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Abstract— The optimal formation problem of multirobot
systems is solved by a recurrent neural network in this paper.
The desired formation is described by the shape theory. This
theory can generate a set of feasible formations that share the
same relative relation among robots. An optimal formation
means that finding one formation from the feasible formation set,
which has the minimum distance to the initial formation of the
multirobot system. Then, the formation problem is transformed
into an optimization problem. In addition, the orientation, scale,
and admissible range of the formation can also be considered
as the constraints in the optimization problem. Furthermore,
if all robots are identical, their positions in the system are
exchangeable. Then, each robot does not necessarily move to
one specific position in the formation. In this case, the optimal
formation problem becomes a combinational optimization
problem, whose optimal solution is very hard to obtain. Inspired
by the penalty method, this combinational optimization problem
can be approximately transformed into a convex optimization
problem. Due to the involvement of the Euclidean norm in the
distance, the objective function of these optimization problems
are nonsmooth. To solve these nonsmooth optimization problems
efficiently, a recurrent neural network approach is employed,
owing to its parallel computation ability. Finally, some simula-
tions and experiments are given to validate the effectiveness and
efficiency of the proposed optimal formation approach.

Index Terms— Combinational optimization problem,
multirobot system, optimal formation, recurrent neural
network, shape theory.

I. INTRODUCTION

A. Formation Problem of Multirobot Systems

RECENT decades have witnessed a significant progress
in coordination and cooperation of multirobot systems

due to its great potential in many practical applications, such
as the urban search and rescue [1], surveillance and recon-
naissance [2], environmental monitoring [3], and mapping
of unknown environments [4]. Among different coordination
tasks of multirobot systems, the formation problem is always
a fundamental concern since an appropriate organization of
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robots can dramatically increase the coordination efficiency.
For example, in the practice of unknown area exploration,
a well-organized formation can have a broader coverage and
reduce the possibility of reduplicate searching.

Basically, the formation problem of multirobot systems
includes two steps: 1) determine a desired formation and
2) design the corresponding control algorithm for reaching
this formation. Recently, most results regarding the formation
problem concentrate on the latter one. Those control strategies
include the leader-follower strategy [5]–[9], the distributed
control strategy [10]–[14], the graph-based strategy [15], [16],
and the intelligent control strategy [17], [18]. The leader-
follower strategy is the most popular method in the formation
control of multirobot systems. In [5], a vision-based formation
controller was proposed in the leader-follower framework.
By using the controller, a group of robots can achieve and
maintain a prescribed formation when they move along a
planned trajectory. When considering the controller’s physical
limitation, a leader-follower formation controller with bounded
input was proposed in [6], where the conditions on the
formation keeping and asymptotic stabilization were
presented. Park et al. [7] designed an adaptive leader-follower
formation approach for the case where the robot’s velocity
is unavailable. In the leader-follower case, leader plays
a central role on the success of formation. If leader is
attacked or malfunctioning, then the whole system may
lead to some unpredicted behaviors. Distributed formation
control means that every robot is functionally equal in the
system, and the formation can be achieved by exchanging
information among robots. It should be noted that each
robot can only receive information from its neighbors rather
than all robots in the system. For example, Lin et al. [10]
showed that if the positions of all robots could be convergent
to a same point, then more general formation could be
achieved as well. Based on this observation, three formation
strategies were proposed. In [10], each robot is modeled
by the single-integrator dynamics, which neglects the
mobile robot’s orientation. In [11], each robot is modeled
as a unicycle and the corresponding formation strategy
was proposed too. Furthermore, in [13], a formation
algorithm based on the small-gain theorem was presented
for multiple unicycles, which was robust to the position
measurement error. In [14], the formation control of a group
of underactuated ships was investigated. In addition, the
collision avoidance was also considered in the formation
controller design. In those distributed control strategies, the
relationship among robots is usually described by a graph.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WANG et al.: OPTIMAL FORMATION OF MULTIROBOT SYSTEMS BASED ON A RECURRENT NEURAL NETWORK 323

Besides designing specific controllers, how does the graph
(connection among robots) affect the controller’s performance
and the formation achievement should be answered. This is
the motivation of the graph-based formation strategy. In [15],
a Nyquist criterion was proposed to determine whether certain
formation can be stabilized under different graphs. In addition,
Anderson et al. [16] revealed which graph could cause the
difficulty of controlling a formation. Most aforementioned
formation strategies are based on the traditional control
methods, which can hardly deal with uncertainties in the
robot’s dynamics. Intelligent control approaches such as
neural networks and fuzzy logics are very suitable for this
case. For example, in [17], the fuzzy approach was employed
to approximate uncertainties in the robot’s dynamics and
the sliding-mode approach was employed to counteract the
external disturbances. In [18], the fuzzy logic was replaced
by the neural network and the linear and angular velocities
of robots were estimated by a neural network as well.

