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Abstract—In this paper we address the problem of tracking
multiple objects to know how objects are moving (e.g. oc-
clusion relationships) while interacting with each other in a
group, given models of their appearances that are learned
online even when occlusion occurs. This aim is very different
from the recently popular detection-based tracklets association
approaches. In our approach, occlusion relationships between
multiple objects are explicitly defined and deduction of the
occlusion relationships is integrated into the whole tracking
framework. Specifically, we deduce the joint state estimation
problem in the multi-object tracking in a new decentralized
strategy, that the single object tracking and the multi-object
separating are viewed as one-versus-rest classification problems
based on graph embedding framework. Two kinds of discrim-
inative subspaces are learned: one for single object tracking
which is robust to various appearance variations; the other for
occlusion reasoning and decentralizing. Partial disappearance
can also be addressed as an occlusion problem by this strategy.
Experimental results demonstrate the effectiveness of our
method.

Keywords-multi-object tracking; occlusion reasoning; partial
occlusion and disappearance;

I. INTRODUCTION

Visual surveillance systems are required to keep track of

targets as they move through the scene even when they are

occluded by or interacting with other objects in a group.

It is desirable for visual surveillance systems to know how

objects are moving while interacting with each other. The

problem that we address in this paper is how to track

multiple objects and reason their occlusion relationships

simultaneously while they are interacting with each other

in a group, given models of their appearances that are

learned online. This problem is also important for other

video analysis applications such as video retrieval and video

archival. The aim of this paper is very different from

the recently popular detection-based tracklets association

approaches (see below).

Many detection-based tracking methods have been pro-

posed for multi-pedestrian tracking recently [1], [2], [3], [4],

[5], [6]. These off-line methods first detect the pedestrians

by a pre-trained detector and then assign the detection

responses to the tracked trajectories using a variety of data

association strategies. The performance of these methods

greatly depends on the accuracy of pedestrian detection.

These methods also can not reason the occlusion relation-

ships when occlusion occurs. Despite of the effectiveness of

these methods in occlusion scenario, it is still a challenge

to track multiple objects (not only pedestrians) in a general

way without prior knowledge about objects, but with online

learned object appearance model.

There has been much work on tracking multiple objects

using object appearance model. Generally speaking, the

motions of multiple objects have to be jointly estimated

from the mixed visual observations when occlusion occurs.

Some existing methods (e.g. [7], [8]) concatenate the states

of different objects in a centralized fashion, view the multi-

object tracking as a joint state estimation problem and search

a rather high dimensional solution space. In this paper,

we propose a new strategy to decentralize the joint track-

er into discriminative appearance model based individual

trackers. Specifically, we learn two kinds of discriminative

subspaces based on graph embedding framework: 1) one

kind for individually tracking when the joint tracker is

decentralized, which can make full use of the information

in the background and is robust to various appearance vari-

ations including occlusions; 2) the other kind for occlusion

reasoning which is used to decentralize the joint tracker

(see Sec. III-A). We call the first kind as single object

tracking subspace (SOTS), and the other kind as multi-object

discriminant subspace (MODS). It is noted that, this paper

concentrates more on the severe occlusions and occlusion

relationships among tracked objects. Our individual tracker

based on SOTS is robust to non-severe occlusions, such as

object self-occlusion, and occlusion by other scene objects.

Partial disappearance can be addressed as an occlusion

problem in our proposed tracking framework.

Some existing methods (e.g. [9], [10], [11]) also decentral-

ize the joint tracker using different strategies. Hu et al. [9]

adopt a selective updating and matching strategy based

on block-division. Zhang et al. [11] introduce the species

concept into the PSO framework and the occlusion between

different objects is modeled as species competition. Thus the

joint tracker can be decentralized into individual trackers,

each of which try to maximize its own visual evidence.

These two studies can reason the occlusion relationship,

however they both adopt the incremental subspace learning

based generative appearance model, which discards the
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information for classification in the background leading to

tracking degradations. Yang et al. [10] decentralize the joint

tracker into a set of simple individual target trackers, each of

which estimates its own state in the Nash Equilibrium of a

game when the objects are in close vicinity. However, its in-

dividual trackers are based on the mean-shift tracker, which

may not guarantee robust tracking even when occlusion does

not occur.

