differencing procedure with adaptive thresh-
olding to detect the moving pixels between two consecutive
frames. So the descriptor in SLSM represented as θS(t) =
{IS(t)} where IS(t) is the image data at frame t − 1, the
learning rate ηS(t) constantly equals one, and the threshold
set τS(t) = {DS(t)} where the adaptive difference threshold
function DS(t) is determined similarly to DL(t).

2.2. Model Building and Updating
We build and update the three life span models in a collabora-
tive manner and all of them can be automatically learned on-
line (although initializing the LLSM with a few offline sam-
ples could make it converge more quickly). Among the three
life span models, the MLSM lies at an important position
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Table 1. Adaptive building and updating of the MLSM.
LLSM SLSM MLSM Operation (dk(t) = |x(t)− µk(t)|)

Object

Moving
MBG α(t) = exp(−dk(t)/σk(t))
MFG α(t) = exp(−dk(t)/σk(t))
MNG W (t) = 0.5W0, V (t) = 2V0

Static
MBG α(t) = (1 + exp(−dk(t)/σk(t)))/2
MFG α(t) = (1 + exp(−dk(t)/σk(t)))/2
MNG W (t) =W0, V (t) = V0

Scene

Moving
MBG α(t) = exp(−dk(t)/σk(t))
MFG α(t) = (1 + exp(−dk(t)/σk(t)))/2
MNG W (t) =W0, V (t) = V0

Static
MBG α(t) = (1 + exp(−dk(t)/σk(t)))/2
MFG α(t) = (2 + exp(−dk(t)/σk(t)))/3
MNG W (t) = 2W0, V (t) = 0.5V0

which both receives and sends messages from and to other
two models (Fig. 1) and whose subtraction result is used as
the final result of the system.

The main problem of a standard MoG background model-
ing procedure is the inefficiency of its model learning which
often updates a static foreground object mistakenly into the
background and leave a “ghost” in the place where an object
has just left. In our collaborative life span modeling process,
the LLSM can provide the information whether a pixel is an
object pixel or scene pixel while the SLSM can provide the
information whether a pixel is moving or static. With these
useful and explicit messages, we can dynamically initialize
new Gaussian models and adaptively update existing Gaus-
sian models. This process involves the determination of the
adaption term of α(t), the initial weight W (t) and variance
V (t) for a new Gaussian model (since the Gaussian match
threshold T (t) and background association thresholdB(t) are
relatively stable in most of the scene, we use their suggested
values as in [2, 3]). In Table 1, we summarize the adapta-
tion rule under different situations. Here, MBG means the
input pixel matches a background Gaussian, MFG means it
matches a foreground Gaussian, and MNG means it match-
es no Gaussian. From Table 1 we can see that, our MLSM
modeling process does not introduce any new thresholds and
meanwhile greatly improves the adaptability of the standard
MoG method since a static scene pixel gets much larger ini-
tialization and updating rate than a moving object pixel.

The LLSM is initialized using the first frame or a few
offline training samples and then gradually updated online
based on the responses of MLSM. Specifically, if a pixel’s
response in MLSM is MBG, the corresponding background
image pixel in θL(t) is updated:

xL,l(t+ 1) = (1− ηL(t))xL,l(t) + ηL(t)x(t), (7)
where l is the index of the matched background image in
θL(t) which is calculated as:

l = argmin
k
{|x(t)− xL,k(t)|}KL

k=1. (8)

This updating strategy only uses the background pixels that
have been well validated by the MLSM to update the LLSM.
The resulting LLSM is therefore robust to noises and capable

DL(t)

t(a) (b)

DL(t)

t

Fig. 2. Different modes of illumination changes: (a) “once
off” change; (b) “switching” change.

of capturing long time scene information. For the segmenta-
tion threshold DL(t), it is also adaptively updated by the re-
sponses of the MLSM. Supposing the number of background
pixels detected by MLSM is NM (t), we first calculate the
cumulative histogram of the difference image in the LLSM
which can be represented as H(t) = {hi(t)}NB

i=1(NB is the
bin number which can be set as 256 for grey image and 765
for color image). DL(t) is decided by following equations:

DL(t)=

{
D, hD+1(t)−NM (t)≥NM (t)−hD(t)
D+1, otherwise , (9)

where D satisfies the following inequalities:{
hD+1(t) ≥ NM (t)
hD(t) ≤ NM (t)

. (10)

The basic assumption here is that the number of background
pixels may not change greatly in consecutive frames. Since
this is common for real-world video sequences, the threshold
function DL(t) therefor can adapt to different videos.

For the SLSM, the building and updating process is much
easier. At every frame, it updates its descriptor using previous
frame data and set the segmentation thresholdDS(t) function
similarly to DL(t).

2.3. Illumination Change Detection
Another capability of the threshold function DL(t) is to de-
tect global illumination changes. If their values changes
greatly (typically> 10) in two consecutive frames, usually
the global illumination state is changing. In this situation, we
propagate the subtraction result of previous frame to current
frame and detect the two modes showed in Fig. 2 to classi-
fy “once off” change an “switching” change by checking the
values of the threshold functions in five frames. If the change
is confirmed to be a “switching” change, a new background
image will be added to descriptor in LLSM.

3. EXPERIMENTS

The proposed method has been implemented in C++ and e-
valuated on many different sequences collected from publicly
available datasets like PETS 2009 [8], Wallflower [9] and
CAVIAR [10]. We compare our method with the state-of-
the-art MoG method [2] and Bayesian decision method [4]
implemented in [3]. All the experiments are carried on a PC
with an Intel Core Quad 2.40 GHz CPU and 4G RAM.
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Fig. 3. Background subtraction results on three different video sequences.

Table 2. Speed Comparison.

Algorithm
Video resolution

160× 120 320× 240 640× 480

MoG [2] 96fps 20fps 9fps
Bayesian decision [4] 35fps 13fps 4fps

Proposed 180fps 32fps 12fps

In Fig. 3, we give the qualitative result of the three al-
gorithms with default parameters on three typical sequences
from the datasets. In the S0 CC View8 sequence, our method
has detected the middle person while other two methods fail
to detect him since he has stayed there for a long time. In
the Waving Tree sequence, our method adapts to the dynamic
background much better than other two methods. Our method
also successfully detected the left bag which is fully missed
by the MoG method in the Left Bag sequence.

To evaluate our method quantitatively, we manually label
the foreground mask of the S0 CC View8 sequence every 30
frames to get 25 ground-truth images. We generate differ-
ent subtraction results of the three algorithms with different
thresholds on these images and compute their precision and
recall. In Fig. 4, the ROC curves of these methods are plotted
to give a quantitative comparison. It can be easily observed
that our method significantly outperforms other two methods.

We further evaluate the efficiency of the three algorithms
by running them on videos with different resolutions. Table 2
summarizes the running times. Our algorithm runs even faster
than the MoG method implemented by [3] and could be used
for real-time applications after further optimization.
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Fig. 4. Quantitative evaluation of the three methods.

4. CONCLUSION
In this paper, a novel background subtraction technique is p-
resented in which the “life span” concept is used in the back-
ground modeling. By building life span models in a collab-
orative manner, the proposed approach can adaptively, ro-
bustly, and efficiently detect foreground objects in different
video scenes. Experiment results demonstrate its significant
improvements over the state-of-the-art methods.
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