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Abstract

Marginal histograms provide valuable information for

various computer vision problems. However, current im-

age restoration methods do not fully exploit the potential

of marginal histograms, in particular, their role as ensem-

ble constraints on the marginal statistics of the restored im-

age. In this paper, we introduce a new framework, Uni-

HIST, to incorporate marginal histogram constraints into

image restoration. The key idea of UniHIST is to mini-

mize the discrepancy between the marginal histograms of

the restored image and the reference histograms in pixel or

gradient domains using the quadratic Wasserstein (W2) dis-

tance. The W2 distance can be computed directly from data

without resorting to density estimation. It provides a dif-

ferentiable metric between marginal histograms and allows

easy integration with existing image restoration methods.

We demonstrate the effectiveness of UniHIST through de-

noising of pattern images and non-blind deconvolution of

natural images. We show that UniHIST enhances restora-

tion performance and leads to visual and quantitative im-

provements over existing state-of-the-art methods.

1. Introduction

A histogram is a discrete approximation of the probabil-

ity distribution of a continuous random variable. For high

dimensional signals such as images, when one treats indi-

vidual data points as independent samples from a random

source, the corresponding histogram is known as a marginal

histogram [11]. In image processing and computer vision,

marginal histograms in pixel or gradient domains provide a

simple and effective summary of image statistics. For in-

stance, intensity and color histograms capture the contrast

and tone variations of the corresponding image, which are

widely used as features in image enhancement [15] and re-

trieval [16]. Important image feature descriptors such as

SIFT [23] and HOG [9] are in the form of histograms of

oriented gradients. Matching histograms of band-pass fil-

ter responses is the essential step in Heeger and Bergen’s

influential method for texture analysis and synthesis [17].

Marginal histograms of image gradients and wavelet coeffi-

cients show sharp peaks around zero and heavy tails, which

inspired many parametric image models such as Gaussian s-

cale mixtures [31, 33] and hyper-Laplacian [13, 19]. These

models have achieved state-of-the-art performance for vari-

ous image restoration tasks [20, 21, 38].

For most vision applications, a marginal histogram is in-

terpreted as an approximate description of the underlying

distribution, specifying the probability of the data points

taking a particular value. However, a marginal histogram

collected from an image provides more information as it

represents an ensemble constraint on the image, specifying

the proportion of the pixels taking each value. This intro-

duces a negative correlation between the data points - if the

marginal histogram specifies that 10% of the pixels take a

certain value, this means that the remaining 90% pixels can

only take other values. Therefore a marginal histogram pro-

vides a constraint on the marginal statistics of the output im-

age. Similar is true for marginal histograms in other trans-

form domains of the images. Several recent studies have

shown that image restoration tasks can benefit from such en-

semble constraints, but incorporating these constraints with

existing restoration methods in a numerically stable manner

remains a challenging problem [7, 30, 35, 39].

In this work, we emphasize the aspect of marginal his-

tograms as ensemble constraints and introduce a unified

framework, UniHIST, to incorporate such constraints in im-

age restoration problems. In UniHIST, we use the quadratic

Wasserstein (W2) metric [32] (also known as Cramer-von

Mises distance) to measure the statistical distance between

the marginal histograms of the output image and the refer-

ence histogram. The W2 distance can be computed directly

from data without relying on density estimation, providing

a smooth and differentiable form to measure the dissimilar-

ity between histograms. By including this term in an opti-

mization framework, UniHIST can readily work with most
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existing restoration methods. We demonstrate the benefit-

s of marginal histograms and the effectiveness of UniHIST

through two applications: denoising of pattern images and

non-blind deconvolution of natural images. We show that

UniHIST enhanced restoration algorithms lead to improved

restoration quality over existing state-of-the-art methods.

2. Related Works

The task of image restoration is to recover an image from

its degraded observation [1]. A complete survey of the im-

age restoration techniques is beyond the scope of this paper,

and we only review methods that enforce constraints on the

marginal histograms of the output in the restoration process.