Some methods (e.g. [12], [13]) also concentrate more on

the same aim as ours: tracking multiple objects to know

how objects are moving (e.g. occlusion relationships) while

interacting with each other in a group. However, these two

methods are specially designed for tracking multiple people

or pedestrians, while not for more general objects (e.g. faces,

pedestrians, cars, and so on). In addition, they both use the

spatial-color mixture of Gaussians appearance model, which

needs the color information of the videos. Their methods are

not suitable for dealing with the gray-scale videos.

The rest of the paper is organized as follows. Sec. II

details the methodology of our designed graph embedding

based discriminative learning. In Sec. III, we introduce our

multi-object tracking framework. Experimental results are

reported in Sec. IV. Finally, we conclude the paper in Sec. V.

II. DISCRIMINATIVE LEARNING METHODOLOGY

Based on the graph embedding framework [14], [15], we

design our discriminative learning based methodology for

tracking, which imposes the embedding space to have two

different properties with others: 1) two nearby samples (not

all the samples) of the same class stay close to one another;

2) two samples of different classes stay far apart.

Let xi ∈ R
D(i = 1, 2, . . . , l) be D-dimensional vectors

to represent the graph vertices corresponding to the labeled

samples, and yi ∈ {1, 2, . . . , C} be associated class labels,

where l is the number of labeled samples and C is the

number of classes. Let nc be the number of samples in

the class c:
∑C

c=1 nc = l. Using the information of the

labeled samples, we aim to find a discriminative embedding

space and map X ≡ (x1|x2| · · · |xl) ∈ R
D×l �→ Z ≡

(z1|z2| · · · |zl) ∈ R
R×l, where R < D and is the dimension

of the embedding space, such that in the embedding space

unlabeled samples are easy to be labeled by a simple classifi-

er (i.e. the nearest neighbor algorithm). To achieve this goal,

we need to construct two graphs: the intra-class compactness

graph G = {X,W} and the inter-class separability graph

Gp = {X,Wp}, where W and Wp are edge weight matrices.

We assume the linear projection in the linear extension of

graph embedding framework as Z = PT X, where P is a D×
R transformation matrix. Thus, the intra-class compactness

is characterized by

S̃ =
∑
i,j

‖PT xi − PT xj‖2wij = 2 tr
(
PT XLXT P

)
, (1)

and the inter-class separability is characterized by

S̃p =
∑
i,j

‖PT xi − PT xj‖2wp
ij = 2 tr

(
PT XLpXT P

)
, (2)

where, the Laplacian matrices L and Lp of G and Gp are

defined by the diagonal matrices D and Dp as:

L = D−W, Dii =
∑
j �=i

wij , ∀i (3)

Lp = Dp −Wp, Dp
ii =

∑
j �=i

wp
ij , ∀i . (4)

Further more, we add the edges between any vertex pair in

G and Gp by the local scaling method [16] as follows:{
wij = Aij/nc, w

p
ij = Aij(1/l − 1/nc), if yi = yj ,

wij = 0, wp
ij = 1/l, otherwise, (5)

where

Aij = exp
(−‖xi − xj‖2/(σiσj)

)
, (6)

σi =
∥∥∥xi − x(k)i

∥∥∥, and x(k)i is the kth nearest neighbor in

the same class of the sample xi. k is empirically chosen as

7 based on [16].

Our discriminative learning analysis aims at finding

the optimal projection direction that optimizes the graph-

preserving criterion

P∗ = argmin
P∈RD×R

tr

(
PT XLXT P
PT XLpXT P

)
, (7)

where the analytic form of P∗ is obtained by solving a

generalized eigenvalue problem as follows:

PT XLpXT Pϕ = λPT XLXT Pϕ . (8)

Denoting R principal generalized eigenvectors correspond-

ing to the R largest eigenvalues of Eq. (8) as {ϕr}Rr=1,

we can obtain the discriminative projection P∗ =
(ϕ1|ϕ2| · · · |ϕR).

