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Abstract. This paper provides a comprehensive overview of the state-of-the-art 

for processing large-scale 3D point cloud based on optical acquisition. We first 

summarize the general pipeline of point cloud processing, ranging from 

filtering to the final reconstruction, and give further detailed introduction. On 

this basis we give a general insight over the previous and latest methods 

applying LIDAR and remote sensing techniques as well as Kinect on analysis 

techniques, including urban environment and cluttered indoor scene. We also 

focus on the various approaches of 3D laser scenes scanning. The goal of the 

paper is to provide a comprehensive understanding on the point cloud 

reconstruction methods based on 3D laser scanning techniques, and make 

forecasts for future research issues.  
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1   Introduction 

Large-scale 3D point cloud and LIDAR (Light Detection And Ranging) technique are 

hot topics that gradually emerges and become ubiquitous in recent years, mainly used 

for large-scale 3D point cloud generation. Currently acquisition of both indoor and 

outdoor environments is widely developed and used in many fields such as navigation, 

architecture and real estate, and is getting popularity thanks to the appearance of 3D 

laser scanning machines and range cameras.  

Compared to other modeling techniques, the merits of point cloud data obtained by 

LIDAR and Kinect are irreplaceable. First, the data is real and truthful, like the saying 

“what you see is what you get”. Second, big scale data indicates millions of points or 

even more, which contains rich information to be processed such as millimeter level 

accuracy. However, the existing noise makes it difficult to calculate interlaced objects 

like trees or other plants. Another shortage in current methods is the lack of 

combination of position, color and strength together to generate models. The existing 

algorithms usually deal with point cloud position but ignore true color of each point, 

which needs further improvement.   

To achieve better results from the large-scale scanning point cloud data by LIDAR, 

many studies have attempted to establish or improve the point cloud processing 

algorithms. In these methods, the major challenge lies in how to identify the noise and 

classify the cluttered scene. Fortunately, there are some open source libraries emerged 

for dealing with point cloud, i.e., Point Cloud Library (PCL) of [1], which is a fully 

developed library for n-D Point Clouds and 3D geometry processing. 



2   Point Cloud Processing 

The processing of point cloud has already been developed and regulated as 

sophisticated mechanisms. We summarize the basic steps for the point cloud 

processing as shown in Fig. 1. 

 

Fig. 1. Basic point cloud processing steps  

2.1   Filtering  

Filtering is usually the first step for point cloud treatment, which deals with noisy 

points, outliers, holes and data compression to obtain “clean” data.  

Filtering methods have already been studied for a long time, [2, 3] similarly used 

some filtering methods in order to detect target like plane terrain surface, classify 

buildings as well as tiny elements such as electrical power lines. Act as an implement, 

[4] used first pulse data to improve the result. Instead of classifying points in a local 

neighborhood, [5] first segmented the point cloud into patches in which all points can 

be connected through a smooth path of nearby points and then these segments were 

classified based on their geometric relationships with the surrounding segments.  

2.2   Feature estimation 

Feature as a key criterion plays important role in judging and estimating points. Local 

feature and global feature are two ways of estimating curvature and the normal of 

points. For feature estimation, [6] first developed a robust algorithm which can extract 

surfaces, feature lines and feature junctions from noisy point clouds. Later 

improvement involved [7] in whose work feature detection and reconstruction were 

recognized as problem during input occurs, described by a point cloud.  

2.3   Key point extraction 

Key point is also known as point of interest. Located on 3D point cloud or surface 

model, it can be detected and obtained by defining some certain standards and then 
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extracting. Technically speaking, the number of such kind of points is far more less 

than the one of original one, thus making it possible for us to analyze what we really 

concern about. One thing to mention is that key point can be combined with local 

feature descriptors to be considered as key descriptors, moving forward to compactly 

represent the data we previously get from either Kinect or things like that. Some 

famous descriptors like SIFT and SURF are often used in this procedure. 

