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Abstract: In this work, we propose a new approach of deriving the bounds between entropy and
error from a joint distribution through an optimization means. The specific case study is given on
binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian
and non-Bayesian errors. The consideration of non-Bayesian errors is due to the facts that most
classifiers result in non-Bayesian solutions. For both types of errors, we derive the closed-form
relations between each bound and error components. When Fano’s lower bound in a diagram of
“Error Probability vs. Conditional Entropy” is realized based on the approach, its interpretations
are enlarged by including non-Bayesian errors and the two situations along with independent
properties of the variables. A new upper bound for the Bayesian error is derived with respect to
the minimum prior probability, which is generally tighter than Kovalevskij’s upper bound.
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1. Introduction

In information theory, the relations between entropy and error probability are one of the
important fundamentals. Among the related studies, one milestone is Fano’s inequality (also known
as Fano’s lower bound for the error probability of decoders), which was originally proposed in 1952
by Fano but formally published in 1961 [1]. It is well known that Fano’s inequality plays a critical role
in deriving other theorems and criteria in information theory [2–4]. However, within the research
community, it has not been widely accepted exactly who was first to develop the upper bound for the
error probability [5]. According to [6,7], Kovalevskij [8] was recognized as the first to derive the upper
bound of the error probability in relation to entropy in 1965. Later, several researchers, such as Chu
and Chueh in 1966 [9], Tebbe and Dwyer in 1968 [10], Hellman and Raviv in 1970 [11], independently
developed upper bounds.

The lower and upper bounds of error probability have been a long-standing topic in studies on
information theory [6,7,12–21]. However, we consider two issues that have received less attention in
these studies:

I. What are the closed-form relations between each bound and error components in a diagram of
entropy and error probability?

II. What are the lower and upper bounds in terms of the non-Bayesian errors if a non-Bayesian rule
is applied in the information processing?
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The first issue implies a need for a complete set of interpretations to the bounds in relation to
joint distributions, so that both error probability and its error components are known for a deeper
understanding. We will discuss the reasons of the need in the later sections of this paper. Up to
now, most existing studies derived the bounds through an inequality means without using joint
distribution information. Therefore, their bounds are not described by a generic relation to joint
distributions so that their error component information cannot be gained. Several significant studies
have achieved Fano’s bound from the joint distributions but through different means [16,20,21].
They all did not show the explicit relations to error components. Regarding the second issue, to
the best of our knowledge, it seems that no study is shown in open literature on the bounds in
terms of the non-Bayesian errors. We will define the Bayesian and non-Bayesian errors in Section 3.
The non-Bayesian errors are also of importance because most classifications are realized within
this category.

The issues above form the motivation behind this work. We take binary classifications as a
problem background since it is more common and understandable from our daily-life experiences.
Moreover, we intend to simplify settings within a binary state and Shannon entropy definitions for a
case study from an expectation that the central principle of the approach is well highlighted by simple
examples. The novel contribution of the present work is given from the following three aspects:

I. A new approach is proposed for deriving bounds directly through the optimization process based
on a joint distribution, which is significantly different from all other existing approaches. One
advantage of using the approach is the closed-form expressions to the bounds and their error
components.

II. A new upper bound in a diagram of “Error Probability vs. Conditional Entropy” for the Bayesian
errors is derived with a closed-form expression in the binary state, which has not been reported
before. The new bound is generally tighter than Kovalevskij’s upper bound. Fano’s lower bound
receives novel interpretations.

III. The comparison study on the bounds in terms of the Bayesian and non-Bayesian errors are
made in the binary state. The bounds of non-Bayesian errors are explored for a first time in
information theory and imply a significant role in the study of machine learning and classification
applications.

In the first aspect, we also conduct the actual derivation using a symbolic software tool, which
presents a standard and comprehensive solution in the approach. The rest of this paper is organized
as follows. In Section 2, we present related works on the bounds. For a problem background of binary
classifications, several related definitions are given in Section 3. The bounds are given and discussed
for the Bayesian and non-Bayesian errors in Sections 4 and 5, respectively. Interpretations to some key
points are presented in Section 6. We summarize the work in Section 7 and present some discussions
in Section 8. The source code from using symbolic software for the derivation is included in
Figures A1 and A2.