Kernel trick is widely used to enhance the separability

of the linear discriminative learning leading to the non-

linear extension of graph embedding. Let φ : x �→ H be

a function mapping the points in the input space to a high-

dimensional Hilbert space. For a proper chosen φ, we replace

the explicit mapping with the inner product K(xi, xj) =
〈φ(xi), φ(xj)〉. Here we use Gaussian kernel to define this

product: K(xi, xj) = exp
(−‖xi − xj‖2/σ2

)
, where σ is

set to the average pairwise distances among all the data

points. For convenience, we rewrite the vertex matrix in the

Hilbert space as Xφ ≡ (φ(x1)|φ(x2)| · · · |φ(xl)). Then, we

can rewrite Eq. (7) as follows:

α∗ = argmin
α

tr

(
αT KLKα

αT KLpKα

)
(9)

where K = XφT Xφ. A data point in the Hilbert space can

be embedded into R-dimensional subspace by: φ(x) �→ z =
α∗TK(:, x), where K(:, x) = (K(x1, x)| · · · |K(xl, x))T .
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Algorithm 1 Occlusion Reasoning

Input: Current positive sample buffers Bi
f , tracking results s∗t,ki

,
optimal observations ot,ki , where i = 1, 2.

Output: The occlusion relationship R = φ(k2) − φ(k1), where
φ(ki) = 1 indicates ki is occluded, and 0 indicates not;
updated Bi

f .
1: if overlap(s∗t,k1

, s∗t,k2
) > Th1 then

2: For each sample in Bi
f , extract feature vector xi

j , where

j = 1, . . . , |Bi
f |, and its label is yi

j = i;

3: Learn MODS by Eq. (9) using {xi
j , y

i
j}i=1,2

j=1,...,|Bi
f
|;

4: Extract feature vectors of ot,ki and embed them into MODS
as zi;

5: Conduct outlier detection in MODS: if zi is an outlier as
for {zij}j=1,...,|Bi

f
|, φ(ki) = 1; else, φ(ki) = 0;

6: If R = 0, update buffers Bi
f using the pseudo-object

observations o′t,ki
; else, update Bi

f of the occluded object

ki (φ(ki) = 1) using o′t,ki
and update Bi

f of the other using
ot,ki .

7: end if

III. MULTI-OBJECT TRACKING FRAMEWORK

In this section, we introduce our dual-mode graph embed-

ding model for decentralizing the joint tracker and tracking

each object individually based on SOTS and MODS.

A. Joint Likelihood Maximization
Denote the state of the kth object by st,k. Its correspond-

ing support is denoted by ot,k, i.e. the set of pixels within

the region of it. Thus, the states of a number of M objects

can be estimated by maximizing the joint likelihood

S∗
t = argmax

st,1,...,st,M

P

(
M⋃
k=1

ot,k|st,1, . . . , st,M
)

, (10)

where St = {st,k, k = 1, . . . ,M}, and t represents the tth
image frame. If no occlusion is present, the above joint

optimization can be done by maximizing the individual

observation likelihood independently:

s∗t,k = argmax
st,k

P (ot,k|st,k) , k = 1, . . . ,M. (11)

If occlusion happens between objects k1 and k2, as shown in

Fig. 1(a), we divide the observation of each object ki into

two parts: non-overlapping part õt,ki
and overlapping part

ôt,ki
(see Fig. 1(b)). We substitute ôt,ki

with the correspond-

ing part of ki’s mean observation (referred to [17]), and thus

generate a pseudo-object observation o′t,ki
(see Fig. 1(c)).

When we have reasoned the occlusion relationship between

these two objects (see Sec. III-B), the tracking problem

of these two objects hence can be formulated as follows

(without loss of generality, here we assume object k2 is

occluded):

s∗t,k1
= argmax

st,k1

P (ot,k1
|st,k1

) (12)

s∗t,k2
= argmax

st,k2

P
(
o′t,k2

|st,k2 , s
∗
t,k1

)
. (13)

warping

real-object
observation

decomposed
into2,t k

o

1,t k
o

non-overlapping
part

overlapping
part

2,t k
o
part

22, 2,
o

1,t k
o

1, 1,
o

1,
ˆt ko

2,
ˆt ko

pseudo-object
observation

substitution
2,
't ko

1,
't ko

mean
observation

(a) (b) (c)

Figure 1: Observation decomposition and substitution of two ob-
jects under occlusion. (a) shows a frame in the Girl sequence.
The observation decomposition is exhibited in (b). (c) shows the
pseudo-object observations after substitution.