In the context of Markov Random Field (MRF), Zhu et

al. proposed a FRAME model which adapts a Gibbs sam-

pler to generate texture images with similar marginal his-

tograms as the example image [36]. Schmidt et al. em-

ployed a more efficient Gibbs sampler and achieved state-

of-the-art denoising performance with this generative mod-

el [30]. These sampling-based methods require multiple

samples to predict an output, which might be computa-

tionally expensive in practice. Woodford et al. showed

that MRF inherently encourages delta function marginal

histograms, which might introduce statistical bias with

weak data fidelity terms [35]. They extended MRF into

a marginal probability field (MPF) model, which enforces

marginal histogram constraints for a range of application-

s, including segmentation, denoising and texture synthesis.

However, their model is defined in the discrete label space,

which can not be easily extended to handle image restora-

tion tasks with continuous intensity values.

Cho et al. proposed to preserve the heavy-tailed marginal

gradient distributions in the deconvolution process, which

greatly enhances the visual details in the restored image [7].

However, their method minimizes the KL divergence be-

tween the output image gradients and the reference distri-

bution, which requires parametric density fitting and a com-

plex reweighting optimization scheme. Recently, Zuo et

al. proposed a texture-enhanced denoising method, which

combines a non-local patch-based image model with a

heuristic gradient penalty term [39]. UniHIST differs from

these methods in several aspects: first, our method min-

imizes the histogram discrepancy using the W2 distance,

which leads to consistent objective functions with provable

convergence and efficient numerical solutions; second, our

method provides a unified procedure to integrate marginal

histogram constraints with a wide range of existing de-

noising and deconvolution algorithms; finally, our method

works directly with nonparametric histograms and does not

need to fit them with parametric models.

The Wasserstein distance and its variants have been used

to find perceptually similar contents in image retrieval [29].

Recently, Peyré and his collaborators proposed the sliced

Wasserstein distance for multi-dimensional signals, and ap-

plied this measure in texture mixing [3] and color trans-

fer [27], but no previous studies have explored this metric

for general image restoration tasks.

3. Method

In this section, we describe a unified approach to utilize

marginal histogram constraints for various image restora-

tion problems. The basic intuition is that if we have knowl-

edge of the uncorrupted image in certain domains in the for-

m of marginal histograms, the desirable output image from

the restoration algorithm should respect such constraints.

Following this intuition, we first introduce the quadratic

Wasserstein (W2) distance as our dissimilarity measure be-

tween probability distributions or histograms (Section 3.1).

We then present the UniHIST framework in Section 3.2.

Section 3.3 briefly discusses several ways to obtain the cor-

responding reference marginal histograms.

3.1. Quadratic Wasserstein Distance

Given two probability measures p, q over the real line R
with finite variances, their quadratic Wasserstein (W2) dis-

tance is defined as the variational solution to the following

Monge problem [32]:

W 2
2 (p, q) = inf

φ

∫
∞

−∞
(x− φ(x))2p(x)dx (1)

where the infimum is over all deterministic functions φ :
R 7→ R that transfer an arbitrary random variable x with

distribution p to a new variable φ(x) with distribution q. In

other words, the W2 distance is the minimum ℓ2 disturbance

caused by any mapping functions between the two given

distributions. Unlike the Kullback-Leibler divergence, the

W2 distance is a true metric between probability distribu-

tions, and becomes zero if and only if p and q are identical.

For a given probability distribution p over the real line,

we define its cumulative distribution function as Fp(x) =∫ x

−∞
p(τ)dτ , and its percentile function (the pseudo-inverse

of Fp) as F−1
p (t) = inf(x : Fp(x) > t}. A fundamental

result in the optimal transport theory1 is that the optimal φ

minimizing Eq.(1) has a closed-form solution [32]:

φp→q(x) = F−1
q (Fp(x)) . (2)

For our framework, we need to measure the statistical

distance between the marginal histogram hx of an image x

with n pixels and a given marginal histogram hq . Most his-

togram distances (Chi-Square, KL divergence, etc.) directly

compare two histogram vectors [5]. However, the process

of extracting hx from x is a non-differentiable operation on

x, which hinders their usage in image restoration. Instead,

1An accessible and comprehensive introduction of optimal transport

theory can be found in [32].
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we use the equivalent definition of the W2 distance, by treat-

ing x = (x1, · · · , xn)
T as n independent samples drawn

from a distribution p, and hq as the discrete approximation

of another distribution q. Following Eq.(1), we introduce an

empirical Ŵ2 measure as follows:

Ŵ 2
2 (p, q) = Ŵ 2

2 (hx, hq) = min
φ

1

n

n∑

i=1

(xi − ξi)
2 (3)

where function φ maps xi to ξi = φ(xi), such that the trans-

formed samples ξ = (ξ1, · · · , ξn)T satisfy the marginal his-

togram hq . Analogous to the continuous case, the optimal

φ̂ for Eq.(3) is given as [32]:

ξi = φ̂hx→hq
(xi) = F−1

hq
(Fhx

(xi)) (4)

where F−1

hq
and Fhx

are the percentile function and the cu-

mulative distribution function constructed from hq and hx

respectively. A close look at Eq.(4) shows that, for image

x, φ̂ actually corresponds to the “histogram matching” op-

eration used to improve the image contrast [15]. A notable

property of the empirical W2 measure is that it can be evalu-

ated in the quadratic form of x. On the other hand, for other

measures such as the KL divergence, the direct comparison

between two histograms is a non-smooth operation on x,

which makes them difficult to work with existing restora-

tion algorithms. Equations (3) and (4) form the basis of the

coming UniHIST framework.

3.2. The UniHIST Framework

We use vectorized notations for images and adopt the

image formation model as:

y = Ax+ n (5)

where y is the observed image, x is the original uncorrupt-

ed image, n is the additive Gaussian noise with known vari-

ance, and the matrix A subsumes the linear transforms in

the imaging process such as blurring and downsampling.

We are mainly interested in problems that can be cast into

the following form:

min
x

λ
2
‖y −Ax‖22 + Γ(x) (6)

where the first term (the data fidelity term) represents the

ℓ2 difference between the observation y and the image for-

mation model Ax, and Γ(x) (the regularization term) repre-

sents our prior knowledge about the original image x. Popu-

lar Γ(x) for image restoration include heavy-tail probabilis-

tic models in the gradient domain such as Gaussian scale

mixtures and generalized Laplacian models [20, 21] and

probabilistic models of image patches [10, 37]. Parameter λ

controls the balance of the two terms. Eq.(6) covers a wide

range of restoration tasks, such as demosaicing, denoising,

non-blind deconvolution, and super-resolution [18].

Suppose we have knowledge about the clean image x,

specifying the marginal histogram of x in a linearly trans-

formed domain such as gradients or wavelet coefficients.

We would like to use this information in the restoration

method. To this end, we add a marginal histogram con-

straint to Eq.(6) and solve the following constrained mini-

mization problem:

min
x

λ
2
‖y −Ax‖22 + Γ(x) s.t. hBx = hr (7)

where hr is the reference histogram, and the matrix B de-

notes the corresponding linear transformation. In Section 4,

we will discuss different choices of such domains for spe-

cific applications. Constraints on marginal histograms in

more than one transformation domains can be incorporated

similarly, but for simplicity, we only discuss the case when

one domain (a single B) is used.

Using the Ŵ2 measure and the penalty function

method [2], we convert Eq.(7) to the following uncon-

strained minimization problem:

min
x

λ
2
‖y −Ax‖22 + Γ(x) + β

2
Ŵ 2

2 (hBx, hr) (8)

With the penalty weight β → ∞, the local optimal solution

of Eq.(8) reaches a local optimal solution of Eq.(7) [2].

Following the definition in (3), we introduce an auxiliary

vector ξ (of the same dimension as Bx) and minimize the

following objective function:

min
x,ξ

λ
2
‖y −Ax‖22+ β

2
‖ξ −Bx‖22+Γ(x) s.t.hξ = hr (9)

This problem, as the final form of UniHIST, can be readily

solved with block coordinate descent by alternatively min-

imizing Eq.(9) with regards to ξ and x respectively. This

algorithm is guaranteed to converge to a local minimum.