2. Related Works

Two important bounds are introduced first, which form the baselines for the comparisons with
the new bounds. They were both derived from inequality conditions [1,8]. Suppose the random
variables X and Y representing input and output messages (out of m possible messages), and the
conditional entropy H(X|Y) representing the average amount of information lost on X when given
Y [22]. Fano’s lower bound for the error probability [1,22] is given in a form of:

H(X|Y) ≤ H(Pe) + Pelog2(m− 1), (1)
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where Pe is the error probability (sometimes, also called error rate or error for short), and H(Pe) is the
binary entropy function defined by [23]:

H(Pe) = −Pe log2 Pe − (1− Pe) log2(1− Pe). (2)

The base of the logarithm is two so that the units are bits.
The upper bound for the error probability is given by Kovalevskij [8] in a piecewise linear

form [10]:

H(X|Y) ≥ log2 k + k(k + 1)(log2
k + 1

k
)(Pe −

k− 1
k

) and k < m, m ≥ 2, (3)

where k is a positive integer number, but defined to be smaller than m. For a binary classification
(m = 2), Fano–Kovalevskij bounds become:

H−1(Pe) = G(H(X|Y)) ≤ Pe ≤
H(X|Y)

2
, (4)

where H−1(Pe) denotes an inverse function of H(Pe) and has no closed-form expression. Hence, we
set it as a function form, G(H(X|Y)), in terms of the variable H(X|Y). Feder and Merhav [24] depicted
bounds of Equation (4) and presented interpretations on the two specific points from the background
of data compression problems.

Studies from the different perspectives have been reported on the bounds between error
probability and entropy. The initial difference is made from the entropy definitions, such as Shannon
entropy in [12,14,25,26], and Rényi entropy in [6,7,15]. The second difference is the selection of bound
relations, such as “Pe vs. H(X|Y)” in [12,24], “H(X|Y) vs. Pe” in [6,7,14,15,20], “Pe vs. MI(X; Y)”
in [27,28], and “NMI(X; Y) vs. A” in [25], where A is the accuracy rate, MI(X; Y) and NMI(X; Y) are
the mutual information and normalized mutual information between variables X and Y, respectively.
Another important study is made on the tightness of bounds. Several investigations [17,19,20,29]
have been reported on the improvement of bound tightness. Recently, a study in [26] suggested
that an upper bound from the Bayesian errors should be added, which is generally neglected in the
bound analysis.

3. Binary Classifications and Related Definitions

Classifications can be viewed as one component in pattern recognition systems [30].
Figure 1 shows a schematic diagram of the pattern recognition systems. The first unit in the systems
is termed representation in the present problem background but called encoder in communication
background. This unit processes the tasks of feature selection, or feature extraction. The second unit
is called classification or classifier in applications. Three sets of variables are involved in the systems,
namely, target variable T, feature variables X, and prediction variable Y. While T and Y are univariate
discrete random variables for representing labels of the samples, X can be high-dimensional random
variables either in forms of discrete, continuous, or their combinations.

Figure 1. Schematic diagram of the pattern recognition systems (adapted from Figure 1.7 in [30]).

In this work, binary classifications are considered as a case study because they are more
fundamental in applications. Sometimes, multi-class classifications are processed by binary
classifiers [31]. In this section, we will present several necessary definitions for the present case study.
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Let x be a random sample satisfying x ∈ X ⊂ Rd, which is in a d-dimensional feature space and will
be classified. The true (or target) state t of x is within the finite set of two classes, t ∈ T = {t1, t2},
and the prediction (or output) state y = f (x) is within the two classes, y ∈ Y = {y1, y2}, where f is
a function for classifications. Let p(ti) be the prior probability of class ti and p(x|ti) be the conditional
probability density function (or conditional probability) of x given that it belongs to class ti.