Note that the tracking of the occluded object relies on the

tracking accuracy of the non-occluded object. In the next,

we will show how to perform occlusion reasoning to find the

non-occluded object and use it to track the occluded one.

Algorithm 2 Individually Tracking Under Occlusion

Input: Previous positive sample buffers Bi
f , negative sample

buffers Bi
b, the tracking results s∗t−1,ki

in the frame t − 1,

current sampled candidate object states {smt,ki
}Mm=1 using the

particle filters.
Output: Current tracking results s∗t,ki

, updated Bi
b.

1: For each sample in Bi = Bi
f

⋃Bi
b, extract feature vector xi

j ,

and set labels yij of samples in Bi
f as 1 and in Bi

b as 2, where

j = 1, . . . , |Bi|;
2: Learn SOTS for ki by Eq. (9) using {xi

j , y
i
j}j=1,...,|Bi|;

3: if overlap(s∗t−1,k1
, s∗t−1,k2

) > Th1 then
4: if R = 0 or φ(ki) = 0 then
5: Adopt strategy 1 in Sec. III-C to estimate s∗t,ki

and update

Bi
b;

6: else if φ(ki) = 1 then
7: Adopt strategy 2 in Sec. III-C to estimate s∗t,ki

and update

Bi
b.

8: end if
9: end if

B. Occlusion Reasoning

We learn MODS for occlusion reasoning based on posi-

tive sample buffers, each of which consists of foreground

samples of related object. The samples are the optimal

observations corresponding to the tracking results of the

previous frames. Additionally, block-division based repre-

sentation method has achieved good results in occlusion

reasoning [9], so we also represent each observation as a

block-division based feature vector. Specifically, we extract

covariance matrix descriptors for all 4×4 cells, and represent

each cell as a vector generated by Log-Euclidean mapping

and unfolding (referred to [9]), resulting in a feature vector.

It is also suitable for approximating the probabilities for the

observations in Sec. III-C.

Without loss of simplicity, we only consider the occlusion

between objects k1 and k2. The occlusion between three or

more objects can be considered similarly. Firstly, we use

Overlap-Criterion overlap(s∗t,k1
, s∗t,k2

) =
area(s∗t,k1

⋂
s∗t,k2

)

area(s∗t,k1

⋃
s∗t,k2

)

to detect wether occlusion happens or not between k1

549549
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Figure 2: Tracking under disappearance and occlusion with short
term in the video Girl.

and k2. Secondly, if occlusion happens, we learn MODS

based on discriminative learning methodology, and then map

current optimal observations ot,ki
into MODS as zi. Lastly,

we conduct outlier detection in MODS for reasoning the

relationship between k1 and k2. If zi is an outlier as for ki’s
positive samples in MODS, object ki is occluded, and vice

versa. Algorithm 1 details the reasoning procedure.

C. Individually Tracking Under Occlusion

We learn SOTS for ki based on its aforementioned

positive sample buffer and negative sample buffer which

consists of its bad observations collected from the previous

frames. When SOTS is learned and characterized by zi+,

αi and Ki(:, ·), where zi+ is the center of the positive

samples in SOTS, the probability that a feature vector x
is generated from the distribution of ki’s positive samples

can be measured by:

P (x|zi+,αi) ∝ exp(−‖zi+ −αiTKi(:, x)‖). (14)

We consider the individually tracking under the occlusion

between two objects ki and kī . If i = 1, ī = 2,

and vice versa. The individually tracking under the non-

occlusion scenario can be considered similarly. We use the

particle filters (referred to [17]) to sample candidate object

states {smt,ki
}Mm=1. We adopt two strategies for individually

tracking when occlusion occurs:

1) Get candidate object observations {omt,ki
}Mm=1 corre-

sponding to {smt,ki
}Mm=1, extract feature vectors of

them {xi
t,m}Mm=1, let P (omt,ki

|smt,ki
) = P (xit,m|zi+,αi),

determine optimal object states s∗t,ki
, update Bi

b using

the bad observations;

2) Get candidate pseudo-object observations

{(omt,ki
)′}Mm=1 corresponding to {smt,ki

}Mm=1,

extract feature vectors of them {xit,m}Mm=1, let

P ((omt,ki
)′|smt,ki

, s∗t,kī
) = P (xi

t,m|zi+,αi), determine

optimal object states s∗t,ki
, update Bi

b using the bad

pseudo-object observations.