2.4   Registration 

In the area of reverse engineering, computer vision and ones like digital heritage, 

point clouds usually have defects such as incomplete data, translation and rotation 

dislocation. In order to obtain a complete data model, an appropriate coordinate 

transformation is needed, and sets of points obtained from different perspectives are 

merged into a unified coordinate system, and then operations like visualization can be 

carried out. When it comes to registration, [8] successfully handled a cluttered scene. 

2.5   Segmentation 

Segmentation is to assign a public label to similar region or surface. Methods in [9] 

mentioned smoothness constraint.  According to the work of [9], the segmentation 

methods can be divided into 3 categories, where the target shape played as a judgment 

criterion. 

1. Edge based segmentation. Typical variations on this were reported earlier in [10, 

11]. Two stages were included here: edge detection and points grouping. One was to 

detect the outlines of the borders between different regions while the other mainly 

generated final segments  

2. Surface-based segmentation. The similarity measure lies on local surface 

properties to conduct segmentation. Points with spatial distance and similar surface 

properties are merged together. One of the good performances is its noise-resistance. 

Similar to the previous one, surface-based segmentation also has two major categories: 

bottom-up which starts from seed-pixels and then grow and top-down which starts by 

putting the points together and fitting a single surface to it. [12, 13]  

3. Scanline-based segmentation. Each row is considered as a scan-line and treated 

independently with each other in the first stage. So this method is especially suitable 

for range images. Typical application is [14] dealing with artificial construction. 

2.6   Sample Consensus 

Methods like random Sample Consensus (RANSAC) and primitives like planes and 

cylinders are commonly employed or combined freely in this procedure. Early work 

used Voronoi point insertion in local tangent spaces and Moving Least Squares (MLS) 

projection to realize the sampling. After that there was [15, 16, 17] in the same period 

developing different version of Locally Optimal Projector (LOP) to effectively 

overcome outliers and noise. While the latest work by [18] presented an edge-aware 

manner which has higher robustness. 



2.7   Surface generation 

Surface reconstruction is widely used in broad scope, ranging from data visualization, 

machine vision to medical technology even aerospace. [19, 20, 21]are some latest 

research in this field. Far more work has been done before. More discussions about 

surface reconstruction will be included in the section 3 and 4. 

2.8   Data structure 

At the end of the pipeline of whole point cloud processing, we should pay much 

attention to the data structure which is a key problem for point data storage and 

processing, as high efficient structure has critical effects to the algorithm speed and 

storage. Quick search method based on the neighborhood is realized here. [22] for the 

kd-tree and [23] for the octree are all excellent research in this field. 

3   Urban environment Laser Scanning 

One of our focuses is to analyze the commonly used methods on the point cloud of 

outdoor large scenes, and from this part, we will focus on the Lidar information 

acquisition and data processing of urban environment, which is used most as one kind 

of large-scale scenes.  

3.1   Target of laser scanning and remote sensing for urban environment 

Most research are engaged into the management of recovering single buildings or 

downtown area, while newly rising of researches are aiming at residential area. It is 

worth mentioning that [24] showed how to get detailed scanned data: two or more 

rotating laser scanners were taken on a moving car, even a helicopter to scan in full 

view.   

   Dense buildings: An earlier work [25] first worked out ways to rapidly and 

automatically reconstructing large-scale model base on remote sensor data. The next 

year saw an explosion of great work.[26, 29]. Recently was [30] who proposed a 3D 

urban scene reconstruction method based on the exploration of properties of 

architectural scenes. A supplement was [31] that considered trees and topologically 

complex grounds almost at the same time. 

   Residential area reconstruction is a newly emerge interest topic. In contrast to 

multiple-floors or high-rise buildings mentioned in [32, 33, 34] gave a unique idea to 

decompose and reconstruct irregular low buildings. Another problem to address is the 

dense trees that frequently appear in company with residential buildings. Aiming at 

these areas, related research well defined the problem and found a comparatively clear 

way to detect the vegetation. Other previous work include [35, 36]. 



3.2   Scanning methods and solutions 

Great efforts have been dedicated to the 3D reconstruction of urban environments 

from point data sets. But there are still challenges to be addressed when it comes to 

significantly complex.  