Definition 1. (Bayesian error in binary classification) In a binary classification, the Bayesian error,
denoted by Pe, is defined by [30]:

Pe =
∫
R2

p(x|t1)p(t1)dx +
∫
R1

p(x|t2)p(t2)dx, (5)

where Ri is the decision region for class ti. The two regions are determined by the Bayesian rule: Decide R1 if p(x|t1)p(t1)
p(x|t2)p(t2)

≥ 1

Decide R2 if p(x|t1)p(t1)
p(x|t2)p(t2)

< 1
. (6)

In statistical classifications, the Bayesian error is the theoretically lowest probability of error [30].

Definition 2. (Non-Bayesian error) The non-Bayesian error, denoted by PE, is defined to be any error
which is larger than the Bayesian error, that is:

PE > Pe, (7)

for the given information of p(ti) and p(x|ti).

Remark 1. Based on the definitions above, for the given joint distribution, the Bayesian error is
unique, but the non-Bayesian errors are multiple. Figure 2 shows the Bayesian decision boundary,
xb, on a univariate feature variable x for equal priors. The Bayesian error is Pe = e1 + e2. Any other
decision boundary different from xb will generate the non-Bayesian error for PE > Pe.

Figure 2. Bayesian decision boundary xb for equal priors p(ti) in a binary classification (adapted from
Figure 2.17 in [30]).
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In a binary classification, the joint distribution, p(t, y) = p(t = ti, y = yj) = pij, is given in a
general form of:

p11 = p1 − e1, p12 = e1,

p21 = e2, p22 = p2 − e2, (8)

where p1 = p(t1) and p2 = p(t2) are the prior probabilities of Class 1 and Class 2, respectively;
their associated errors (also called error components) are denoted by e1 and e2. Figure 3 shows a
graphic diagram of the probability transformation between target variable T and prediction variable
Y via their joint distribution p(t, y) in a binary classification. The constraints in Equation (8) are
given by [30]:

0 < p1 < 1, 0 < p2 < 1, p1 + p2 = 1

0 ≤ e1 ≤ p1, 0 ≤ e2 ≤ p2. (9)

Figure 3. Graphic diagram of the probability transformation between variables T and Y in a binary
classification (or channel). Instead of using conditional probability p(y|t), joint probability distributions
p(t, y) are applied to describe the channel.

In this work, we use e to denote error probability, or error variable, for representing either the
Bayesian error or non-Bayesian error. They are calculated from the same formula:

e = e1 + e2 =

{
Pe i f e is the minimum,
PE otherwise.

. (10)

Definition 3. (Minimum and maximum error bounds in binary classifications) Classifications suggest the
minimum error bound as:

(PE)min = (Pe)min = 0, (11)

where the subscript min denotes the minimum value. The maximum error bound for the Bayesian
error in binary classifications is [26]:

(Pe)max = pmin = min{p1, p2}, (12)

where the symbol min denotes a minimum operation. For the non-Bayesian error, its maximum error
bound becomes

(PE)max = 1. (13)

The Equations from Equations (11) to (13) describe the initial ranges of Bayesian and
non-Bayesian errors respectively. When they share the same minimum, their maximums are
always different.
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Remark 2. For a given set of joint distributions in the bound studies, one may fail to tell if it is the
solution from using the Bayesian rule or not. Only when e > pmin, we can say the set is corresponding
to the non-Bayesian solution.

In a binary classification, the conditional entropy, H(T|Y), is calculated from the joint distribution
in Equation (8):

H(T|Y) = H(T)−MI(T; Y)

= −p1 log2 p1 − p2 log2 p2 − e1 log2
e1

(p2 + e1 − e2)p1
− e2 log2

e2

(p1 − e1 + e2)p2

−(p1 − e1) log2
(p1 − e1)

(p1 − e1 + e2)p1
− (p2 − e2) log2

(p2 − e2)

(p2 + e1 − e2)p2
, (14)

where H(T) is a binary entropy of the random variable T, and MI(T; Y) is mutual information between
variables T and Y.

Remark 3. When a joint distribution p(t, y) is given, its associated conditional entropy H(T|Y) is
uniquely determined. However, for the given H(T|Y), it is generally unable to reach a unique solution
to p(t, y) but receives multiple solutions shown later in this work.

