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Abstract—In this paper, a value iteration adaptive dynamic
programming (ADP) algorithm is developed to solve infinite
horizon undiscounted optimal control problems for discrete-time
nonlinear systems. The present value iteration ADP algorithm
permits an arbitrary positive semi-definite function to initial-
ize the algorithm. A novel convergence analysis is developed
to guarantee that the iterative value function converges to the
optimal performance index function. Initialized by different ini-
tial functions, it is proven that the iterative value function will
be monotonically nonincreasing, monotonically nondecreasing, or
nonmonotonic and will converge to the optimum. In this paper,
for the first time, the admissibility properties of the iterative
control laws are developed for value iteration algorithms. It
is emphasized that new termination criteria are established to
guarantee the effectiveness of the iterative control laws. Neural
networks are used to approximate the iterative value function
and compute the iterative control law, respectively, for facilitat-
ing the implementation of the iterative ADP algorithm. Finally,
two simulation examples are given to illustrate the performance
of the present method.

Index Terms—Adaptive critic designs, adaptive dynamic pro-
gramming (ADP), approximate dynamic programming, neural
networks, neuro-dynamic programming, optimal control, rein-
forcement learning, value iteration.

I. INTRODUCTION

DUE TO the increasing demands on system performance,
production quality as well as economic operation and

modern industrial processes are becoming more and more
complicated and the degrees of automation of such pro-
cesses are therefore significantly increasing [1]–[5]. As a
result, the control of such complex processes is posing a
great challenge due to the possible unavailability of sufficient
quantitative knowledge about the process. Data-based control
methods make use of the information obtained from the
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available process measurements to describe various com-
plex behaviors, and thus have formed an efficient alternative
for control and monitoring issues with complex industrial
applications [6]–[9].

Although dynamic programming is a very useful tool in
solving optimization and optimal control problems [10]–[12],
it is often computationally untenable to run true dynamic
programming. The difficulty lies in solving the time-varying
Hamilton–Jacobi–Bellman (HJB) equation for which analyti-
cal solution is nearly impossible to obtain, i.e., as a result of
the well-known “curse of dimensionality” [13]. Hence, many
approaches were proposed to obtain the approximate solu-
tions of HJB equation [14]–[17]. Among these approximate
methods, adaptive dynamic programming (ADP), proposed
by Werbos [18], [19], as an effective data-based approach to
solve optimal control problems forward-in-time, has gained
much attention from researchers [20]–[29]. In [30], a complex-
valued ADP algorithm was discussed, where for the first
time the optimal control problem of complex-valued nonlin-
ear systems was successfully solved by ADP. In [31], based
on neurocognitive psychology, a novel controller based on
multiple actor-critic structures was developed for unknown
systems and the proposed controller traded off fast actions
based on stored behavior patterns with real-time exploration
using current input–output data. In [32], an effective off-policy
learning based integral reinforcement learning algorithm was
presented, which successfully solved the optimal control prob-
lem for completely unknown continuous-time systems with
unknown disturbances. Iterative methods are primary tools in
ADP to obtain the solution of HJB equation indirectly and
have received more and more attention [33]–[42].

Value iteration algorithms are a class of the most important
iterative ADP algorithms [43]–[49]. Value iteration algo-
rithms of ADP were given in [50] and [51]. In 2008,
Al-Tamimi et al. [52] studied deterministic discrete-time affine
nonlinear systems and a value iteration algorithm, which was
referred to as heuristic dynamic programming (HDP), for find-
ing the optimal control law. Starting from a zero initial value
function, it was proven in [52] that the iterative value func-
tion was nondecreasing and bounded. When the iteration index
increases to infinity, the iterative value function converges to
the optimal performance index function which satisfies the
HJB equation. In [53], value iteration algorithm is applied to
solve optimal tracking control problems for nonlinear systems.
In [54], value iteration of ADP, which was referred to as dual

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WEI et al.: VALUE ITERATION ADP FOR OPTIMAL CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 841

HDP (DHP), was implemented using RBF neural networks.
In [55], value iteration of ADP was realized by globalized
DHP. In [56], a Q-learning based value iteration algorithm was
developed to obtain the optimal battery control law for smart
residential grids. In recent years, value iteration algorithms
have attracted more and more researchers [57]–[64].

But it is known that the existing value iteration algorithms,
i.e., the traditional value iteration algorithms, possess inherent
shortcomings and are not feasible for applications. First, nearly
all the traditional value iteration algorithms are required to
start from a zero initial condition. Other initial conditions are
seldom discussed. In real-world applications, the initial per-
formance index of control systems may not be zero. Second,
it requires that the traditional value iteration algorithms imple-
ment infinite times to obtain the optimal control law. For real-
world applications, however, the algorithm must be terminated
within finite iterations. Third, iterative control laws obtained
by traditional value iteration algorithms cannot guarantee to be
stable control laws. It is only proven that as the iteration index
increases to infinity, the converged optimal control is admis-
sible. But for real-world applications, the algorithm must be
terminated within finite iterations to find an effective iterative
control law to control the system. Unfortunately, to the best
of our knowledge, there are no discussions on the admissibil-
ity properties of the iterative control laws for value iteration
algorithms. This means that the iterative control law achieved
by the traditional value iteration algorithms may be invalid for
real-world control systems. To overcome these disadvantages,
a new iterative ADP algorithm will be developed with new
termination criteria and analysis methods.

In this paper, a new value iteration ADP algorithm is
developed to solve undiscounted optimal control problems of
discrete-time nonlinear systems. In the developed algorithm,
the zero initial condition is avoided. Starting with an arbi-
trary positive semi-definite function, it will be shown that the
iterative value function will converge to the optimum. The
convergence properties of the iterative value functions under
different initial functions are analyzed. Furthermore, for the
first time the admissibility properties of the iterative con-
trol laws for value iteration algorithms are developed. We
emphasize that new termination criteria are established which
guarantee the effectiveness of the achieved iterative control
law by the developed value iteration algorithm.

This paper is organized as follows. In Section II, the prob-
lem formulations are presented. In Section III, the new value
iteration algorithm is derived. The convergence properties of
the iterative value functions and the admissibility properties of
the iterative control laws are also presented in this section. In
Section IV, two simulation examples are given to demonstrate
the effectiveness of the developed control scheme. Finally,
in Section V, this paper is concluded with a few pertinent
remarks.

II. PROBLEM FORMULATION

In this paper, we will study the following discrete-time
nonlinear systems:

xk+1 = F(xk, uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the state vector and uk ∈ R

m is the control
vector. Let x0 be the initial state and F(xk, uk) be the system
function.

Let uk = (uk, uk+1, . . . ) be an arbitrary sequence of controls
from k to ∞. The performance index function for state x0
under the control sequence u0 = (u0, u1, . . . ) is defined as

J(x0, u0) =
∞∑

k=0

U(xk, uk) (2)

where U(xk, uk) > 0, ∀ xk, uk �= 0, is the utility function.
We will study the optimal control problem for (1). The goal

of this paper is to find an optimal control scheme which stabi-
lizes (1) and simultaneously minimizes the performance index
function (2). For convenience of analysis, results of this paper
are based on the following assumptions.