Fixing ξ, the x problem comes with two quadratic terms

and a regularization term on x:

min
x

λ
2
‖y −Ax‖22 + β

2
‖ξ −Bx‖22 + Γ(x) (10)

If Γ(x) is also a quadratic term, Eq. (10) reduces to an un-

constrained least squares problem, which can be solved with

conjugate gradient or FFT-based methods [20, 21]. If Γ(x)
is a non-smooth term, which is often the case for image

restoration, we can further decompose Eq. (10) into sub-

problems with half-quadratic splitting [14] or proximal al-

gorithms [24]. For these subproblems, we can reuse some

well-developed solutions for specialized Γ(x) models. This

is the key component to incorporate UniHIST into existing

image restoration methods. We show such an example with

patch-based models in Sec. 4.2.

Fixing x, minimizing ξ reduces to

min
ξ

β
2
‖ξ −Bx‖22, s.t.hξ = hr (11)
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Using the results in (4), the optimal ξ is given by the his-

togram matching operation as follows:

ξi = φ̂hBx→hr
((Bx)i) (12)

where i denotes the i-th element. To sum up, UniHIST iter-

atively performs two main steps until convergence: update

ξ through Eq.(12) and then update x through Eq.(10). Note

that the penalty weight β may vary in the iterative com-

putation process: if we want to enforce a strict marginal

histogram constraint, we can start with a small β value and

increase it by a scaling factor after each iteration.

3.3. Reference Marginal Histogram Generation

Although UniHIST provides a unified approach to en-

force marginal histogram constraints in image restoration

tasks, the generation methods of the reference histograms

might vary from one application to another. Here we con-

sider several different methods for marginal histogram gen-

eration: (1) Marginal histograms can be specified with ex-

ternal sources. Woodfood et al. proposed to build a his-

togram database with natural images and use the closest

match for image denoising [35]. (2) Marginal histogram-

s can be specified through user interaction and parametric

models. It is well known that the marginal gradient his-

tograms of natural images follow a hyper-Laplacian model.

By tuning the parameters of the model, it is possible to get a

good estimation of the original histograms [6]. (3) For some

very specific problems, it is possible to directly estimate the

marginal histogram from the degraded observation. For im-

ages corrupted with small Gaussian noise, the gradient his-

tograms can be roughly estimated as a 1D deconvolution

process [39]. Finally, histograms might be provided along

with the observation. For example, marginal histograms can

be embedded in the image, for instance as a “fingerprint” of

the authenticity or quality of the image [34].

4. Applications

In this section, we describe two applications of the pro-

posed UniHIST framework: denoising of pattern images

and non-blind deconvolution of natural images. We show

that UniHIST can be integrated with some well-developed

restoration methods to improve the output image quality.

4.1. Pattern Image Denoising

Image denoising has been extensively studied in the

computer vision and image processing community, with

many state-of-the-art techniques, including Non-Local

Means [4], BM3D [8] and KSVD [10]. Natural images ex-

hibit some common properties such as sparsity and nonlocal

self-similarity, which have been heavily exploited by exist-

ing denoising methods. However, less attention has been

paid to “pattern images” with regular or near-regular struc-

tures, which can be ubiquitously found in man-made objects

and artistic designs. Some real-world pattern image exam-

ples are presented in Fig. 1a. An important property of the

pattern images is that their marginal intensity histograms

usually center around selected intensity levels (see the blue

curves in Fig. 1e), which can be estimated from similar pat-

tern images or directly specified in the design process. We

validate this observation with a simple test: we randomly

sample square patches from high resolution pattern images,

and for each example, all patches share very close intensi-

ty histograms when patch size goes beyond a certain limit.

For this application, we assume the marginal intensity his-

togram of the pattern is provided along with the noisy ob-

servation. UniHIST provides a natural way to exploit this

extra information for pattern image denoising.

Model We make two assumptions: the observation im-

age y is corrupted by an additive white Gaussian noise with

variance σ2; the intensity distribution of the latent image

follows a reference histogram hr. Following the definition

of UniHIST (Eq.(9)), we introduce an auxiliary vector ξ and

formulate the denoising problem as follows:

min
x,ξ

1

2σ2 ‖y − x‖22+ β
2
‖ξ − x‖22+Γ(x) s.t.hξ = hr (13)

where Γ is a selected denoising regularization term.