Algorithm 2 details the tracking procedure. It is noted that

the optimal real-object observation ot,ki
corresponding to

s∗t,ki
should be as different from object kī as possible, so

that merging can be avoided. This can be done by adding a

penalty term to P ((omt,ki
)′|smt,ki

, s∗t,kī
).
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Figure 3: Tracking under occlusion with long term in the video
TwoFaces.

IV. EXPERIMENTAL RESULTS

In this section, we design experiments to demonstrate

the superior properties of our approach. Firstly, two videos

(Girl [9], TwoFaces [9]) are used to demonstrate the ef-

fectiveness of our novel strategy on three aspects: tracking

under occlusion, reasoning occlusion relationship, and han-

dling partial disappearance. Note that the success of tracking

and occlusion reasoning in this part is checked by our own

judgment. Secondly, we compare our approach with two

related methods [9], [10] qualitatively and quantitatively

in other two publicly available videos (ThreePastShop2cor,

PeopleVehicle), which prove that our strategy for decentraliz-

ing the joint tracker could handle merging and splitting well.

The video ThreePastShop2cor is taken from the CAVIAR

Test Case Scenarios dataset. 1 This video captures people

moving in a shopping center with frequent occlusions and

interactions. The video PeopleVehicle is the first view of the

Dataset 1 sequence from the PETS 2001 benchmark. 2 This

video captures outdoor people and vehicle moving.

A. Effectiveness of Occlusion Handling

The results of occlusion reasoning are illustrated using

the recovered occlusion relationship diagram whose x-

coordinate is the frame number, and y-coordinate is the

occlusion relationship. The video Girl shows a man (red)

occludes a woman (yellow) twice and he also partially

disappears from the scene and then reappears (see Fig. 2(a)).

Fig. 2(b) shows occlusion relationship between them recov-

ered from the video Girl. Note that the woman undergos

occlusion with short term (less than 30 frames) every time.

Additionally, we address the man’s disappearance as an oc-

clusion problem, that he is occluded by a hypothetical object

(black-and-white grid in Fig. 2(a)). The video TwoFaces is

used to demonstrate the effectiveness when object undergos

occlusion with long term (more than 80 frames). Fig. 3(a)

shows some tracking results of this video and Fig. 3(b)

shows the recovered occlusion relationship.

B. Comparison with Other Methods

To show the superiority of our approach over Yang’s

work [10] and Hu’s work [9], we perform experiments in

other two publicly available videos (see Fig. 4 and Fig. 5).

1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
2http://www.hitech-projects.com/euprojects/cantata/datasets cantata

/dataset.html.
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Figure 4: Qualitative results in the video ThreePastShop2cor.

Figure 5: Qualitative results in the video PeopleVehicle.

The top row is Yang’s work, middle row is Hu’s work

and bottom row is our approach. Quantitative evaluation is

conducted in following aspects: STF (successfully tracked

frames) and ACLE (average center location errors) between

the estimated position and the groundtruth. Table I shows

the quantitative comparison.

V. CONCLUSION

In this paper, we have proposed a new strategy to decen-

tralize the joint tracker for tracking multiple objects to know

how objects are moving (e.g. occlusion relationships) while

interacting with each other in a group based on a dual-mode

graph embedding model. Experimental results demonstrate

that the proposed approach can effectively and accurately

track objects under occlusion and partial disappearance,

obtaining correct occlusion relationship.
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Table I: Quantitative results for the other two public videos.

Methods Yang’s Work Hu’s Work Our Approach

Evaluation ACLE STF ACLE STF ACLE STF
ThreePastShop2cor A(Red) 26.2 34/62 21.8 34/62 6.8 56/62

ThreePastShop2cor B(Yellow) 23.6 39/62 4.4 61/62 4.7 62/62

PeopleVehicle A(Red) 16.7 141/141 5.6 141/141 4.3 141/141

PeopleVehicle B(Yellow) 31.9 88/141 47.9 85/141 3.9 140/141

PeopleVehicle C(Blue) 23.5 93/141 2.7 141/141 2.6 141/141

PeopleVehicle D(Green) 25.8 86/141 2.9 140/141 1.6 141/141
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