Assumption 1: Equation (1) is controllable and the function
F(xk, uk) is Lipschitz continuous for xk and uk.

Assumption 2: The system state xk = 0 is an equilibrium
state of (1) under the control uk = 0, i.e., F(0, 0) = 0.

Assumption 3: The feedback control uk = u(xk) satisfies
uk = u(xk) = 0 for xk = 0.

Assumption 4: The utility function U(xk, uk) is a continu-
ous positive definite function of xk and uk.

Define the control sequence set as Uk = {
uk : uk =

(uk, uk+1, . . .), ∀ uk+i ∈ R
m, i = 0, 1, . . .

}
. Then, for an arbi-

trary control sequence uk ∈ Uk, the optimal performance index
function can be defined as

J∗(xk) = inf
uk

{
J(xk, uk) : uk ∈ Uk

}
. (3)

According to Bellman’s principle of optimality, J∗(xk) satisfies
the following discrete-time HJB equation:

J∗(xk) = inf
uk

{
U(xk, uk) + J∗(F(xk, uk))

}
. (4)

Define the law of optimal control as

u∗(xk) = arg inf
uk

{
U(xk, uk) + J∗(F(xk, uk))

}
. (5)

Hence, the HJB equation (4) can be written as

J∗(xk) = U
(
xk, u∗(xk)

) + J∗(F
(
xk, u∗(xk)

))
. (6)

We can see that if we want to obtain the optimal control law
u∗(xk), we must obtain the optimal performance index function
J∗(xk). Generally, J∗(xk) is unknown before all the controls
uk ∈ R

n are considered. If we adopt the traditional dynamic
programming method to obtain the optimal performance index
function one step at a time, then we have to face the “the
curse of dimensionality.” In [52], a value iteration algorithm
for affine nonlinear systems was proposed to obtain J∗(xk)

iteratively, whereas the initial value function must set to zero to
guarantee the convergence of the iterative value function which
limits its applications. On the other hand, the admissibility
properties of the iterative control law by value iteration cannot
be guaranteed which makes the algorithm only implementable
offline. To overcome these difficulties, and inspired by [52], a
new iterative ADP algorithm is developed in this paper with
convergence and admissibility properties.
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III. PROPERTIES OF THE VALUE ITERATION

ALGORITHM OF ADP

In this section, a new value iteration algorithm is developed
to obtain the optimal control law for nonlinear system (1).
New convergence analysis methods will be established in this
section. Admissibility properties of the developed algorithm
will be analyzed and new termination criteria of value iteration
algorithms will be established.

A. Derivation of the Value Iteration Algorithm

In the developed value iteration algorithm, the value func-
tion and control law are updated at every iteration, with the
iteration index i increasing from 0 to infinity. For xk ∈ R

n,
let the initial function �(xk) ≥ 0 be an arbitrary positive
semi-definite function. Then, let the initial value function be
expressed as

V0(xk) = �(xk). (7)

The iterative control law v0(xk) can be computed as follows:

v0(xk) = arg min
uk

{U(xk, uk) + V0(xk+1)}
= arg min

uk
{U(xk, uk) + V0(F(xk, uk))} (8)

where V0(xk+1) = �(xk+1). The iterative value function can
be updated as

V1(xk) = U(xk, v0(xk)) + V0(F(xk, v0(xk))). (9)

For i = 1, 2, . . . , the value iteration algorithm will iterate
between

vi(xk) = arg min
uk

{U(xk, uk) + Vi(xk+1)}
= arg min

uk
{U(xk, uk) + Vi(F(xk, uk))} (10)

and

Vi+1(xk) = min
uk

{U(xk, uk) + Vi(xk+1)}
= U(xk, vi(xk)) + Vi(F(xk, vi(xk))). (11)

From the value iteration algorithm (7)–(11), we can see
that the iterative value function Vi(xk) is used to approximate
J∗(xk) and the iterative control law vi(xk) is used to approx-
imate u∗(xk). Therefore, when i → ∞, the algorithm should
be convergent which makes Vi(xk) and vi(xk) converge to the
optimal ones. In the next section, we will show such properties
of the developed value iteration algorithm.

B. Convergence Properties of the Value Iteration Algorithm

In [52], for zero initial value function, it was proven that
the iterative value function is monotonically nondecreasing
and converges to the optimum. For arbitrary positive semi-
definite initial functions, however, the analysis method in [52]
is invalid. In [60], a “functional bound” method was pro-
posed for the value iteration with zero initial value function.
Inspired by [60], new convergence analysis methods for the
value iteration algorithm are developed in this section.

Theorem 1: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). Let γ , γ , δ, and δ be constants that
satisfy

0 < γ ≤ γ < ∞ (12)

and

0 ≤ δ ≤ δ < 1 (13)

respectively. If for any xk, the constants γ , γ , δ, and δ make

γ U(xk, uk) ≤ J∗(F(xk, uk)) ≤ γ U(xk, uk) (14)

and

δJ∗(xk) ≤ V0(xk) ≤ δJ∗(xk) (15)

hold uniformly, then for i = 0, 1, . . . , the iterative value
function Vi(xk) satisfies
(

1 + δ − 1
(
1 + γ −1

)i

)
J∗(xk) ≤ Vi(xk)

≤
⎛

⎜⎝1 + δ − 1
(

1 + γ −1
)i

⎞

⎟⎠J∗(xk). (16)

Proof: The theorem can be proven in two steps.
1) Prove the Left-Hand Side of the Inequality (16):

Mathematical induction is employed to prove the con-
clusion. According to (15) and (16) obviously holds for
i = 0. Now let i = 1. We have

V1(xk) = min
uk

{U(xk, uk) + V0(xk+1)}
≥ min

uk

{
U(xk, uk) + δJ∗(xk+1)

}

≥ min
uk

{(
1 + γ

δ − 1

1 + γ

)
U(xk, uk)

+
(

δ − δ − 1

1 + γ

)
J∗(xk+1)

}

=
(

1 + δ − 1
(
1 + γ −1

)
)

min
uk

{
U(xk, uk) + J∗(xk+1)

}

=
(

1 + δ − 1
(
1 + γ −1

)
)

J∗(xk). (17)

Assume that the conclusion holds for i = l − 1, l =
1, 2, . . . . Then for i = l, we have

Vl+1(xk)

= min
uk

{U(xk, uk) + Vl(F(xk, uk))}

≥ min
uk

{
U(xk, uk) +

(
1 + δ − 1

(
1 + γ −1

)l−1

)
J∗(F(xk, uk))

+ δ − 1

(1 + γ )
(
1 + γ −1

)l−1

(
γ U(xk, uk)−J∗(F(xk, uk))