 
Fig. 2. Pipelines of Vanegas et al. 29 (up) and Vanegas et al. 37 (down) 

3.2.1 Manhattan-World(MW) grammars 

   [29] combined the existing mapping and navigation databases with computer 

vision methods following Manhattan World assumption. What’s more [37] developed 

the MW methods so that an independent complete model can be obtained to describe 

buildings with partial texture. Fig. 2 shows the pipelines of the two methods for 

contrast. [26] took MW into consideration and created flat roof models. Tracing back 

to [39] we found an origin of this MW method. At that time researchers had observed 

that most indoor and outdoor (city) scenes were designed on a Manhattan three-

dimensional grid.  

3.2.2 Aerial LiDAR method 

   Many research efforts have addressed the complex problem of modeling cities 

from aerial LiDAR data. Several automatic pipelines have been introduced by recent 

work (e.g., [35, 40, 41]). The work above all removed some kinds of trees and noise, 

while the remaining objects were divided into ground points and building patches 

which were gridded then.   

There are still some problems to be solved so that objects other than planar can 

also be reconstructed. Therefore works aiming at primitive emerged. Based on a 

RJMCMC sampler, [42] established two steps to combine parametric models. Work 

[43, 44] also addressed this problem and detected planes via user interaction.  

Studies [25, 38, 46, 47] acted as implements to show this method. 

3.2.3 Multi-View Stereo(MVS) algorithm 

Different from data captured by LiDAR methods, MVS combines various 

viewpoints together. [30] proposed a 3D urban scene reconstruction method based on 

exploration of properties of architectural scenes. Briefly, it utilized a given set of 



calibrated photographs to generate point clouds, and an MVS algorithm was used in 

the process, whose details were given in [48]. [49] presented MVS imagery that 

sometimes had spatially heterogeneous point distributions without induced adjacent 

relationships among each two points, including outliers. 

As a supplement was a patch-based MVS (PMVS) algorithm presented in [48]. It 

used a sparse set of matched key points for matching, expanding and filtering. This 

process was repeated until a visibility constraint to filter away false matches can be 

applied. 

3.3   Major objects of urban remote sensing 

Several papers indicated that there were three representative elements in the urban 

scenes we would concern about, namely buildings, trees and ground. 

   Buildings are one of the most important elements when dealing with urban 

environment. Objects namely roof and wall are all focus of numerous studies. [19] 

well interpreted the reconstruction of such parts (see Fig. 3). As illustrated on Fig. 4, 

[31] simplified mesh-patches while keeping a high accuracy. Trees are always sort of 

troublesome when it comes to accurate reconstruction. Although [34] truly involved 

scenes as residential area, its treatment about trees was still a simplified template 

matching method. The other method such as using billboard for trees’ representation 

would be a shortcut, but from the street view, a more realistic tree modeling was more 

necessary such as [50].  

    

Fig. 3. Reconstruction of roof and wall            Fig. 4. Simplified mesh-patches 

   Ground independently can make up an important landscape no matter in which 

fields. Point cloud related things mainly concentrate in surface reconstruction. A 

continuous surface is often used to represent ground. Generally speaking plane is 

considered as an imitation of ground. 

3.4   Advantages/disadvantages of existing methods 

Because of the diversity and complexity of our references, limitations and 

contributions cannot be completely included in this paper. Here we briefly give a 

summary as following: 

   1. For Manhattan-World methods, there are mainly three limitations. MW 

assumption results are the first one. Although the MW parts are efficiently 

reconstructed, there are still lots of architecture not belongs to the type.  



   2. Second, according to a classification-depending idea, bad results may appear 

owning to great amount of noise and missing data.  

   3. Third, all the work above cannot effectively handing data sets with tiny change 

or poly tropic surface.  

4   Indoor Scenes 

The other of our focuses is to analyze the commonly used methods on the point cloud 

of indoor scenes. In contrast to external surface of buildings which are relatively 

piecewise flat, inside scenes are more complicated when it comes to 3D structures 

[52]. Let alone the endless furniture with various shapes, rooms in and out are also a 

big problem (Fig. 5).  