Definition 4. (Admissible point, admissible set, and their properties in diagram of entropy and error
probability) In a given diagram of entropy and error probability, if a point in the diagram is possibly
to be realized from a non-empty set of joint distributions for the given classification information, it
is defined to be an admissible point. Otherwise, it is a non-admissible point. All admissible points will
form an admissible set (or admissible region(s)), which is enclosed by the bounds (also called boundary).
If every point located on the boundary is admissible (or non-admissible), we call this admissible set
closed (or open). If only a partial portion of boundary points is admissible, the set is said to be partially
closed. For an admissible point with the given conditions, if it is realized only by a unique joint
distribution, it is called a one-to-one mapping point. If more than one joint distribution is associated to
the same admissible point, it is called a one-to-many mapping point.

We consider that classifications present an exemplary justification of raising the first issue in
Section 1 about the bound studies. The main reason behind the issue is that a single index of
error probability may not be sufficient for dealing with classification problems. For example, when
processing class-imbalance problems [32,33], we need to distinguish error types. In other words,
for the same error probability e (or even the same admissible point), we are required to know the
error components of e1 and e2 as well. Suppose one encounters a medical diagnosis problem, where
p1 (say, p1 = 0.98) generally represents the majority class for healthy persons (labeled with negative
or −1 in Figure 3), and p2 (= 0.02) the minority class for abnormal persons (labeled with positive
or 1). A class-imbalance problem is then formed. While e1 (also called type I error ) is tolerable
(say, e1 = 0.01), e2 (or type II error) seems intolerable (say, e2 = 0.01) because abnormal persons
are considered to be “healthy”. In class-imbalance problems, the performance measure from error
probability may become useless. For example, a classification having e = e2 = p2 = 0.02 does not
support a high, yet reasonable, performance. Hence, from either theoretical or application viewpoint,
it is necessary for establishing relations between bounds and joint distributions, which can provide
error type information within error probability for better interpretations to the bounds.

4. Lower and Upper Bounds for Bayesian Errors

In this work, we select the bound relations between entropy and error probability. Furthermore,
the bounds and their associated error components are also given by the following two theorems in a
context of binary classifications.
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Theorem 1. (Lower bound and associated error components) The lower bound in a diagram of “Pe vs.
H(T|Y)” and the associated error components with constraints Equations (9) and (12) are given by:

Pe ≥ max{0, G1(H(T|Y))}, (15a)

for G−1
1 (Pe) = −Pe log2 Pe − (1− Pe) log2(1− Pe),

Pe = e1 + e2 ≤ pmin,
(15b)

(e1, e2) =

{
(0.5, 0) or (0, 0.5), i f Pe = 0.5,
( Pe(1−p1−Pe)

1−2Pe
, Pe(p1−Pe)

1−2Pe
), otherwise,

(15c)

where H(T|Y) is the conditional entropy of T when given Y, and G1 is called the lower bound function (or
lower bound). However, one can only achieve the closed-form solution on its inverse function, G−1

1 (·), not on
G1(·) itself.

Proof. Based on Equation (14), the lower bound function is derived from the following definition:

G−1
1 (e) = arg max

e
H(T|Y)

subject to Equations (9) and (12), (16)

where we take e for the input variable in the derivations Equation (16) describes the function of the
maximum H(T|Y) with respect to e, and the function needs to satisfy the general constraints of joint
distributions in Equation (9). H(T|Y) seems to be governed by the four variables from pi and ei
in Equation (14). However, only two independent parameter variables determine the solutions of
Equations (14) and (16). The variable reduction from four to two is due to the two specific constrains
imposed between parameters, that is, p1 + p2 = 1 and e1 + e2 = e. When we set p1 and e1 as two
independent variables, (16) is then equivalent to solving the following problem:

G−1
1 (p1, e1) = arg max

e=Pe

H(T|Y)

subject to Equations (9) and (12). (17)

G−1
1 (p1, e1) is a continuous and differentiable function with respect to the two variables.