)
}

=
(

1+ δ − 1
(
1 + γ −1

)l

)
min

uk

{
U(xk, uk) + J∗(F(xk, uk))

}

=
(

1 + δ − 1
(
1 + γ −1

)l

)
J∗(xk). (18)
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2) Prove the Right-Hand Side of the Inequality (16): We
also use mathematical induction to prove the conclusion.
According to (15), (16) obviously holds for i = 0. Let
i = 1. We have

V1(xk) = min
uk

{U(xk, uk) + V0(xk+1)}
≤ min

uk

{
U(xk, uk) + δJ∗(xk+1)

}

≤ min
uk

{(
1 + γ

δ̄ − 1

1 + γ

)
U(xk, uk)

+
(

δ̄ − δ̄ − 1

1 + γ

)
J∗(xk+1)

}

=
⎛

⎝1 + δ − 1(
1 + γ −1

)

⎞

⎠min
uk

{
U(xk, uk) + J∗(xk+1)

}

=
⎛

⎝1 + δ − 1(
1 + γ −1

)

⎞

⎠J∗(xk). (19)

Assume that the conclusion holds for i = l − 1, l =
1, 2, . . . . Then for i = l, we have

Vl+1(xk)

= min
uk

{
U(xk, uk) + Vl

(
xk+1

)}

≤ min
uk

⎧
⎪⎨

⎪⎩
U(xk, uk) +

⎛

⎜⎝1 + δ − 1
(

1 + γ −1
)l−1

⎞

⎟⎠J∗(xk+1
)

+ 1 − δ̄
(

1 + γ
)(

1 + γ −1
)l−1

(
J∗(xk+1

) − γ U(xk, uk)
)
⎫
⎪⎬

⎪⎭

=
⎛

⎜⎝1+ δ − 1
(

1+γ −1
)l

⎞

⎟⎠min
uk

{
U(xk, uk) + J∗(xk+1

)}

=
⎛

⎜⎝1 + δ − 1
(

1 + γ −1
)l

⎞

⎟⎠J∗(xk). (20)

The proof is completed. �
Theorem 2: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be

obtained by (7)–(11). Let γ , γ , δ, and δ be constants that
satisfy (12) and

0 ≤ δ ≤ 1 ≤ δ < ∞ (21)

respectively. If for any xk, the constants γ , γ , δ, and δ

make (14) and (15) hold uniformly. Then, the iterative value
function Vi(xk) satisfies
(

1 + δ − 1

(1 + γ −1)
i

)
J∗(xk) ≤ Vi(xk) ≤

(
1 + δ − 1

(
1 + γ −1

)i

)
J∗(xk).

(22)

Proof: The left-hand side of inequality (22) can be proven
according to (17) and (18). Now, we prove the right-hand side
of inequality (22) by mathematical induction. Inequality (22)

obviously holds for i = 0. Let i = 1. We have

V1(xk) = min
uk

{U(xk, uk) + V0(F(xk, uk))}

≤ min
uk

{
U(xk, uk) + δJ∗(F(xk, uk))

+ δ − 1

(1 + γ )

(
γ U(xk, uk) − J∗(F(xk, uk))

)
}

=
(

1 + δ − 1
(
1 + γ −1

)
)

J∗(xk). (23)

Assume that the conclusion holds for i = l − 1, l = 1, 2, . . . .

Then for i = l, we have

Vl+1(xk)

= min
uk

{U(xk, uk) + Vl(F(xk, uk))}

≤ min
uk

{
U(xk, uk) +

(
1 + δ − 1

(
1 + γ −1

)l−1

)
J∗(xk+1)

+ δ̄ − 1

(1 + γ̄ )
(
1 + γ̄ −1

)l−1

(
γ̄ U(xk, uk) − J∗(xk+1)

)
}

=
(

1 + δ − 1
(
1 + γ −1

)l

)
J∗(xk). (24)

Hence, (22) holds for i = 0, 1, . . . . The mathematical induc-
tion is completed.

Note the difference between the right-hand sides of
(16) and (22) are due to the difference between (13) and (21).

Theorem 3: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). Let γ , γ , δ, and δ be constants that
satisfy (12) and

1 ≤ δ ≤ δ < ∞. (25)

If for any xk, the constants γ , γ , δ, and δ make (14) and (15)
hold uniformly, then the iterative value function Vi(xk) satis-
fies (16).

Proof: The conclusion can be derived by (17)–(20) and the
proof is omitted here.

Theorem 4: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). Let the constants γ , γ , δ, and δ

satisfy (12) and

0 ≤ δ ≤ δ < ∞ (26)

respectively. If for any xk, the constants γ , γ , δ, and δ

make (14) and (15) hold uniformly, then the iterative value
function Vi(xk) converges to the optimal performance index
function J∗(xk), that is

lim
i→∞ Vi(xk) = J∗(xk). (27)

Proof: According to the left-hand side of inequali-
ties (16) and (22), letting i → ∞, we can get

lim
i→∞

{(
1 + δ − 1

(
1 + γ −1

)i

)
J∗(xk)

}
= J∗(xk). (28)
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On the other hand, according to the right-hand side of
inequalities (16) and (22), letting i → ∞, we can obtain

lim
i→∞

⎧
⎪⎨

⎪⎩

⎛

⎜⎝1 + δ − 1
(

1 + γ −1
)i

⎞

⎟⎠J∗(xk)

⎫
⎪⎬

⎪⎭

= lim
i→∞

{(
1 + δ − 1

(
1 + γ −1

)i

)
J∗(xk)

}

= J∗(xk). (29)

According to (16), (22), (28), and (29), we have (27)
immediately. The proof is completed.

Remark 1: From Theorem 4, we can see that the iterative
value function will converge to the optimum as i → ∞, which
is independent of the initial value function �(xk). Thus it is
unnecessary to obtain the detailed values of γ , γ , δ, and δ. This
is an advantage of the developed algorithm. On the other hand,
we should say that the initial value function affects the conver-
gence process of the iterative value functions directly. It means
that for different initial value functions, we will obtain differ-
ent convergence processes. In the following, we will show
these properties.

Corollary 1: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). If for any xk, the initial value function
�(xk) ≤ J∗(xk), then ∀ i ≥ 0, we have Vi(xk) ≤ J∗(xk) holds.

Corollary 2: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). If for any xk, the initial value function
�(xk) ≥ J∗(xk), then for i ≥ 0, we have Vi(xk) ≥ J∗(xk)

holds.
Theorem 5: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be

obtained by (7)–(11). If for any xk, the inequality

V1(xk) ≤ V0(xk) (30)

holds, then the iterative value function Vi(xk) is a monotoni-
cally nonincreasing sequence for any i ≥ 0, that is

Vi+1(xk) ≤ Vi(xk). (31)

Proof: We prove this by mathematical induction. First, we
let i = 1. According to (11) and (30), we have

V2(xk) = min
uk

{U(xk, uk) + V1(xk+1)}
≤ min

uk
{U(xk, uk) + V0(xk+1)}

= V1(xk). (32)

Assume that the conclusion holds for i = l−1, l = 2, 3, . . . .