             
Figure 5. Complex indoor scene       Figure 6. Different results in same searching premise 

4.1 Scene understanding 

The major problem lies in the recognition of hundreds of objects; here we call them 

same kind with different shapes. Even one same kind of objects can have several 

forms (Fig. 6), thus increasing the difficulties when handling scanned data. 

4.1.1 Separation 

   As addressed in [52] (see Fig. 7), classification and separation were 

interdependent issues, and the realization triggered an algorithm which went through 

the whole room by a search-classify region-growing process. [53] presented a method 

according to texture and surroundings to identify objects.  [54] presented an 

algorithm for indoor scene separation. In the research classification labeled of features 

are detected and separated via graph-cut to the whole scene. [55] combined color, 

depth and contextual information together to realize a semantic labeling progress. 

 
Figure 7.  Separation and classification outcome of Nan et al[52] 

 

4.1.2 Classification 



   As mentioned above, the classification methods of 3D box around objects is 

adopted by [56] while [57] made a supplement with physical considerations. Rather 

than the image understanding background, [58] first pre-segmented the obtained 

points and then found good way to detect repeating areas. The latest is [55] who used 

a graphical model to learn features and contextual relations across objects.  

   Apart from the two sub-problems, Geometric priors for objects are also involved. 

Similar to [59], [60] used geometry to represent individual objects, which were 

commonly utilized in understanding surroundings. Similar works include [61,62,63]. 

They all engaged in understanding indoor objects and filling missing parts. 

4.2 Scanning techniques  

Also thanks to the quick development of range camera, scanning becomes an easy 

task. Among the vast literature, the possibility of real-time lightweight 3D scanning 

has been early demonstrated by [65]. When it comes to the up-to-date techniques, [66] 

presented a guided real-time scanning setup, where the incoming 3D data stream was 

continuously analyzed, and the data quality was automatically assessed.  

   For further study, repetition [67], symmetry [68], [69] also got some notice. 

Primitives as well played a role in the completion of missing parts. Other geometric 

proxies and abstractions including curves, skeletons, planar abstractions, etc. have 

been used. In the context of image understanding, indoor scenes have been abstracted 

and modeled as a collection of simple cuboids [64] to capture a variety of man-made 

objects. 

4.3 Scene modeling 

Several decades ago people have set about to use laser scanner on a mobile robot to 

obtain indoor circumstance. Literature introduced ICP (iterative closest point) or 

SLAM (simultaneous localization and mapping) techniques. However the limitation 

of expensive hardware took the two to an end. However, For instance, parts can act as 

entities for discovering repetitions [58], training classifiers, or facilitating shape 

synthesis. In [66], multiple objects of a single category could also be represented by a 

smaller set of part-based template. Expensive matching is usually a basement of these 

approaches, along with no low memory footprint real-time realizations. 

5 Conclusions 

Point cloud and large-scale scenes based on optical acquisition are topics that are 

gaining increasing attention by recent years, and new relative researches spring up 

constantly. So far, remarkable progress has been made in both basic processing of 

traditional point sets and newly developed approaches in scanning streets, parks and 

households. Meanwhile, algorithms continuously appear to improve the previous ones. 

What people have done not only solves the problems of understanding what a large 

environment we are staying in, but also helps better drawing blue print for the coming 

city construction as well as detailed decoration.  



   Challenges still exist and we need to do better jobs. Acquired models need to be 

more accurate and less noisy, data sets need to be greatly enlarged, and results of 

reconstruction also have much more to be revised.  

   With the development of technology, more accurate range cameras come into use 

which will largely promote the solution and accuracy of point cloud. Besides, 

improved algorithms can shorten the calculation time meanwhile enhance their 

robustness. The expected result is to clearly obtain point data and successfully 

reconstruct all kinds of architecture as much as possible. Trees, heritage buildings, 

and some irregular ones are the main problems that to be solved.     

   This survey mainly provides an overview of the previous works, and relative 

methods and ideas included should be further explored from the references in order to 

gain a more over-all understanding. Our goal is to lay the foundation for the novices 

in this field, and we hope we can give valuable insights into this important research 

and encourage new ones. 
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