Solution As presented in Sec. 3.2, we solve this problem

with block coordinate descent. The ξ step is solved with a

histogram matching operation; while the x step reduces to

the following problem:

min
x

1

2σ̂2 ‖ŷ − x‖22+ Γ(x) (14)

where ŷ = y+βσ2ξ
1+βσ2 is a weighted interpolation between y

and ξ, and σ̂ = σ√
1+βσ2

. Considering ŷ as the observation

and σ̂2 as the noise variance, Eq. (14) is a standard Gaussian

denoising problem which can be readily solved with any ex-

isting denoisers. For this application, we choose the Non-

Local Dual Denoising method (NLDD), which has been re-

cently reported with state-of-the-art denoising performance

and fast processing speed [25]. After each iteration, β is

scaled by a factor of 2.

Results We evaluate our algorithm on eight pattern im-

ages collected from the internet. For each example, we scale

the image to the range [0, 1] and degrade the clean image

with a strong Gaussian noise (σ2 = 0.1), such that the qual-

ity of the output results relies heavily on prior knowledge Γ
and hr. For hr, we use a 256-bin histogram for all the tests.

Four examples and their output results with the origi-

nal NLDD method and our method are presented in Fig. 1.

Please refer to the supplemental material for the complete

results. Compared to NLDD, our method enforces the out-

put marginal intensity histogram to be more consistent with

the reference histogram (see Fig. 1e), which in turn im-

proves the visual quality in several aspects: first, the refer-
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Figure 1: The output results of NLDD and our method (NLDD+UniHIST) on four pattern image examples. Our method

enforces the output marginal intensity histogram to be more consistent with the reference histogram (see the last column),

and improves the denoising quality in various regions. Details are best viewed in electronic form.

ence histogram provides the correct locations of the inten-

sity modes, which helps to preserve the contrast of the pat-

tern and recover bright and dark regions better than NLDD;

second, the reference histogram provides an ensemble con-

straint on the proportion of pixels at each intensity level,

which helps to suppress the outliers locating at wrong in-

tensity levels in noisy environment; finally, in some special

cases where the intensity modes are close to each other (see

the second example), NLDD might blur image structures,

while our method recovers better region boundaries.

We provide the quantitative comparison of the two meth-

ods in terms of peak signal-to-noise ratio (PSNR) and struc-

tural similarity (SSIM) index in Fig. 2. As these results

show, our method outperforms NLDD in both metrics. Fol-

lowing the same framework, we replaced NLDD with the

classic BM3D denoiser [8] and repeated the experiments

with the same settings. Further results (included in the sup-

plemental material) confirm similar performance improve-

ment with marginal histogram constraints.

4.2. NonBlind Deconvolution

Assuming a known blurring kernel k and noise levels,

non-blind image deconvolution tries to recover a latent im-

age x from a blurry and noisy observation y = x⊗ k+ n.

This is inherently a more ill-posed problem than image de-

noising due to the coexistence of k and n. Most state-

of-the-art methods rely on parametric or semi-parametric

models learned for natural images, such as the hyper-

Laplacian gradient model [21], Field-of-Experts [28] and

EPLL [37]. It has been noticed that most parametric mod-

els, when incorporated in a maximum-a-posteriori (MAP)

framework, usually favor smooth solutions with low energy
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Figure 2: Quantitative comparison of NLDD and our

method (NLDD+UniHIST) in terms of PSNR and SSIM

on eight pattern image examples. Compared to NLDD, our

method improves the average PSNR and the average SSIM

index by 3.86dB and 0.057 respectively.

settings [7, 22, 30, 35], leading to statistical bias and loss of

mid-level details in the output results. Zuo et al. proposed

an effective method to enhance the textures of the restored

image, but their solution is specialized for image denois-

ing [39]. Cho et al. proposed a detailed-enhanced non-blind

deconvolution method, which significantly enhances the vi-

sual details by preserving the marginal gradient distribution

of the latent image in the deconvolution process [7]. How-

ever, their iterative distribution reweighting method (denot-

ed as IDR) directly minimizes the KL divergence between

the output image gradients and the reference distribution,

which requires a complex optimization scheme. UniHIST

provides a much simpler way for detailed-enhanced non-

blind deconvolution.

Gradient Histogram Estimation We estimate the

marginal gradient histograms of the latent image using a

similar method as in [6, 7]: we deconvolve the corrupted

image with a weak regularization term, then down-sample

the restored image, calculate gradient components and ex-

tract marginal gradient histograms for horizontal and verti-

cal components respectively.