Then for i = l we have

Vl+1(xk) = min
uk

{U(xk, uk) + Vl(xk+1)}
≤ min

uk
{U(xk, uk) + Vl−1(xk+1)}

= Vl(xk). (33)

The proof is completed.
Theorem 6: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be

obtained by (7)–(11). If for any xk, the inequality

V1(xk) ≥ V0(xk) (34)

holds, then the iterative value function Vi(xk) is a monotoni-
cally nondecreasing sequence for i ≥ 0, that is

Vi+1(xk) ≥ Vi(xk). (35)

Remark 2: If for any xk, we let the initial value func-
tion V0(xk) ≡ 0, then the present value iteration algo-
rithm is reduced to the traditional value iteration algorithm
in [47], [52], [53], [55], [59], and [60]. In [60], using the
functional bound method, the convergence of the iterative
value function was proven with zero initial value func-
tion. In this paper, inspired by [60], we have proven that
the iterative value function converges to the optimal per-
formance index function with an arbitrary positive semi-
definite initial value function. Furthermore, the monotonic-
ity property for the traditional value iteration algorithm
in [47], [52], [53], [55], and [59] can easily be justified by
our developed value iteration algorithm. So, we can say that
the traditional value iteration is a special case of the present
value iteration algorithm.

Corollary 3: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). If for any xk, we have (30) holds, where
V0(xk) is expressed by (7), then for i = 0, 1, . . . , the iterative
value function satisfies

Vi(xk) ≥ J∗(xk). (36)

Proof: According to Theorem 5, for i = 0, 1, . . . , we have

Vi(xk) ≥ Vi+1(xk) ≥ Vi+2(xk) ≥ · · · (37)

Then, for l ≥ i, we can get

Vi(xk) ≥ Vl(xk). (38)

Let l → ∞. According to (27), we can obtain

Vi(xk) ≥ lim
l→∞ Vl(xk) = J∗(xk). (39)

The proof is completed.
Corollary 4: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be

obtained by (7)–(11). If for any xk, we have (34) holds, where
V0(xk) is expressed by (7), then for i = 0, 1, . . . , the iterative
value function satisfies

Vi(xk) ≤ J∗(xk). (40)

Remark 3: It should be pointed out that the converse propo-
sitions of Corollary 3 may not be true. For example, if we
choose an initial value function �(xk) ≥ J∗(xk), we cannot
conclude that Vi+1(xk) ≤ Vi(xk) holds for i = 0, 1, . . . . If we
choose an initial value function �(xk) ≤ J∗(xk), we cannot
conclude that Vi+1(xk) ≥ Vi(xk) holds for i = 0, 1, . . . . Hence,
if we want the iterative value function to be monotonically
nonincreasing (or nondecreasing) convergent to the optimum,
it is not enough to choose an arbitrary initial value function
�(xk) ≥ (or ≤) J∗(xk) to guarantee the monotonicity of the
iterative value functions. Additional initial conditions should
be provided. In the following, two special initial conditions are
provided to guarantee the monotonicity of the iterative value
function.

Lemma 1: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). Let the initial value function V0(xk) ≡ 0.
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Then for i = 0, 1, . . . , Vi(xk) is monotonically nondecreasing
convergent to J∗(xk).

Before we proceed to the next theorem, the following
definition is necessary.

Definition 1: A control law u(xk) is said to be admissi-
ble [52] with respect to (2) on � if u(xk) is continuous on �,
u(0) = 0, u(xk) stabilizes (1) on �, and ∀ x0 ∈ �, J(x0) is
finite.

Theorem 7: For i = 0, 1, . . . , let Vi(xk) and vi(xk) be
obtained by (7)–(11). Let �(xk) be an initial positive semi-
definite function which satisfies

�(xk) = U(xk, v̄(xk)) + �(xk+1) (41)

where v̄(xk) is an arbitrary admissible control law. Then for i =
0, 1, . . . , Vi(xk) is monotonically nonincreasing and converges
to the optimum.

Proof: According to (41), we have

V1(xk) = U(xk, v0(xk)) + V0(xk+1)

= min
uk

{U(xk, uk) + �(xk+1)}
≤ U(xk, v̄(xk)) + �(xk+1)

= �(xk). (42)

Hence, we obtain V1(xk) ≤ V0(xk). Using the mathematical
induction, we can prove that (31) holds for i = 0, 1, . . . .

Remark 4: In the above, it is shown that the iterative value
function will converge to the optimum as i → ∞. In real-world
applications, however, the algorithm cannot be implemented
for infinite number of iterations to obtain the optimal per-
formance index function. The algorithm must be terminated
within finite number of iterations and an iterative control law
will be used to control the systems. For traditional value iter-
ation algorithms [47], [52]–[55], [59], [60], if the iterative
control law vi(xk) makes the inequality |Vi+1(xk)−Vi(xk)| ≤ ε

hold, where ε is the computation precision, then the algorithm
is terminated. We call |Vi+1(xk)−Vi(xk)| ≤ ε the “convergence
termination criterion.” We usually regard the iterative control
law vi(xk) as the optimal one. Unfortunately, vi(xk) may not
be an admissible control law but only a uniformly ultimately
bounded (UUB) one. The following theorem will show this
property.

Definition 2: We say a solution is UUB [65], if there exists
a compact set X ⊂ R

n, such that for all xk0 = x0 ∈ X , there
exists an ε and a number T(ε, x0) such that ‖xk‖ ≤ ε for all
k ≥ k0 + T .

Theorem 8: Suppose that Assumptions 1–4 hold. For
i = 0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11).
If there exists a constant ε > 0 such that

|Vi+1(xk) − Vi(xk)| ≤ ε (43)

then the state of the nonlinear system (1) is UUB under the
iterative control law vi(xk).

Proof: The theorem can be proven in two steps.
1) Show That Vi(xk) is a Positive Definite Function for

t = 1, 2, . . . : First, according to the definition of
�(xk), the value function V0(xk) = �(xk) is a positive

semi-definite function. Then, according to the definition
of V1(xk) in (9), let xk = 0, and we obtain

V1(0) = U(0, v0(0)) + V0(F(0, v0(0))). (44)

According to Assumptions 2–4, we have V0(0) = 0,
F(0, 0) = 0, and U(0, 0) = 0. Then, we can
get V1(0) = 0. On the other hand, according to
Assumption 4, we have V1(xk) > 0, for any xk, uk �= 0.
Therefore, V1(xk) is a positive definite function. Using
the mathematical induction, we can easily obtain that
Vi(xk) is a positive definite function for i = 1, 2, . . . .

If �(xk) is positive definite, Vi(xk) is a positive definite
function for i = 0, 1, . . . .