The above paragraph reviews some recent advances on the
formation control strategies of multirobot systems. However,
the first step of formation problem, how to determine a
desired formation, is still not well studied. There are typically
two ways to describe a formation. One is to use the relative
distances and angles between robots. The other one is to use
the shape theory, which can provide a much more concise
description of formation. The shape theory only cares about
the essential geometric relationship between robots. As long
as two graphs are similar, they have the same shape. For
example, by the shape theory, we can use the term equilateral
triangle to describe a formation, however, the orientation and
size of this equilateral triangle are free to choose. Therefore,
the shape theory can provide a set of feasible formations with
a same shape. How to choose one formation from this set
is the kernel part to determine a desired formation. To the
best of our knowledge, most papers concerning the formation
problems pay little attention on this. Even so, some researchers
still did some seminal works [19], [20]. In [20], finding a
desired/optimal formation became a standard optimization
problem by the shape theory, and a numerical algorithm was
proposed to solve the optimization problem. For conventional
numerical algorithms, the computation time required to
obtain the solution is usually dependent of the problem
size [21]–[23]. In other words, the efficiency of the numerical
algorithms decreases as long as the problem size increases.
It becomes a bottleneck when the size of the problem is
huge. Recently, this bottleneck is relaxed to some extent by
parallel numerical algorithms, especially the ones that can be
implemented on graphics processing units [24], [25]. Even so,
the computation time of the parallel numerical algorithms still
has a positive correlation with the problem size. Therefore, the
bottleneck still exists. In addition, it is noted that in [20], each
robot corresponds to one specific position in the formation,
however, this is unnecessary if robots are all functionally
identical since the positions of robots are exchangeable in this
case. To deal with this difficulty, we extend the optimization
problem in [20] to a combinational optimization problem
in this paper. It turns out that the optimization problem
in [20] is a special case of the proposed combinational

optimization problem. Unfortunately, the extended
optimization problem is a NP-hard problem, which is
much more difficult to be solved by the traditional numerical
methods.

B. Recurrent Neural Networks for Optimization Problems

From the discussion in Section I-A, the key point of
the optimal formation is to solve an optimization problem
effectively. Due to the rapid development of intelligent tech-
niques, scholars in the computational intelligence community
find that the recurrent neural network has shown a great
potential as a powerful weapon for solving optimization prob-
lems because of its parallel computation nature. In contrast
with conventional numerical methods, the efficiency of
the recurrent neural network does not decrease when the
size of the optimization problem increases [21]–[23], [26].
Moreover, the convergence rate of the neural network can
be arbitrarily increased by properly adjusting the parameters
in the neural network. This paper is devoted to solving the
optimal formation problem by the recurrent neural network.
A brief review of recurrent neural networks for optimization
problems is given as follows.

In [27], the traveling salesman problem was successfully
solved by a recurrent neural network (Hopfield neural
network), which is the first recurrent neural network model
for optimization problems and indicates the world-wide
renaissance of neural network studies. After that, the various
recurrent neural network models were presented for different
types of optimization problems. For example, the nonlinear
programming neural network [28], the Lagrange neural
network [29], the primal-dual neural network [30], the dual
neural network [31]–[33], the projection neural network [34],
and its delayed versions [35]–[37], to name a few. And many
engineering applications have been solved by the recurrent
neural networks, such as the image processing [38], the model
predictive control [39], [40], the manipulator control [41],
the coordination of interconnected systems [42], [43], and the
scientific computing [44].

One common assumption of the aforementioned neural
networks is that the optimization problem in concern is a
smooth optimization problem. However, the optimal formation
problem considered in this paper may not be transformed into
a smooth optimization problem. This is because if the desired
formation is the one, which has the minimal distance from
the initial formation of the multirobot system, the Euclidean
norm of decision variables is included in the objective
function, which results in the nonsmooth optimization
problem. Fortunately, there are a few recurrent neural network
models regarding the nonsmooth optimization problems in the
literature. In [45], a generalized neural network based on the
model proposed in [28] was presented for nonsmooth
nonlinear programming problems. Extensions to the
nonsmooth convex optimization problem were made in [46].
However, these models can only obtain an approximate
solution to the optimization problem. In order to achieve the
exact optimal solution, a one-layer projection neural network
was proposed for nonsmooth optimization problems with the
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linear equality constraints and the bound constraints [47].
Since inequality constraints frequently occur in engineering
problems, recurrent neural networks were also designed
for the nonsmooth optimization problem with the linear
equality constraints, inequality constraints, and bound
constraints [48], [49]. These models represent the state of
the art of solving nonsmooth optimization problems based on
recurrent neural networks.

C. Contribution and Organization
In this paper, the optimal formation problem is solved by

the recurrent neural network proposed in [49]. Although, the
neural network proposed in [48] has a simpler structure than
the one in [49], there is a parameter in the neural network
model of [48] which is strongly related with the minima of
inequality constraints and then is hard to determine in practice.
The main contributions of this paper lie in the following
three aspects.

1) A new neural-network-based approach for solving the
optimal formation of multirobot systems is proposed.
This approach is featured by the parallel computation
ability of neural networks, and is especially effective
to deal with the formation problem where the size of
multirobot systems is large.

2) The orientation, scale, and admissible range of the
desired formation are also considered, which can be
transformed into the constraints of the optimization
problem.

3) The extended formation problem where all robots’
positions in the formation are exchangeable is studied.
The extended formation problem is transformed into a
combinational optimization problem, which can also be
solved by the employed recurrent neural network based
on the penalty method.

Finally, several simulation examples are conducted to verify
the theoretical analysis and testify the effectiveness of the
neural network based solution.

The remainder of this paper is organized as follows.
In Section II, some preliminaries are given, which include
the shape theory, the subgradient of nonsmooth function and
the penalty method. The problem formulation is formally
presented in Section III. In Section IV, the extended formation
problem is proposed. The recurrent neural network model for
solving the optimal formation problem is given in Section V.
Three simulation examples and two experiments are given
in Section VI. Section VII concludes this paper with final
remarks.

The following notations will be used throughout this paper:
1n = (1, 1, . . . , 1) ∈ R

n; 0n = (0, 0, . . . , 0) ∈ R
n;

In denotes the n × n dimensional identity matrix; R
n+ denotes

the nonnegative quadrant of the n-dimensional real space R
n;

and ⊗ denotes the Kronecker operator. For a given
matrix X , X T denotes its transpose. For a given vector
x = (x1, x2, . . . , xn) ∈ R

n , ‖x‖2 is the Euclidean-norm
of x which is defined by ‖x‖2 = (

∑n
i=1 x2

i )
1/2

. For a
2-D vector (x1, x2) in a Cartesian plane, arctan (x2, x1)
denotes the angle between vector (x1, x2) and the horizontal
axis. For a set S, int(S) denotes the set of interiors of S.