A differential approach is applied analytically for searching the critical points of the optimizations
in Equation (17). We achieve the two differential equations below and set them to be zeros:

∂H(T|Y)
∂e1

= log2
(p1−e1)(Pe−e1)(1+2e1−p1−Pe)2

e1(1+e1−p1−Pe)(p1+Pe−2e1)2 = 0,
∂H(T|Y)

∂p1
= log2

(p1−2e1+Pe)(1+e1−p1−Pe)
(p1−e1)(1+2e1−p1−Pe)

= 0.
(18)

By solving them simultaneously, we obtain the three pairs of the critical points through
analytical derivations: {

e1 = Pe(1−p1−Pe)
1−2Pe

,

p1 = Pe+2e1Pe−e1−P2
e

Pe
,

(19a)

 e1 = p1(p1+Pe−1)
2p1−1 ,

p1 = 1−Pe
2 + e1 +

1
2

√
1 + P2

e + 4e2
1 − 4e1Pe − 2Pe,

(19b)

 e1 = p1(p1+Pe−1)
2p1−1 ,

p1 = 1−Pe
2 + e1 − 1

2

√
1 + P2

e + 4e2
1 − 4e1Pe − 2Pe.

(19c)
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The highest order of each variable, e1 and p1, in Equation (18) is four. However, we can see
the quadratic component within the first function in Equation (18), ( 1+2e1−p1−Pe

p1+Pe−2e1
)2, will degenerate

the total solution order from four to three. Therefore, the three pairs of critical points exhibit a
complete set of possible solutions to the problem in Equation (17). The final solution should be the
pair(s) that satisfies both the maximum H(T|Y) with respect to e1 for the given e = Pe and the
Equations constraints (9) and (12). Due to high complexity of the nonlinearity of the second-order
partial differential equations on H(T|Y), it seems intractable to examine the three pairs analytically
for the final solution.

To overcome the difficulty above, we apply a symbolic software tool, MapleTM9.5 (a registered
trademark of Waterloo Maple, Inc.), for a semi-analytical solution to the problem (see Maple code in
Figure A1). For simplicity and without loss of generality in classifications, we consider p1 and Pe are
known constants in the function. The concavity property of H(T|Y) with respect to e1 in the ranges
defined in Equation (19a) is confirmed numerically by varying data on p1 and Pe. Hence, a maximum
solution on H(T|Y) is always received from the possible solutions of the critical points. Among them,
only Equation (19a) satisfies the constraints to be the final solution. When e1 is set, the expression of
e2 is known as shown in Equation (15c). The singular case is given specifically and the solution of
(e1, e2) = (0, 0.5) is obtained when p2 is used in the error expressions.

Remark 4. Theorem 1 achieves the same lower bound found by Fano [1] (Figure 4), which is general
for finite alphabets (or multiclass classifications). One specific relation to Fano’s bound is given by
the marginal probability (see (2-144) in [2]):

p(y) = (1− Pe, Pe
m−1 , . . . , Pe

m−1 ), (20)

which is termed sharp for attaining equality in Equation (1) [2]. We call Fano’s bound an exact lower
bound because every point on it is sharp. The sharp conditions in terms of error components in
Equation (15c) are a special case of the study in [20], and can be derived directly from their Theorem 1.

Figure 4. Plot of bounds in a “Pe vs. H(T|Y)” diagram.
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Theorem 2. (Upper bound and associated error components) The upper bound and the associated error
components with constraints Equations (9) and (12) are given by:

Pe ≤ min{pmin, G2(H(T|Y))}, (21a)

f or G−1
2 (Pe) = −pmin log2

pmin
Pe+pmin

− Pe log2
Pe

Pe+pmin
, (21b)

and Pe = e1 + e2 ≤ pmin,
ei = pj, ej = 0, pi ≥ pj, i 6= j, i, j = 1, 2,

(21c)

where G2 is called the upper bound function (or upper bound). The closed-form solution can be achieved only
on its inverse function, G−1

2 (·).