2) Show That the State of the Nonlinear System (1) is
UUB Under the Iterative Control Law vi(xk): According
to (43), we have

− U(xk, vi(xk)) − ε ≤ �Vi(xk)

= Vi(F(xk, vi(xk))) − Vi(xk)

≤ −U(xk, vi(xk)) + ε. (45)

If

− U(xk, vi(xk)) − ε ≤ �Vi(xk) ≤ 0 (46)

we can easily prove that Vi(xk) is a Lyapunov func-
tion [66] and the system is asymptotically stable, since
Vi(xk) is positive definite. Now we analyze the situation
for �Vi(xk) ≤ −U(xk, vi(xk))+ε. As Vi(xk) is a positive
definite function, there must exit two functions α(‖xk‖)
and β(‖xk‖), which belong to class K [66] and satisfy

0 < α(‖xk‖) ≤ Vi(xk) ≤ β(‖xk‖). (47)

Define a new state set

�xk = {
xk | xk ∈ R

n and U(xk, vi(xk)) ≤ ε
}
. (48)

As U(xk, vi(xk)) is a positive definite function, for any
xk ∈ �xk , ‖xk‖ is finite, where ‖xk‖ is Euclidean norm.
We can define


 = sup
xk∈�xk

{‖xk‖}. (49)

As ε is finite, 
 is finite. Then for any 
 that satis-
fies (49), there exits a finite �, such that ‖�‖ ≥ ‖
‖,
which satisfies

α(‖�‖) ≥ β(‖
‖). (50)

Then, for all ε that satisfies ε ≥ ‖�‖, there exists a δ(ε),
such that δ(ε) ≥ ‖
‖, which satisfies β(δ) ≤ α(ε). Thus,
there exists a state xk, such that ‖
‖ ≤ ‖xk‖ ≤ δ(ε),
which satisfies

α(ε) ≥ β(δ) ≥ Vi(xk). (51)

As ‖xk‖ ≥ ‖
‖, we have

Vi(xk+1) − Vi(xk) ≤ 0. (52)

Hence, for any xk that satisfies ‖
‖ ≤ ‖xk‖ ≤ δ(ε), there
exists a T > 0 that satisfies

α(ε) ≥ β(δ) ≥ Vi(xk) ≥ Vi(xk+T) ≥ α(‖xk+T‖) (53)
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which obtains ε > ‖xk+T‖. Therefore, for any xk that
satisfies ‖xk‖ ≥ ‖
‖, there exist a T = 1, 2, . . . that
makes ‖xk+T‖ ≤ ‖
‖ hold. As ‖�‖ ≥ ‖
‖, we can
obtain ‖xk+T‖ ≤ ‖�‖. According to Definition 2, we
can draw the conclusion. The proof is completed. �

It was proven in [52] that the optimal control law u∗(xk)

is an admissible control law. Theorem 8 shows that the
iterative control law vi(xk) is only UUB. Hence, strictly speak-
ing, u∗(xk) cannot be replaced by the iterative control law
vi(xk) and the algorithm cannot be terminated only by the
convergence termination criterion (43). To overcome this dif-
ficulty, the properties of the iterative control law vi(xk) will
be analyzed, and new termination criteria of value iteration
algorithms will be established.

Theorem 9: Suppose Assumptions 1–4 hold. For i =
0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11). If for
any xk �= 0, the iterative control law vi(xk) makes the following
inequality:

Vi+1(xk) − Vi(xk) < U(xk, vi(xk)) (54)

hold, then the iterative control law vi(xk) is an admissible
control law.

Proof: According to (54), there must exist a constant −∞ <

θ < 1 that satisfies

Vi+1(xk) − Vi(xk) < θU(xk, vi(xk)). (55)

According to (11), the inequality (55) can be written as

Vi(xk+1) − Vi(xk) < (θ − 1)U(xk, vi(xk)). (56)

Since −∞ < θ < 1, we can get Vi(xk+1) − Vi(xk) < 0
which means vi(xk) is a stable control law. On the other hand,
according to (56), we can get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vi(xk+1) − Vi(xk) < (θ − 1)U(xk, vi(xk))

Vi(xk+2) − Vi(xk+1) < (θ − 1)U(xk+1, vi(xk+1))
...

Vi(xk+N)−Vi(xk+N−1)<(θ−1)U(xk+N−1, vi(xk+N−1)).

(57)

As vi(xk) is a stable control law, we have limN→∞
Vi(xk+N) = 0. Let N → ∞. We can get

Vi(xk) > (1 − θ)

∞∑

j=0

U
(
xk+j, vi

(
xk+j

))
. (58)

As Vi(xk) is finite for any finite xk and −∞ < θ < 1, we can
obtain that

∑∞
j=0 U(xk+j, vi(xk+j)) is finite, which proves the

conclusion.
Remark 5: According to Theorem 9, new termination cri-

teria of the value iteration algorithm can be established. The
inequality (54) is called “admissibility termination criterion.”
We emphasize that admissibility termination criterion is an
important termination criterion for the real-world applications
of the developed value iteration algorithm. First, stability is
a basic property of control systems, while the stability of
the system cannot be guaranteed using the convergence cri-
terion in [52]. Second, in [52], it required traditional value
iteration algorithm to implement infinite times to reach the

optimum, which makes it impossible to realize. Analyzing the
property of the iterative control law is necessary to make the
developed value iteration algorithm terminated within finite
iterations. According to (43) and (54), we say that the value
iteration algorithm can be terminated if and only if “conver-
gence and admissibility termination criteria” are both satisfied
and we declare that the admissibility termination criterion is
a key criterion for the applications of the value iteration algo-
rithm. On the other hand, if inequality (54) is never satisfied,
it implies that the algorithm may never stop. Fortunately, this
situation will not happen. The following theorem will show
this property.

Theorem 10: Suppose Assumptions 1–4 hold. For i =
0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11). Then,
for all xk �= 0, there exists a finite N > 0 that satisfies

VN+1(xk) − VN(xk) < U(xk, vN(xk)). (59)

Proof: The conclusion can be proven by contradiction.
Assume that (59) is false, and for all N = 0, 1, . . . , there
exists an x̄k ∈ R

n that satisfies

VN+1(x̄k) − VN(x̄k) ≥ U(x̄k, vN(x̄k)). (60)

Let N → ∞. According to Theorem 4, we can get
limN→∞(VN+1(x̄k) − VN(x̄k)) = 0. According to (60),
we can get

lim
N→∞U(x̄k, vN(x̄k)) = U(x̄k, v∞(x̄k)) = 0 (61)

holds for x̄k ∈ R
n. It contradicts the positive definiteness

of U(xk, uk). So the assumption is false and the conclusion
holds.

Remark 6: An important property should be pointed out.
For the value iteration algorithm (including traditional value
iteration algorithms), if the iterative control law vi(xk) is
admissible, it cannot guarantee vj(xk), j > i to be admissi-
ble, although the iterative value function Vj(xk) is closer to
the optimum than Vi(xk). In the simulation studies, we will
show this property. If the iterative control law vi(xk) is admis-
sible, to guarantee the admissibility property of vj(xk), j > i,
new analysis method should be established.