II. PRELIMINARIES

A. Shape Theory

In this paper, the formation problem of multirobot systems is
described by the shape theory [20]. On a Cartesian plane, there
are n robots, which are required to form a certain formation.
Let pi = (px

i , py
i )T be the Cartesian coordinate of robot i

related to the world frame W . The formation of the multirobot
system can be defined by the desired positions of all robots
in the system

P = (p1, p2, . . . , pn) ∈ R
2×n .

However, many applications are only concerned with the
relative relationship between robots rather than the absolute
location. In this case, the shape theory becomes a more appro-
priate way to describe the formation. Shape is an abstractive
concept. The shape of an object is the geometrical information
that remains when location, scale, and rotational effects are
filtered from the object [50], [51]. It is noted that location,
scale, and rotational effects correspond to translation transfor-
mation, scaling transformation, and rotation transformation,
respectively. That is to say, two formations have the same
shape if one can been transformed into the other one by a
similarity transformation. Therefore, the shape of formation P
can be defined as an equivalence class of formations which
have the same shape as P [20]

[P] = {
αRP + 1T

n ⊗ d|α > 0, R ∈ SO(2), d ∈ R
2} (1)

where α is the scale parameter, R ∈ SO(2) denotes the set
of 2-D rotation matrices, and d = (dx , d y)T is the translation
vector. All formations belonging to [P] are similar to each
other. And for any two formations P1, P2 ∈ [P], the similarity
relation between them is denoted by P1 ∼ P2.

B. Subgradient and Subdifferential

For a function φ(x) : R
n → R, (∂φ(x)/∂xi) denotes

the partial derivative of φ(x) at point x = (x1, x2, . . . , xn)T

with respect to xi . If all the partial derivatives (∂φ(x)/∂xi )
(i = 1, 2, . . . , n) exist at point x , then the gradient of φ(x)
exists at point x and is denoted by

∇φ(x) =
(

∂φ(x)

∂x1
,
∂φ(x)

∂x2
, . . . ,

∂φ(x)

∂xn

)T

.

The gradient plays an important role in the neural network
model introduced in Section V. However, for some nonsmooth
functions, their gradients do not exist at some point. For
example, f (x) = ‖x‖2 with x ∈ R

2 is nonsmooth at
point x = 02. To find an alternative of gradient for non-
smooth functions, the concept of subgradient is introduced.
A vector d ∈ R

n is a subgradient of φ(x) at x if

φ(x + v) − φ(x) ≥ dT v ∀v ∈ R
n.

The set of all subgradients of φ at x is call the subdifferential
of φ at x , which is denoted by

∂φ(x) = {d ∈ R
n|φ(x + v) − φ(x) ≥ dT v ∀v ∈ R

n}. (2)

Lemma 1 [52], [53]: If φ(x) is a convex function, then
∂φ(x) 
= ∅. Furthermore, if the gradient of φ exists at x ,
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then ∂φ(x) = ∇φ(x). In reverse, if the subdifferential
of φ at x contains exactly one subgradient, then the gradient
of φ exists at x and is equal to the subgradient.

For example, it is easy to see f (x) = ‖x‖2 with
x = (x1, x2)

T ∈ R
2 is a convex function and is nonsmooth

only at point x = (0, 0)T . Therefore, by Lemma 1 and (2),
it can be calculated that the subgradient of f (x) is

∂ f (x) =

⎧
⎪⎨

⎪⎩

(
x1

‖x‖2
,

x2

‖x‖2

)T

, x 
= (0, 0)T

{
(c1, c2)

T |c2
1 + c2

2 ≤ 1
}
, x = (0, 0)T

(3)

where c1 and c2 are two real constants.

C. Penalty Method

The penalty method is a class of algorithms for solving
constrained optimization problems. Since the unconstrained
optimization problems are relatively easier to solve, the
penalty methods seek the solution by replacing the original
constrained optimization problem with a sequence of uncon-
strained optimization problems. Consider the following
constrained optimization problem:

min
x

f (x) (4a)

s.t. ci (x) = 0, i ∈ E (4b)

ci (x) ≥ 0, i ∈ I. (4c)

The penalty function is defined as

Q(x, M) = f (x) + M
∑

i∈E
c2

i (x) + M
∑

i∈I
(min{0, ci (x)})2

(5)

where M > 0 is called the penalty parameter.
Lemma 2 [54, Th. 17.1]: For a given penalty parameter

sequence {Mk}, suppose xk is the exactly global minimizer
of (5) with M = Mk . Assume x∗ is a limit point of {xk}.
Then, x∗ is an optimal solution to (4) if limk→∞ Mk = ∞.

Consider another constrained optimization problem

min
x

f (x) (6a)

s.t. gi(x) ≥ 0, i = 1, 2, . . . , m (6b)

Ax = b (6c)

h j (x) = 0, j = 1, 2, . . . , l. (6d)

If f (x) and −gi(x) are all convex functions and there is
no nonlinear equality constraint (in the other word l = 0),
then the optimization problem (6) is a convex optimization
problem [54]. In general, it is much easier to solve a convex
optimization problem than a nonconvex optimization problem.
To eliminate the nonlinear equality constraints, (6) is trans-
formed into the following problem by the penalty function
method:

min
x

f (x) + M
l∑

j=1

h2
j (x) (7a)

s.t. gi(x) ≥ 0, i = 1, 2, . . . , m (7b)

Ax = b (7c)

Fig. 1. Relationship between S and Q in the world frame W .

where M > 0 is the penalty parameter. It is noted that (7) is a
convex optimization problem if all h j (x) are convex functions.