Proof. The upper bound function is obtained from solving the following equation:

G−1
2 (p1, e1) = arg min

e=Pe

H(T|Y),

subject to Equations (9) and (12).
(22)

Because the concavity property holds for H(T|Y) with respect to e1 as discussed in the proof of
Theorem 1, the possible solutions of e1 should be located at the two ending points, that is, either at
e1 = 0 or at e1 = Pe. We can take the point which produces the smaller H(T|Y) and satisfies the
constraints as the final solution. The solution from Maple code in Figure A2 confirms the closed-form
expressions in (21).

Remark 5. Theorem 2 describes a novel set of upper bounds which is in general tighter than
Kovalevskij’s bound [8] for binary classifications (Figure 4). For example, when pmin = 0.2 is given,
the upper bounds defined in Equation (21) shows a curve “O−C” plus a line “C−C′”. Kovalevskij’s
upper bound, given by a line “O − C − A”, is sharp only at Point O and Point C. The solution in
Equation (21c) confirms an advantage of using the proposed optimization approach in derivations so
that a closed-form expression of the exact bound is possibly achieved.

In comparison, Kovalevskij’s upper bound described in Equation (3) is general for multiclass
classifications. This bound misses a general relation to error components like Equation (21c), although
the relation is restricted to a binary state. For distinguishing from the Kovalevskij’s upper bound, we
also call G2 a curved upper bound. The new linear upper bound, (Pe)max = pmin, shows the maximum
error for the Bayesian decisions in binary classifications [26], which is also equivalent to the solution
of a blind guess when using the maximum-likelihood decision [30]. If p1 = p2, the upper bound
becomes a single curved one.

Remark 6. The lower and upper bounds defined by Equations (15) and (21) form a closed admissible
region in the diagram of “Pe vs. H(X|Y)”. The shape of the admissible region changes depending on
a single parameter of pmin.

5. Lower and Upper Bounds for Non-Bayesian Errors

In classification problems, the Bayesian errors can be realized only if one has the exact
information about all probability distributions of classes. The assumption above is generally
impossible in real applications. In addition, various classifiers are designed by employing the
non-Bayesian rules or resulted in non-Bayesian errors, from the conventional decision trees,
artificial neural networks, and supporting vector machines [30], to the emerging deep learning [34].
Therefore, the analysis of the non-Bayesian errors presents significant interests in classification
studies, although the conventional information theory does not distinguish the error types.
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Definition 5. (Label-switching in binary classifications) In binary classifications, a label-switching
operation is an exchange between two labels. Suppose the original joint distribution is denoted by:

pA(t, y) : p11 = a, p12 = b,
p21 = c, p22 = d.

(23a)

A label-switching operation will change the prediction labels in Figure 3 to be y1 = 1 and
y2 = −1, and generate the following joint distribution:

pB(t, y) : p11 = b, p12 = a,
p21 = d, p22 = c.

(23b)

Proposition 1. (Invariant property from label-switching) The related entropy measures, including H(T),
H(Y), MI(T; Y), and H(T|Y), will be invariant to labels, or unchanged from a label-switching operation
in binary classifications. However, the error e will be changed to be 1− e.

Proof. Substituting the two sets of joint distributions in Equation (23) into each entropy measure
formula respectively, one can obtain the same results. The error change is obvious.

Theorem 3. (Lower bound and upper bound for non-Bayesian error without information of p1 and p2) In a
context of binary classifications, when information about p1 and p2 is unknown (say, before classifications), the
lower bound and upper bound for the non-Bayesian error with constraints Equations (9) and (13) are given by:

G1(H(T|Y)) ≤ PE ≤ 1− G1(H(T|Y)), (24a)

f or G−1
1 (PE) = −PE log2 PE − (1− PE) log2(1− PE),

PE = e1 + e2 ≤ 1,
(24b)

(e1, e2) =


(0.5, 0) or (0, 0.5), i f p1 = p2 = PE = 0.5,
( PE(1−p1−PE)

1−2PE
, PE(p1−PE)

1−2PE
), i f (1− p1 − PE)(p1 − PE) ≥ 0

( p1(p1+PE−1)
2p1−1 , (1−p1)(p1−PE)

2p1−1 ), otherwise,
(24c)

where we call the upper bound in Equation (24a), 1 − G1(H(T|Y)), the general upper bound (or mirrored
lower bound), which is a mirror of Fano’s lower bound with the mirror axis along PE = 0.5. Both bounds share
the same expression for calculating the associated error components in Equation (24c). When PE ≤ 0.5, their
components, e1 and e2, correspond to the lower bound, otherwise, to the upper bound.