Theorem 11: Suppose Assumptions 1–4 hold. For i =
0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11). Let the
iterative control law vi(xk) be admissible that satisfies (54). If
one of the following three conditions is satisfied.

1) For j = 0, 1, . . . , the iterative value function Vi+j(xk)

satisfies

Vi+1(xk) + Vi+j(xk) ≥ Vi(xk) + Vi+j+1(xk). (62)

2) For all j ≥ i, the iterative value function is convex for
the iteration index j, i.e., Vj(xk) satisfies

Vj(xk) ≥ 1

2

(
Vj+1(xk) + Vj−1(xk)

)
. (63)

3) Define �Vj(xk) by

�Vj(xk) = Vj(xk) − Vj−1(xk) (64)

and for all j ≥ i, �Vj(xk) ≥ �Vj+1(xk).
Then, vj(xk) is an admissible control law.



WEI et al.: VALUE ITERATION ADP FOR OPTIMAL CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 847

Algorithm 1 Value Iteration ADP Algorithm
Initialization:

Choose randomly an array of initial states x0;
Choose a computation precision ε;
Give a positive semi-definite function �(xk);

Iteration:
1: Let the iteration index i = 0 and V0(xk) = �(xk);
2: Compute the initial iterative control law v0(xk) by (8).

Obtain the value function V1(xk) by (9).
3: If ∀ xk, V1(xk) ≤ V0(xk), then goto Step 4; Otherwise,

goto Step 6.

Block 1.
4: Compute the initial iterative control law vi(xk) by (10) and

obtain the value function Vi+1(xk) by (11).
5: If ∀ xk, |Vi+1(xk) − Vi(xk)| ≤ ε, then goto Step 9.

Otherwise, let i = i + 1 and goto Step 4.

Block 2.
6: Compute the iterative control law vi(xk) by (10) and obtain

the value function Vi+1(xk) by (11).
7: If ∀ xk, |Vi+1(xk) − Vi(xk)| ≤ ε, then goto next step.

Otherwise, let i = i + 1 and goto Step 6.
8: If ∀ xk, Vi+1(xk) − Vi(xk) < U(xk, vi(xk)), then goto next

step. Otherwise, let i = i + 1 and goto Step 6.
9: return vi(xk) and Vi(xk).

Proof: First, if (62) holds, we have
(
Vi+j+1(xk) − Vi+j(xk)

) − (Vi+1(xk) − Vi(xk)) ≤ 0. (65)

Then, we can get

Vi+j+1(xk) − U
(
xk, vi+j(xk)

) − Vi+j(xk)

≤ Vi+1(xk) − U(xk, vi(xk)) − Vi(xk) + U(xk, vi(xk)) (66)

which implies

Vi+j(xk+1) − Vi+j(xk)

≤ Vi(xk+1) − Vi(xk) + U(xk, vi(xk))

< 0. (67)

According to Theorem 9, we can draw the conclusion.
If (63) or (64) holds, it is very easy to draw the conclu-

sion using the idea of (65)–(67) and the details are omitted
here.

Lemma 2: Suppose Assumptions 1–4 hold. For i =
0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11). If
the inequality (30) holds, then for i = 0, 1, . . . , the iterative
control law vi(xk) is an admissible control law.

Corollary 5: Suppose Assumptions 1–4 hold. For i =
0, 1, . . . , let Vi(xk) and vi(xk) be obtained by (7)–(11). If the
initial value function �(xk) satisfies (41), then the iterative
control law vi(xk) is an admissible control law.

C. Summary of the Value Iteration ADP Algorithm

Now, we summarize the value iteration ADP algorithm in
Algorithm 1.

Remark 7: We can see that the developed value iteration
algorithm is classified into two blocks in which the termina-
tion criteria are different. When for any xk, V1(xk) ≤ V0(xk)

holds, the value iteration algorithm is then implemented in
block 1 in which only convergence termination criterion is
considered. Otherwise, the value iteration algorithm is imple-
mented in block 2, in which two termination criteria must
be considered. Thus, if V1(xk) ≤ V0(xk) holds, the algorithm
becomes simpler. However, the initial value function is also
more difficult to determine than the one in block 2.

Remark 8: For traditional value iteration algorithms, zero
initial condition is used to implement the algorithm. According
to Theorem 6, we know that the algorithm is implemented
in block 2, while in [47], [52]–[55], [59], and [60] only the
convergence termination criterion is considered in those algo-
rithms. In this situation, we say that the admissibility property
of the iterative control law cannot be guaranteed only by the
convergence termination criterion. In simulation studies, we
will show this property. In this paper, admissibility termination
criterion is established based on the value iteration algorithm
which guarantees the validity of the achieved iterative con-
trol. This makes the value iteration algorithm possess more
potential for applications.

IV. SIMULATION STUDIES

To evaluate the performance of our value iteration algo-
rithm, we choose two examples with quadratic utility functions
for numerical experiments.

Example 1: The first example is a discretized inverted
pendulum system [67]. The dynamics of the pendulum is
expressed as
[

x1(k+1)

x2(k+1)

]
=
[

x1k + 0.1x2k

0.1
g

�
sin(x1k) + (1 − 0.1κ�)x2k

]

+
[

0
0.1

m�2

]
uk (68)

where m = 1/2 kg and � = 1/3 m are the mass and
length of the pendulum bar, respectively. Let κ = 0.2 and
g = 9.8 m/s2 be the frictional factor and the gravitational
acceleration, respectively.

Let the performance index function be expressed by (2).
The utility function is the quadratic form U(xk, uk) = xT

k Qxk +
uT

k Ruk, where Q = I1, R = I2, and I1, I2 denote the identity
matrices with suitable dimensions. Let x0 = [1,−1]T. Let the
state space be � = {xk | − 1 ≤ x1k ≤ 1,−1 ≤ x2k ≤ 1}. We
choose p = 10 000 states in � to implement the developed
value iteration algorithm to obtain the optimal control law.
Neural networks are used to implement the present value iter-
ation algorithm. The critic network and the action network are
chosen as three-layer back-propagation neural networks with
the structures of 2–8–1 and 2–8–1, respectively. For each itera-
tion step, the critic network and the action network are trained
for 2000 steps under the learning rate 0.01 so that the neural
network training errors become less than 10−6. The weights
updating rules of the neural networks can be seen in [69] and
omitted here. To illustrate the effectiveness of the algorithm,
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Fig. 1. Convergent curves of iterative value functions with �j(xk), j =
1, . . . , 4. (a) �1(xk). (b) �2(xk). (c) �3(xk). (d) �4(xk).