The following Lemma is a direct extension to Lemma 2.
Lemma 3: For a given penalty parameter sequence {Mk},

suppose xk is the exactly global solution of (7) with M = Mk .
Assume x∗ is a limit point of {xk} and h j (x) ( j = 1, . . . , l)
are continuous functions. Then, x∗ is an optimal solution to (6)
if limk→∞ Mk = ∞.

Proof: Please see the proof in the Appendix.
Lemma 3 provides an approach to obtain an approximation

solution to the original nonconvex optimization problem. If the
penalty parameter Mk is sufficiently large, then xk can be seen
as an approximate solution. Moreover, the approximation error
can be arbitrarily close to zero.

III. PROBLEM FORMULATION

The multirobot system is required to achieve a formation,
which has the same shape as a given formation (we call it
the shape icon). The shape icon is composed of n points
{s1, . . . , sn} [si = (sx

i , x y
i )T is the Cartesian coordinate of

the i th point in the world frame W] and is denoted by
S = (s1, . . . , sn) ∈ R

2×n .
Let P = (p1, p2, . . . , pn) ∈ R

2×n denote the initial
formation of the multirobot system. There must exist a new
formation Q ∈ [S](Q = (q1, q2, . . . , qn)) which minimizes
‖P−Q‖ where ‖·‖ is certain matrix norm. In general, ‖P−Q‖
can be viewed as the distance between P and Q. Then, the
formation problem is equivalent to the following constrained
optimization problem:

min
Q∈R2×n

‖P − Q‖ (8a)

s.t. Q ∈ [S] (or Q ∼ S). (8b)

It is noted that the constraint Q ∈ [S] in (8) is difficult to
deal with. In [20], a method of translating this constraint into
a standard linear constraint is provided. The following part
gives the detailed description of this method.

For any formation Q ∈ [S], by (1), we know that there must
exist a scale factor α, a rotation matrix R, and a translation
vector d such that qi = αRsi + d . Without loss of generality,
it is assumed that s1 is at the origin of W and s2 is on the
x-axis of W , which is illustrated in Fig. 1. From this figure,
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it can be calculated by the basic geometric principle that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d = q1

α = ‖q2 − q1‖2/‖s2‖2

R =
[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

θ = arctan
(
q y

2 − q y
1 , qx

2 − qx
1

)
.

(9)

By (9), the constraint Q ∈ [S] in (8) can be transformed
into the following linear equality constraint Aq = 02(n−2),
where q = (qT

1 , qT
2 , . . . , qT

n )T ∈ R
2n:

A =

⎡

⎢
⎢
⎢
⎣

−A1 + A3 −A3 A1 �2 · · · �2
−A1 + A4 −A4 �2 A1 · · · �2

...
...

...
...

. . .
...

−A1 + An −An �2 �2 · · · A1

⎤

⎥
⎥
⎥
⎦

and

A1 =
[‖s2‖2 0

0 ‖s2‖2

]

, Ai =
[

sx
i −sy

i

s y
i sx

i

]

, �2 =
[

0 0
0 0

]

.

Hence, the optimization problem (8) can be rewritten in the
following form:

min
Q∈R2×n

‖P − Q‖ (10a)

s.t. Aq = 0 (10b)

where q = [qT
1 , qT

2 , . . . , qT
n ]T .

Remark 1: The matrix norm ‖ · ‖ can be defined in
different senses. For example, ‖X‖ = ∑n

i=1 ‖xi‖2 or
‖X‖ = maxi ‖xi‖2, where X = (x1, . . . , xn) ∈ R

2×n .
If ‖X‖ = ∑n

i=1 ‖xi‖2, the optimization problem (8) is
equivalent to minimizing the total distance that all robots
travel. From the practical point of view, this definition
may result in the least amount of energy consumption.
If ‖X‖ = maxi ‖xi‖2, the optimization problem (8) is equiv-
alent to minimizing the maximal distance that one robot can
possibly travel. In this definition, the time for achieving certain
formation is minimized because the time for achieving a
formation is determined by the robot who travels the maximal
distance provided speeds of all robots are the same. For
the convenience of easy understanding, it is assumed that
‖X‖ = ∑n

i=1 ‖xi‖2 throughout this paper.
Remark 2: For any norm ‖ · ‖, it is worth noting that

f (x) = ‖x‖ is a convex function. Consequently, the optimiza-
tion problem (10) is a standard convex optimization problem.
In addition, by the same analysis of (3), it can be obtained
that the objective function of (10) is nonsmooth.

By the above procedure, the formation problem is
transformed into a nonsmooth convex optimization problem.
However, the desired formation in practice may have some
particular requirements. For example, the multirobot system
can only work in a predesigned range (safe range); if the
system is out of this range, it may be apt to be attacked.
The following section introduces how to add some practical
constraints (the orientation, the scale, and the admissible range
of the formation) on the desired formation.

1) Admissible Range: It is assumed that the desired forma-
tion is located in a predesigned convex set � ⊂ R

2.

Fig. 2. Triangle formation composed of three robots where all three robots
are functionally identical.

In this case, the optimization problem (10) can be
written in the following form:

min
Q

‖P − Q‖ (11a)

s.t. Aq = 0 (11b)

qi ∈ �, i = 1, 2, . . . , n. (11c)

2) Orientation and Scale: It is assumed that the orientation
of the desired formation should be a specific angle θ0.
From Fig. 1, it can be seen that the orientation is
described by the angle θ . Then, by (9), the rotation
matrix is calculated as follows:

R0 =
[

cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

]

.