Model We make two assumptions: the observation im-

age y is corrupted by a known spatially-invariant kernel

k and an additive white Gaussian noise with variance σ2;

the horizontal and vertical gradient components of the la-

tent image should follow two reference gradient histograms

h1, h2 respectively. Following the UniHIST framework, we

introduce two auxiliary vectors ξ1, ξ2 and formulate the de-

convolution problem as follows:

min
x,ξ1,ξ2

1

2σ2 ‖y − k⊗ x‖22+ β
2

2∑

j=1

‖ξj − fj ⊗ x‖22+Γ(x)

s.t. hξj
= hj , j = 1, 2

(15)

where f1 = [1,−1], f2 = [1,−1]T are gradient filters along

horizontal and vertical directions respectively, and Γ rep-

resents an existing image model. For this application, we

employ the popular EPLL patch model [37]:

Γ(x) = −∑

i

log(p(Pix)) (16)

where the matrix Pi extracts the i-th patch from x out of all

overlapping patches, and p represents a Gaussian mixture

model (GMM) learned from natural image patches. The

patch size is fixed to 8× 8 for all the examples.

Solution We iteratively update ξ1, ξ2 and x in two main

steps. Given fixed x, we update ξ1, ξ2 with the reference

histograms h1, h2:

(ξj)i = φ̂hfj⊗x→hj
((fj ⊗ x)i), j = 1, 2 (17)

where i denotes the i-th element. The x problem involves

two quadratic terms on x and a regularization term on over-

lapping patches Pix:

min
x

1

2σ2 ‖y −Kx‖22+ β
2

2∑

j=1

‖ξj − Fjx‖22−
∑

i

log(p(Pix))

(18)

where K,F1, F2 are the block Toeplitz matrix representa-

tions of k, f1, f2 respectively. We then solve the x problem

with a half-quadratic splitting scheme [14, 37]. We intro-

duce a set of patches zi, one for each patch Pix, and mini-

mize the following objective function:

min
x,zi

1

2σ2 ‖y −Kx‖22 + β
2

2∑

j=1

‖ξj − Fjx‖22
+γ

2

∑

i

‖zi − Pix‖22 −
∑

i

log(p(zi))
(19)

where γ gradually increases in an iterative optimization pro-

cess. Now the x subproblem is a least squares problem,

which can be solved with conjugate gradient, while the zi
subproblem can be solved with an approximate MAP esti-

mation scheme from the original EPLL method [37].

Results We test our algorithm on six examples from [7].

The first two example images are degraded with a simple

blurring kernel and 7% Gaussian noise; examples 3 and 4

are degraded with the same kernel and 5% noise; while for

the last two examples, the images are degraded with a com-

plicated kernel and 2% noise.

We present the deconvolution results of the EPLL

method and our method for examples 1, 2, 3 and 6 in Fig. 3.

For comparison, we also include the results generated by a

gradient-based hyper-Laplacian prior and the IDR method

from [7]. Please refer to the supplemental material for the

complete results. As can be seen from all the examples,

our method significantly enhances the visual details over

the original EPLL method in various regions, while IDR

improves over the original hyper-Laplacian model. Both

IDR and our method successfully retrieve some stochastic

texture details in regions covered by trees, sand and animal

furs; while our method seems to perform better in regions
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(a) Original Image (b) hyper-Laplacian (c) EPLL [37] (d) IDR [7] (e) EPLL+UniHIST

Figure 3: The deconvolution results of four methods (hyper-Laplacian, EPLL, IDR and our method) for examples 1, 2, 3, 6.

Our method significantly enhances the visual details over the original EPLL method in various regions. See close-up regions

for visual detail comparison. This figure is best viewed in electronic form.

with fine directional structures (see close-up regions of ex-

amples 2 and 6).

We evaluate the symmetric KL divergence of the

marginal gradient histograms between the restored image

and the original image for the six examples in Fig. 4: for

all the examples, our method provides the lowest KL di-

vergence for both horizontal and vertical gradients, which

demonstrates the effectiveness of the UniHIST framework;

IDR also gives lower KL divergence than hyper-Laplacian

and EPLL. The evaluation with the empirical W2 metric

also reports similar quantitative results. We provide the

marginal gradient histograms (in logarithmic scale, only

the positive half) of example 6 in Fig. 5, which shows our

method enforces the marginal histogram constraints better

than the other methods, and therefore preserves more de-

tails in the deconvolution process.