Fig. 2. Plots of U(xk, vi(xk))−(Vi+1(xk)−Vi(xk)) with �j(xk), j = 1, . . . , 4.
(a) �1(xk). (b) �2(xk). (c) �3(xk). (d) �4(xk).

four different initial value functions are considered. Let the ini-
tial value function be the quadratic form which are expressed
by � j(xk) = xT

k Pjxk, j = 1, 2, 3, 4. Let P1 = 0. Let P2–P4
be initialized by arbitrary positive definite matrices with the

forms P2 =
[

9.56 −5.39
−5.39 4.31

]
, P3 =

[
7.09 −1.14

−1.14 21.26

]
, and

P4 =
[

28.22 12.67
12.67 38.79

]
, respectively.

Implement the value iteration algorithm for 25 iterations to
reach the computation precision ε = 0.01. The convergence
plots of the iterative value functions initialized by � j(xk), j =
1, 2, 3, 4, are shown in Fig. 1(a)–(d), respectively, where “In”
denotes initial iterations and “Lm” denotes limiting iterations.

As �1(xk) ≡ 0, we know that the value iteration (7)–(11)
is reduced to the traditional value iteration algorithm [52].
In [52], it has been shown that the iterative value func-
tion is monotonically nondecreasing and converges to the
optimum. For �1(xk), as V1(xk) ≥ V0(xk), according to
Theorem 6 and Corollary 3, we know that Vi+1(xk) ≥ Vi(xk)

i = 0, 1, . . . , and Vi(xk) ≤ J∗(xk), which can be justi-
fied from Fig. 1(a). Thus, the property of the traditional

(a) (b)

(c) (d)

Fig. 3. Iterative state trajectories with �j(xk), j = 1, . . . , 4. (a) �1(xk).
(b) �2(xk). (c) �3(xk). (d) �4(xk).

value iteration [52] can be justified by the developed value
iteration (7)–(11). However, the convergence property with
nonzero initial value iteration was not presented in [52]. From
Fig. 1(a)–(d), initialized by an arbitrary positive semi-definite
function, we can see that the iterative value function will
converge to the optimum. Furthermore, for �4(xk), we have
V1(xk) ≤ V0(xk) and then the iterative value function Vi(xk)

is monotonically nonincreasing. For i = 0, 1, . . . , we have
Vi(xk) ≥ J∗(xk). Based on � j(xk), j = 1, . . . , 4, the plots of
U(xk, vi(xk))− (Vi+1(xk)− Vi(xk)) are shown in Fig. 2(a)–(d),
respectively. In Fig. 2, Ui denotes U(xk, vi(xk)) and Vi+1 and
Vi denote Vi+1(xk) and Vi(xk), respectively.

After 25 iterations, the iterative value functions Vi(xk) sat-
isfy the convergence criterion. From Fig. 2, we can also see
that the function U(xk, vi(xk))− (Vi+1(xk)− Vi(xk)) are larger
than zero after 25 iterations, which satisfies the admissibility
criterion (54). From Theorem 9, we know that the iterative
control law is admissible. Let the termination time Tf = 60.
The trajectories of system states and control are shown in
Figs. 3 and 4, respectively. We can see that the iterative
states and controls are convergent to their optimums and the
converged control laws are admissible.

In [52], it has been shown that the iterative value function is
convergent to the optimum as i → ∞, while the admissibility
of the iterative control law was not guaranteed. This makes
the iteration not to stop until i → ∞, which is impossible to
realize. From Figs. 2–4, we can see that if the convergence
and admissibility criteria are satisfied, then the algorithm can
be terminated and an admissible optimal control law can be
obtained. Hence, we say that the developed value iteration
algorithm with convergence and termination criteria possesses
more potential for applications than traditional value iteration
algorithm.

Policy iteration algorithm [68] is a basic iterative ADP
algorithm. To show the effectiveness of the developed value
iterative algorithm, in the following, comparisons with the
discrete-time policy iteration algorithm will be presented.
The detailed iteration process of the discrete-time policy iter-
ation algorithm was described in [68]. To implement the
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(a) (b)

(c) (d)

Fig. 4. Iterative control trajectories with �j(xk), j = 1, . . . , 4. (a)�1(xk).
(b) �2(xk). (c) �3(xk). (d) �4(xk).

Fig. 5. Iterative value function for discrete-time policy iteration.

policy iteration algorithm, an initial admissible control law
is required. We can use action network to obtain the initial
admissible control law. Let the output of the action network be
expressed as ν(xk) = Wa,initialσ(Ya,initialxk + ba,initial), where
Wa,initial is the weight matrix between the hidden layer and
output layer, Ya,initial is the weight matrix between the input
layer and hidden layer, and ba,initial is the threshold value.
According to [68, Algorithm 1], the weights for the initial
admissible control can be obtained as

Ya,initial

=
[−4.19 0.10 − 5.98 2.26 0.66 1.96 0.84 − 1.65

−0.74 4.14 2.68 − 3.65 0.18 − 0.09 0.26 0.03

]T

Wa,initial = [ 0.07, 0.01, 0, 0, −2.77,−0.04, −1.59, 0.11]

and

ba,initial = [ 4.36, 2.9, 3.01,−0.64,−0.48,−0.33,1, −1.32]T.

Initialized by ν(xk), implementing the policy iteration algo-
rithm for six iterations to reach the computation precision
ε = 0.01. The convergence plots of the iterative value function
are shown in Fig. 5. The corresponding trajectories of iterative
states and controls are shown in Fig. 6(a) and (b), respectively.

(a) (b)

(c) (d)

Fig. 6. States and control trajectories. (a) Iterative states for discrete-
time policy iteration. (b) Iterative controls for discrete-time policy iteration.
(c) Optimal states. (d) Optimal control.

From the simulation results we can see that the iterative
value functions are convergent to the optimum after six itera-
tions, which is the same as the value iteration algorithm in this
paper. The optimal state and control trajectories are shown in
Fig. 6(c) and (d), respectively. Thus, the effectiveness of the
developed value iteration algorithm can be justified. However,
we say that the iteration process between the developed value
iteration algorithm and the policy iteration algorithm [68]
are inherently different. First, the policy iteration algorithm
is initialized by an admissible control law, i.e., ν(xk). The
developed value iteration algorithm is initialized by a positive
semi-definite function and the admissible control law is not
necessary. Second, in each iteration of policy iteration algo-
rithms, it requires solving a generalized HJB (GHJB) equation,
such as

Vi(xk) = U(xk, vi(xk)) + Vi(xk+1) (69)

to update the iterative value function. In the developed value
iteration algorithm, the GHJB equation (69) is not required.
Third, we say that any of the iterative control laws in the pol-
icy iteration algorithm is admissible. For the developed value
iteration algorithm, the admissibility for each iterative control
laws cannot be guaranteed. However, if the admissibility cri-
terion (54) is satisfied, then the admissibility of the iterative
control law for the developed value iteration algorithm can
be guaranteed. Generally, the admissible control law for non-
linear system is difficult to obtain, while the initial positive
semi-definite function can easily be chosen. Thus, we can say
that the developed value iteration algorithm possesses more
potential for applications than policy iteration algorithm [68].