Hence, the orientation constraint is equivalent to

qi − q1 = αR0si , i = 2, . . . , n.

It is also worth noting that the scale factor α is also a free
parameter in this case. Here, the scale α of the desired
formation is assumed to satisfy that αmin ≤ α ≤ αmax.
By summarizing the above analysis, the formation
problem with practical constraints can be reformulated
into the following optimization problem:

min
Q

‖P − Q‖ (12a)

s.t. Āq = α(In−1 ⊗ R0)s (12b)

αmin ≤ α ≤ αmax (12c)

qi ∈ �, i = 1, 2, . . . , n (12d)

where Ā = [−1n−1 ⊗ I2, I2n−2] and s =
(sT

2 , . . . , sT
n )T.

IV. EXTENDED FORMATION PROBLEMS

In this section, the extended formation problem is discussed,
where each robot is not specific to one fixed position in the
formation. First, let us look at an example shown in Fig. 2.
There are three identical robots whose initial formation is

P = [p1, p2, p3] =
[

8 8 0
6 10 6

]

.
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The goal here is to achieve a formation Q = [q1, q2, q3],
which has the same shape as a given shape icon

S =
[

0 10 10
0 0 5

]

.

Intuitively, formation P and formation S have the same
shape, because �s1s2s3 ∼ �p3 p2 p1. However, by the shape
theory, we know that the shape of P and the shape of S are
different (P � S). This is because, in the definition (1), the
point pi corresponds to the point si (i = 1, 2, 3). From one
side, by solving the formation problem defined by (10), we
can obtain an optimal formation

Q =
[

7.9995 1.6367 0.0339
5.9988 9.2044 6.0230

]

.

From the other side, if all three robots are functionally
identical, their positions in the system are exchangeable. In this
case, the multirobot system is actually unnecessary to move
from the formation P to Q since the triangles P and S are
similar.

To deal with this dilemma, the following transformation
matrix X ∈ R

n×n is introduced:

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

⎤

⎥
⎥
⎥
⎦

where xi j ∈ {0, 1}, ∑n
i=1 xi j = n and

∑n
j=1 xi j = n. Let T (n)

denote the set of all such n-dimensional matrices. Then, for a
given formation S ∈ R

2×n , the set of formations which have
the same shape as S is extended as follows:
[S]e = {

αRSX + 1T
n ⊗ d|α > 0, R ∈ SO(2),

X ∈ T (n), d ∈ R
2}. (13)

As a result, the extended optimal formation problem (8) is

min
Q∈R2×n

‖P − Q‖ (14a)

s.t. Q ∈ [S]e. (14b)

The constraint Q ∈ [S]e means that there exist a scale
factor α, a rotation matrix R, a transformation matrix
X ∈ T (n), and a vector d ∈ R

2 such that Q = αRSX +
1T

n ⊗ d . It is noted that ∀X ∈ T (n), X−1 = X and
(1n ⊗ d)X = 1 ⊗ d . Let Q̄ � QX−1 = [q̄1, q̄2, . . . , q̄n]
then Q̄ = αRS + 1T

n ⊗ d ∈ [S].
It is easy to see that Q̄ ∈ [S] and X ∈ T (n) minimize

‖P − Q̄X‖ if and only if Q̄ ∈ [S] and X ∈ T (n) minimize
‖P X − Q̄‖. It is easy to see that Q̄ ∈ [S] minimizes ‖P− Q̄X‖
if and only if Q̄ ∈ [S] minimizes ‖P X−1 − Q̄‖. Moreover,
‖P − Q̄X‖ is equal to ‖P − Q‖. Therefore, the extended
optimal formation problem (14) can be reformulated as

min
Q̄∈R2×n

‖P X − Q̄‖ (15a)

s.t. Q̄ ∈ [S] (15b)

X ∈ T (n). (15c)

By the transformation method described in Section III, the
optimal formation problem (14) is further reformulated as

min
Q̄∈R2×n

‖P X − Q̄‖ (16a)

s.t. Aq̄ = 0 (16b)

xi j ∈ {0, 1}, i, j = 1, . . . , n (16c)
n∑

i=1

xi j =
n∑

j=1

xi j = 1 (16d)

where q̄ = (q̄T
1 , q̄T

2 , . . . , q̄T
n )T .

In fact, X gives the corresponding relationship between
the robot and its position in the formation. The optimal
formation problem (10) is just a special case of (16) with
X = In . The extended formation problem (16) is essen-
tially a combinational optimization problem. This problem
can be solved by the enumeration method if the number of
robots is relatively small. However, the complexity of (16)
grows dramatically with the increase of the number of
robots.

The optimization problem (16) is not a convex
optimization problem, which further increases the
difficulty of solving this problem. However, the nonconvex
optimization problem (16) can be transformed into a convex
optimization problem using the penalty method introduced
in Section II-C.

Lemma 4: Constraints (16c) and (16d) are equivalent to
the following n2 inequality constraints and 4n equality
constraints:

xi j ≥ 0, i, j = 1, 2, . . . , n (17)
n∑

j=1

xi j = 1,

n∑

i=1

xi j = 1 (18)

n∑

j=1

x2
i j = 1,

n∑

i=1

x2
i j = 1. (19)

Proof: Squaring both sides of (18) obtains

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1
x2

i j + ∑

k 
=l
xik xil = 1, i = 1, . . . , n

n∑

i=1
x2

i j + ∑

k 
=l
xkj xl j = 1, j = 1, . . . , n.