We provide the PSNR and SSIM values of the six ex-

amples in Fig. 6, which shows some interesting properties
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Figure 4: The symmetric KL divergence of the hori-

zontal and vertical gradient histograms between the re-

stored image and the original image for the six examples.

For horizontal gradient histograms, the average KL diver-

gence of hyper-Laplacian, IDR, EPLL and our method are

1.08, 0.21, 0.44, 0.09 respectively; while for vertical gradi-

ent histograms, the average KL divergence of the four meth-

ods are 1.26, 0.28, 0.49, 0.10 respectively.
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Figure 5: The marginal gradient histograms (in logarithmic

scale) of example 6 produced by different methods. Con-

sidering the rough symmetry of the gradient distribution,

we only show the curves along the positive real line.

of our algorithm. It can be expected that EPLL and our

method show better quantitative performance than hyper-

Laplacian and IDR, since we employ a patch-based image

model which is more powerful than the gradient sparsity

model. Compared to EPLL, our method gives lower P-

SNR values for all the examples but higher SSIM values

for five examples. This is mostly due to the fact that for

texture regions, UniHIST “hallucinates” textures perceptu-

ally similar to the original textures, while EPLL and oth-

er sparsity-based algorithms try to “reconstruct” the origi-

nal textures. While our method can produce more visual-

ly appealing restoration results (reflected by the SSIM val-

ues of five examples), when evaluated by mean squared er-

ror based metrics such as PSNR, it does not show signif-

icant advantages. Compared to the hyper-Laplacian based

method, IDR performs better on the first example, but gives

lower quantitative results on the other examples. Although

IDR enhances the visual details, this improvement might

not be well evaluated with mean squared difference based
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Figure 6: Quantitative results of the four methods in terms

of PSNR and SSIM for the six examples. The aver-

age PSNR values of hyper-Laplacian, IDR, EPLL and our

method (EPLL+UniHIST) are 27.40dB, 26.98dB, 28.04dB

and 27.82dB respectively; while the average SSIM values

of the four methods are 0.76, 0.74, 0.77, 0.79 respectively.

image metrics such as PSNR. The same performance dif-

ference has been observed in Cho et al.’s work [7].

5. Conclusions and Future Work

In this paper, we have presented a unified approach to in-

tegrate marginal histogram constraints with image restora-

tion methods. We emphasize the aspect of marginal his-

tograms as ensemble constraints that specify the proportion-

s of pixel or gradient values for the restored image. Specif-

ically, we incorporate marginal histogram constraints into

image restoration algorithms with the UniHIST framework,

which measures and minimizes the discrepancy between the

marginal histograms of the restored image and the reference

histograms with the quadratic Wasserstein (W2) distance.

We show the effectiveness of UniHIST through denoising of

pattern images and non-blind deconvolution of natural im-

ages, where it shows visual and quantitative improvements

over state-of-the-art methods.

There are a few things we would like to further improve

the current work. First, we would like to study the use of

gradient histogram constraints in blind deconvolution. Pre-

vious studies [12, 22] have shown that the sparsity regu-

larized framework is often not sufficient to recover satis-

factory blurring kernel, and we hope that marginal gradi-

ent histograms will provide more useful information to this

end. Also, enforcing consistency of histograms over large

number of band-pass filters has been shown as a successful

approach to texture synthesis [17]. As such, we also ex-

pect to further improve the deconvolution performance by

using other types of band-pass filters (e.g., steerable filters)

beyond the simple gradient filters. Last, like marginal his-

tograms, joint histograms (e.g., color histograms) can also

be regarded as a type of ensemble constraints. Following

recent advances in multi-dimensional distribution match-

ing [3, 26, 27], we are interested in developing a similar

framework with joint histograms.
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[26] F. Pitié, A. C. Kokaram, and R. Dahyot. N-dimensional prob-

ability density function transfer and its application to color

transfer. In ICCV, pages 1434–1439, 2005.
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