Example 2: We now examine the performance of the devel-
oped algorithm in a discretized torsional pendulum sys-
tem [69]. The dynamics of the pendulum is given as follows:

[
x1(k+1)

x2(k+1)

]
=
⎡

⎣
0.1x2k + x1k

−0.1Mgl

J sin(x1k) +
(0.1 − 0.1fd

J
)

x2k

⎤

⎦

+
⎡

⎣
0(

0.1

J
)
⎤

⎦uk (70)
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Fig. 7. Convergent curves of iterative value functions with �̃j(xk), j =
1, . . . , 4. (a) �̃1(xk). (b) �̃2(xk). (c) �̃3(xk). (d) �̃4(xk).

where M = 1/3 kg and l = 3/2 m are the mass and length
of the pendulum bar, respectively. Let J = 4/3 Ml2 and
fd = 0.2 be the rotary inertia and frictional factor, respectively.
Let g = 9.8 m/s2 be the gravitational acceleration. Let the ini-

tial state be x0 = [1,−1]T. The utility function is chosen the
same as Example 1 with Q = 0.2I1 and R = 0.2I2.

Neural networks are also used to implement the present
value iteration algorithm, where the structures of the critic
network and the action network are the same as the ones in
Example 1. We choose p = 20 000 states in � to implement
the developed value iteration algorithm to obtain the optimal
control law. For each iteration step, the critic network and the
action network are trained for 10 000 steps using the learn-
ing rate of 0.005 so that the neural network training errors
become less than 10−6. To illustrate the effectiveness of the
algorithm, we also choose four different initial value functions
with the form �̃ j(xk) = xT

k P̃jxk, j = 1, 2, 3, 4. Let P̃1 = 0. Let

P̃2–P̃4 be positive matrices given by P̃2 =
[

0.52 −0.26
−0.26 0.80

]
,

P̃3 =
[

10.30 −7.61
−7.61 5.74

]
, and P̃4 =

[
27.82 4.93
4.93 7.53

]
. Implement

the value iteration algorithm for 40 iterations, and the con-
vergence curves of the iterative value functions initialized
by �̃ j(xk), j = 1, 2, 3, 4, are shown in Fig. 7(a)–(d),
respectively.

After 40 iterations, we can see that the iterative value func-
tions converge to the optimum. For �̃1(xk), the developed
value iterative algorithm is reduced to the traditional one [52].
As V1(xk) ≥ V0(xk), we have that the iterative value function
Vi(xk) is monotonically nondecreasing and for i = 0, 1, . . . ,

Vi(xk) ≤ J∗(xk). Then the convergence property of the tradi-
tional value iteration algorithm [52] can be justified by our
developed algorithm.

On the other hand, for �̃4(xk), we have V1(xk) ≤ V0(xk)

and then the iterative value function Vi(xk) is monotonically
nonincreasing and for i = 0, 1, . . . , Vi(xk) ≥ J∗(xk). The iter-
ative control laws obtained by the value iteration algorithm,
which are initialized by �̃ j(xk), j = 1, 2, 3, 4, are displayed in

(a) (b)

(c) (d)

Fig. 8. Trajectories of iterative controls with �̃j(xk), j = 1, . . . , 4. (a) �̃1(xk).
(b) �̃2(xk). (c) �̃3(xk). (d) �̃4(xk).

(a) (b)

(c) (d)

Fig. 9. Trajectories of iterative system states with �̃j(xk), j = 1, . . . , 4.
(a) �̃1(xk). (b) �̃2(xk). (c) �̃3(xk). (d) �̃4(xk).

Fig. 8(a)–(d), respectively. Implementing the iterative control
laws to the control system (70) for Tf = 200 time steps, we
can obtain the system state trajectories, shown in Fig. 9(a)–(d),
respectively. For �̃4(xk), we have V1(xk) ≤ V0(xk). From
Figs. 8(d) and 9(d), we can see for any i = 0, 1, . . . , vi(xk) is
an admissible control law. For different initial value functions,
all the iterative states and control converge to their optimums.
The optimal system states are shown in Fig. 10(a) and the
optimal control is shown in Fig. 10(b).

In this paper, it is shown that if an iterative control law vi(xk)

is admissible, it is not sure that vi+j(xk) is also admissible.
In order to clearly show the simulation results, we copy the
state and control trajectories for ninth and tenth iterations in
Figs. 8(b) and 9(b) to Fig. 11(a) and (b), respectively, where
we can see that the ninth iterative control law v9(xk) initialized
by �̃2(xk) is admissible, while the next iterative control law
v10(xk) is not admissible. From Fig. 11(c), we can see that the
iterative value function V10(xk) does not satisfy (63). From
Fig. 11(d), we can see that the admissibility criterion (54) is
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(a)

(b)

Fig. 10. Optimal trajectories. (a) Optimal states. (b) Optimal control.

(a) (b)

(c) (d)

Fig. 11. Tenth simulation results initialized by �̃2(xk). (a) Iterative states.
(b) Iterative controls. (c) Error of value function by (63). (d) Error obtained
by (54).

not satisfied either. Hence the admissibility of v10(xk) cannot
be guaranteed.

We have pointed out that the traditional value iteration algo-
rithm is terminated by convergence criterion. For �̃3(xk) =
xT

k P3xk, from Fig. 12(a), we can see that |V10(xk)− V9(xk)| <

0.25. If we define ε = 0.25, then the iterative algorithm
can stop. However, from Fig. 8(c) we can see that the iter-
ative control v9(xk) is not an admissible control law. We copy
Fig. 9(c) to Fig. 13, where the system states under the iter-
ative control law v9(xk) is emphasized. We can see that the
system is not stable under v9(xk). Hence, we confirm that the
convergence termination criterion cannot guarantee the admis-
sibility property of the iterative control. From Fig. 12(b), we
can see that the function U(xk, v9(xk))− (V10(xk)− V9(xk)) is
not larger than zero for all xk, which means that the admissi-
bility criterion (54) is not satisfied. In this point of view, we

(a)

(b)

Fig. 12. Ninth simulation results initialized by �̃3(xk). (a) Iterative error.
(b) Error obtained by (54).

Fig. 13. Trajectories of iterative system states initialized by �̃3(xk).

say that initialized by an arbitrary positive semi-definite func-
tion, the developed value iteration algorithm can be terminated
if the convergence and admissibility criteria are both satis-
fied. Therefore, we declare that the developed value iteration
algorithm possesses more potential for applications comparing
with traditional value and policy iteration algorithms.

V. CONCLUSION

In this paper, a new value iterative ADP algorithm is
developed to find the infinite horizon optimal control for
discrete-time nonlinear systems. It is proven that the itera-
tive value function is convergent to the optimum under an
arbitrary positive semi-definite function. For different initial
value functions, the detailed convergence properties are also
developed. For the first time the admissibility properties of
the iterative control laws for value iteration algorithms are
analyzed and new termination criteria of the value iteration
algorithms are established which guarantee the effectiveness
of the achieved iterative control law. Finally, two simulation
examples are given to illustrate the performance of the present
method.
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