(20)

Substituting (19) into (21) obtains that
⎧
⎪⎨

⎪⎩

∑

k 
=l
xik xil = 0, i = 1, . . . , n

∑

k 
=l
xkj xl j = 0, j = 1, . . . , n

(21)

which together with (17) leads to that there are at least n − 1
zero entries in each row of X and n − 1 zero entries in
each column of X . Therefore, there is one and only one
1 in each row of X and one. In addition, there is only
one 1 in each column of X . Then, conditions (17)–(19) are
compatible with constraints (16c) and (16d).

By Lemmas 3 and 4, the optimal solution to (16)
can be approximated by the following convex
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optimization problem:

min ‖P X − Q̄‖ + M
n∑

i=1

⎡

⎢
⎣

⎛

⎝
n∑

j=1

xi j − 1

⎞

⎠

2

+
⎛

⎝
n∑

j=1

x2
i j − 1

⎞

⎠

2
⎤

⎥
⎦

+ M
n∑

j=1

⎡

⎣

(
n∑

i=1

xi j − 1

)2

+
(

n∑

i=1

x2
i j − 1

)2
⎤

⎦

s.t. Aq̄ = 0

xi j ≥ 0, i, j = 1, . . . , n (22)

where M > 0 is a constant which should be a relatively large.
Remark 3: By solving the optimization problem (22),

one can obtain an approximated solution (Qa, Xa) to the
optimization problem (16). Since every entry of X can
only be 0 or 1, the optimal solution X∗ to the optimization
problem (16) can be deduced from the approximated
solution Xa . By substituting X = X∗ into (16), the
combinational optimization problem (16) is transformed into
the following common convex optimization problem:

min
Q̄∈R2×n

‖P X∗ − Q̄‖ (23a)

s.t. Aq̄ = 0. (23b)

Therefore, one can obtain the optimal solution Q̄∗ to (16)
by solving (23). Then, the optimal solution to (14) is
Q∗ = Q̄∗ X∗.

V. RECURRENT NEURAL NETWORK MODEL

If the size n of the multirobot system is a very large, the
optimization problems discussed in Sections III and IV are
difficult to be solved by the conventional numerical algorithm.
In particular, the combination optimization problem (16) is
almost impossible to be solved by the conventional numerical
algorithm. As discussed in Section I-B, the recurrent neural
network paves another avenue for solving optimization prob-
lems effectively. With the aid of hardware implementation,
the recurrent neural network can solve optimization problems
in real time. In this section, a recurrent neural network
model, which is capable for solving nonsmooth optimization
problems discussed in Sections III and IV, is introduced.

Consider the following convex optimization problem:
min

x
f (x) (24a)

s.t. g(x) ≥ 0m (24b)

Cx = b (24c)

x ∈ � (24d)

where x = (x1, x2, . . . , xn)T ∈ R
n is the decision

variable; f (x) : R
n → R is the objective function;

g(x) = (g1(x), g2(x), . . . , gm(x))T : R
n → R

m are the
inequality constraints; C ∈ R

p×n is a row full rank matrix;
b ∈ R

p is a constant vector; and � ⊂ R
n is a convex

admissible set for the decision variable. It is assumed that
f (x) and −gi (x) are all convex functions on �, however,
they are not necessary to be smooth. Moreover, the feasible
set of (24) is nonempty and the optimization problem (24) has

at least one finite optimal solution x∗. In addition, there exists
a feasible point x̃ ∈ int(�) such that g(x̃) > 0m and Cx̃ = d .

To deal with (24), a recurrent neural network model was
proposed in [49], which can be described by the following
differential inclusion:

dx

dt
∈ −2β(x − x̂) (25a)

dλ

dt
= −β(λ − λ̃) (25b)

dμ

dt
= −β(Cx − b) (25c)

where β > 0 is the scaling constant; λ ∈ R
m ; μ ∈ R

p;
x̂ = {F�(x − γ + GT λ̃ + CT (μ − Cx + b))|γ ∈ ∂ f (x),
G ∈ G(x)}; G(x) = [v1(x), v2(x), . . . , vm(x)]T ∈ R

m×n ;
λ̃ = (λ − g(x))+ = max{0, λ − g(x)}; vi (x) ∈ ∂gi (x)
(i = 1, 2, . . . , m); ∂ f (x), ∂g1(x), . . . , ∂gm(x) are the sub-
differentials of f (x), g1(x), . . . , gm(x), respectively; and
F�(x) : R

n → � is the projection operator defined by

F�(x) = arg min
y∈�

‖x − y‖. (26)

Remark 4: Since f (x) and gi (x) may be nonsmooth at
some points, the recurrent neural network must be modeled
by the differential inclusion rather than the differential
equation. Here, the mathematical symbol ∈ means that the
time derivative of x can be any value in the set described by
the right side of (25a).

By the convergence analysis in [49], for any initial
state (x T (0), λT (0), μT (0))T of the recurrent neural network
defined by (25), its state trajectory (xT (t), λT (t), μT (t))T is
convergent to an equilibrium point. In addition, the equilibrium
point is an optimal solution to the optimization problem (24).

Since (10)–(12) are all nonsmooth convex optimization
problems, they can be solved by (25) with specific parameters.
For example, the following recurrent neural network can solve
the optimization problem (10):

dq

dt
∈ −2β(∂‖P − Q‖ − AT (μ − Aq)) (27a)

dμ

dt
= −β Aq (27b)

where μ ∈ R
2n−4 and

∂‖P − Q‖ = [∂T ‖p1 − q1‖2, . . . , ∂
T ‖pn − qn‖2]T

∂‖pi − qi‖2 =

⎧
⎪⎨

⎪⎩

(
qx

i − px
i

‖pi − qi‖2
,

q y
i − py

i

‖pi − qi‖2

)T

, qi 
= pi

{
(c1, c2)

T |c2
1 + c2

2 ≤ 1
}
, qi = pi .

Analogously, the optimization problem (11) can be solved
by the following recurrent neural network:
dq

dt
∈ −2β(q − F�̄(q − ∂‖P − Q‖ + AT (μ − Aq))) (28a)

dμ

dt
= −β Aq (28b)

where F�̄ is the projection operator defined by (26) and
�̄ = {(xT

1 , x T
2 , . . . , x T

n )T |xi ∈ �}. The recurrent neural
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Fig. 3. Initial formation of the multirobot system in Simulation Example 1.

network for solving the optimization problem (12) is designed
as follows:

dq̂

dt
∈ −2β(q̂ − F�̂(q̂ − γ + ÂT (μ − Âq̂))) (29a)

dμ

dt
= −β Âq̂ (29b)

where q̂ = (qT , α)T , γ = (∂T ‖P − Q‖, 0)T , Â = [ Ā,−
(In−1 ⊗ R0)s], and �̂ = {(xT

1 , . . . , x T
n , α)T |xi ∈ �, αmin ≤

α ≤ αmax}.
Likewise, the optimization problem (22) can be solved by

the following neural network:
dξ

dt
∈ −2β(∂ f (ξ) − GT λ̃ − AT (μ − Āξ)) (30a)

dλ

dt
= −β(λ − λ̃) (30b)

dμ

dt
= −β Āξ (30c)

where ξ = [q̄T , x11, . . . , x1n, x2n, . . . , xnn]T = [ξ1, . . . ,

ξn2+2n]T ; λ ∈ R
n2

, λ̃ = (λ − [ξ2n+1, . . . , ξ2n+n2 ]T )+;
μ ∈ R

2n−4; Ā = [A,�(2n−4)×n2]; G = [�n2×2n, In2 ]; and

f (ξ) = ‖P X − Q̄‖

+M
n∑

i=1

⎡

⎢
⎣

⎛

⎝
n∑

j=1

xi j − 1

⎞

⎠

2

+
⎛

⎝
n∑

j=1

x2
i j − 1

⎞

⎠

2
⎤

⎥
⎦

+M
n∑

j=1

⎡

⎣

(
n∑

i=1

xi j − 1

)2

+
(

n∑

i=1

x2
i j − 1

)2
⎤

⎦.

VI. SIMULATIONS AND EXPERIMENTS

In this section, we provide three simulation examples and
two experiments to verify the effectiveness of the proposed
approach.

A. Simulation Example 1

Consider a multirobot system composed of 106 robots in a
2-D plane. The dynamics of the robots is not considered in
this paper. Each robot is regarded as a particle and denoted
by its coordinate. The initial formation of the mutlirobot
system is shown in Fig. 3. The mission is to seek a new
formation for the multirobot system, which has the same
shape as the shape icon illustrated in Fig. 4. In addition, the
new formation should minimize the distance that all robots
travel. This formation problem can be dealt with by solving
the optimization problem (10). The neural network (27) is

Fig. 4. Reference shape icon TNNLS.

Fig. 5. Trajectory of s(t) − s∗, where s(t) and s∗ are the state vector and
equilibrium point of the recurrent neural network, respectively.

Fig. 6. Obtained optimal formation in Simulation Example 1.

used to solve this optimization problem. The MATLAB ode
solver is employed to simulate this neural network. The scaling
constant β is set to be 20. In this simulation, if qi = pi , then
let ∂‖pi − qi‖2 = 0. Let s(t) = (qT (t), μT (t))T denote the
state vector of the neural network. By [49], the neural network
has an equilibrium point s∗ = (q∗T , μ∗T )T , where q∗ is the
optimal solution to the optimization problem (10).

The simulation results show that the state vector s(t) is
convergent to a constant vector which is the equilibrium
point s∗. Fig. 5 gives the trajectory of the difference between
the state vector s(t) and the equilibrium point s∗, namely,
s(t) − s∗. From Fig. 5, the state vector s(t) of the recurrent
neural network is convergent to the equilibrium point s∗
within 1 s. This means that if the recurrent neural network
is implemented in hardware, the computation time is <1 s.
Fig. 6 shows that the obtained formation has the same shape
as the shape icon TNNLS shown in Fig. 4. It is worth noting
that the convergence rate of the neural network can be further
speeded up by increasing the scaling constant β.

B. Simulation Example 2

Consider the same multirobot system as the one in Simula-
tion Example 1. In addition, the reference shape icon for the
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Fig. 7. Optimal formation with the admissible range, the orientation, and
the scale constraints in Simulation Example 2.

Fig. 8. Initial formation of the multirobot system in Simulation Example 3.

multirobot system is the same as the one in Example 1. This
section requires that all robots work in a rectangle area R.
In the other word, the new formation of the multirobot system
should be in this rectangle admissible range. The center of this
rectangle is (28, 9). The height and width of this rectangle
are 28 and 67, respectively. Meanwhile, the constraints on
the formation’s orientation and scale are also considered. The
orientation and the scale of the new formation are required
to be 20° and 1.2°, respectively. The desired formation can
be achieved by solving the optimization problem (12) with
θ = 20°, αmin = αmax = 1.2, and � = R. The recurrent neural
network (29) is used to solve this optimization problem.

The obtained formation is shown in Fig. 7. The coordinates
of robot 1 and robot 2 in the formation are q1 =
(13.3252,−2.1271) and q2 = (22.3463, 1.1563), respectively.
Hence, the orientation of this formation is arctan (q y

2 − q y
1 ,

qx
2 − qx

1 ) = arctan (3.2834, 9.0210) = 20.00° and the scale is
α = ‖q2 − q1‖2/‖s2‖2 = 9.60/8 = 1.20. Therefore, the new
formation satisfies the constraints on orientation and scale.

C. Simulation Example 3

In this example, we consider a multirobot systems composed
of five robots. The initial formation of this multirobot system is
shown in Fig. 8. The multirobot system is required to achieve
a new formation which has the same shape as the shape icon
shown in Fig. 9. The new formation obtained by employing the
recurrent neural network (27) is shown in Fig. 10. To achieve
this new formation, the total distance that all robots should
travel is 10.21.

Next, we assume that all robots are functional identical.
In this case, the new formation shown in Fig. 10 may not
be the optimal formation. From Section IV, this formation
problem can be formulated as (16), which is a combinational

Fig. 9. Reference icon N .

Fig. 10. Optimal formation obtained by applying the neural network (27)
in Example 3.

optimization problem. An approximated solution (Xa, Qa)
to (16) can be obtained by solving (22). In this example, the
recurrent neural network (30) is used to solve the optimization
problem (22). In addition, the solution is

Xa =

⎡

⎢
⎢
⎢
⎢
⎣

0.95 0.09 0.00 0.00 0.00
0.00 0.00 0.96 0.04 0.00
0.21 0.92 0.00 0.00 0.00
0.00 0.06 0.00 0.98 0.06
0.02 0.00 0.00 0.15 0.97

⎤

⎥
⎥
⎥
⎥
⎦

. (31)

By Remark 3, the optimal solution X∗ to (16) can be deduced
from Xa . In addition, it is

X∗ =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

. (32)

By substituting X∗ into (16), the combinational optimization
problem (16) is transformed into a common convex opti-
mization problem (23), which can be solved by the recurrent
neural network (27). The obtained optimal formation is shown
in Fig. 11. To achieve this formation, the total distance that
all robots travel is 3.49, which is much smaller than the total
distance that all robots travel to achieve the formation shown
in Fig. 10.

D. Experiments

In this section, the simulation results of Example 3 are
implemented on a group of five e-puck mobile robots,
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Fig. 11. Optimal formation in Example 3 in the case that all robots are
functionally identical.

Fig. 12. e-puck mobile robot.

Fig. 13. Snapshots of Experiment I. Blue arrows: directions of motions of
the e-puck robots.

one of which is shown in Fig. 12. Each e-puck robot is
equipped with two encoders to measure the travel distance.
At the beginning of the experiments, each e-puck robot is
placed at its initial position shown in Fig. 8. The e-puck robots
are equipped with Bluetooth modules. They can communicate
with other devices via the Bluetooth. A personal computer
equipped with the Bluetooth module sends the information
of the final positions to the e-puck robots via the Bluetooth.

1) Experiment I: The group of e-puck robots are required
to achieve the new formation shown in Fig. 10. The
snapshots of this experiment are illustrated in Fig. 13.

2) Experiment II: All e-puck robots are assumed to be
functionally identical. Hence, the optimal formation for
the group of robots is the one shown in Fig. 11. The
snapshots of this experiment are shown in Fig. 14.

In both experiments, the e-puck robots successfully accom-
plish the formation task. The travel distance of each robot is
given in Table I. It is easy to calculated that the total distances
of all robots travel in Experiments I and II are 10.01 dm and
3.38 dm, respectively. This is consistent with the simulation
results of Simulation Example 3, within the range of error
permission. Obviously, the total distance that all robots travel
is much smaller in the case that all robots are functionally

Fig. 14. Snapshots of Experiment II. Blue arrows: the directions of motions
of the e-puck robots.

TABLE I

TRAVEL DISTANCE OF EACH e-PUCK ROBOT IN TWO EXPERIMENTS

Fig. 15. “JUN” formation made of 28 robots.

identical.

VII. CONCLUSION

In this paper, an optimal formation problem is transformed
into a nonsmooth convex optimization problem, which is
then solved by a recurrent neural network proposed in [49].
Compared with the existing work, the recurrent neural network
based approach can solve the large-scale optimal formation
problems more effectively due to its parallel computation
nature; and the orientation, the scale, and the admissible range
of the desired formation are also considered in this paper.
In addition, the optimal formation problem is extended to be a
combinational optimization problem when the positions of all
robots in the formation are exchangeable. By combining the
penalty method and the recurrent neural network, this extended
formation problem can be satisfactorily solved as well. Finally,
the theoretical analysis is verified by several simulation and
experiment examples.

APPENDIX

PROOF OF LEMMA 3

Let x̄ be a global optimal solution to the problem (6), then
x̄ is also a feasible solution to problem (7). Hence

f (xk) ≤ f (xk) + Mk

n∑

j=1

h2
j (xk)

≤ f (x̄) + Mk

n∑

j=1

h2
j (x̄) = f (x̄) (33)
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which follows that:
n∑

j=1

h2
j (xk) ≤ f (x̄) − f (xk)

Mk
. (34)

Without loss of generality, assume that limk→∞ xk = x∗.
By taking the limitation operation (k → ∞) on both sides
of (34), it is obtained that

n∑

j=1

h2
j (x∗) = lim

k→∞

n∑

j=1

h2
j (xk) ≤ lim

k→∞
f (x̄) − f (xk)

Mk
= 0

(35)

which leads to that x∗ is a feasible solution to problem (6).
In addition, by taking the limitation operation on both sides
of (33), it is obtained that

f (x∗) ≤ f (x̄). (36)

That is to say, x∗ is also a global optimal solution to
problem (6).
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