Proof. When the error probability is relaxed by Equation (13), all possible solutions in Equation (19)
are applicable but within the special ranges respectively. Suppose an admissible point is located at
the lower bound which shows PE ≤ 0.5. By a label-switching operation, one can obtain the mirrored
admissible point at 1− PE ≥ 0.5, which is located at the mirrored lower bound. Proposition 1 suggests
both points share the same value of H(T|Y). Because PE is the smallest one for the given conditional
entropy H(T|Y), its mirrored point is the biggest one for creating the general upper bound.

Remark 7. Han and Verdù [16] achieved Fano’s bound from the joint distributions by including the
independent condition pij = p(ti)p(yj) [2]. The condition will only lead to the last set of error
equations in Equation (24c), not to the complete sets. In addition, the set is only applicable to the
non-Bayesian errors, not to the Bayesian ones except for a special case in Equation (20). Equation (24c)
confirms again the advantage of using the optimization in derivations which achieves the complete
sets of solutions to describe Fano’s bound for non-Bayesian errors.
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Remark 8. The bounds from Equation (24) are derived only when p1 and Pe are given. They exist
even one does not have such information. In this situation, Fano’s lower bound, its mirror bound,
and the axis of PE form an admissible region, denoted by a boundary “O− F′ − A− F − D −O” in
Figure 5. The axis of PE encloses the region, but only Points O and D are admissible. Hence, the
admissible region is partially closed.

Figure 5. Plot of bounds in a “PE vs. H(T|Y)” diagram.

Theorem 4. (Admissible region(s) for non-Bayesian error with known information of p1 and p2) In binary
classifications, when information about p1 and p2 is known, a closed admissible region for the non-Bayesian
error with constraints Equations (9) and (13) is generally formed (Figure 5) by Fano’s lower bound, the general
upper bound, the curved upper bound G−1

2 (·), the mirrored upper bound of G−1
2 (·), and the upper bound

H(T|Y)max. For the H(T|Y)max bound, its associated error components are given by:

f or H(T|Y) = H(T|Y)max = H(pmin),

(e1, e2) =

{
(0.25, 0.25), i f p1 = p2 = PE = 0.5,

( p1(1−p1−PE)
1−2p1

, PE(1−p1)−p1(1−p1)
1−2p1

), otherwise.
(25)

Proof. Following the proof in Theorem 3, one can get the mirrored upper bound of G−1
2 (·).

The upper bound H(T|Y)max is calculated from the condition of H(T|Y) ≤ H(T) [2]. For the given
p1 and p2, H(T|Y)max is a constant. Because H(T|Y)max also implies a minimization of MI(T; Y) in
Equation (14), its associated error components can be obtained from the following equivalent relation
(see (11) in [35]):

MI(T; Y) = 0 ↔ p11

p21
=

p12

p22
. (26)
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Remark 9. Equations (25) and (26) equivalently represent a zero value for the mutual information,
which suggests no correlation [30] or statistically independent [2] between two variables T and Y.

Remark 10. When information of p1 and p2 is known, the admissible region(s) is much compact than
that when without such information. The shape of the admissible region(s) is fully dependent on a
single parameter pmin. For example, if pmin = 0.1, the area is enclosed by the four-curve-one-line
boundary “O− F′ − F − D − A′ −O” in Figure 5. However, if p1 = p2 = 0.5, two admissible areas
are formed. They are “O− F′ − A−O” and “D− F− A− D”, respectively.

6. Classification Interpretations to Some Key Points

For a better understanding of the theoretical insights between the bounds and errors, some
key points shown in Figures 4 and 5 are discussed. Those key points may hold special features in
classifications. Novel interpretations are expected from the following discussions.

Point O: This point represents a zero value of H(T|Y). It also suggests an exact classification
without any error (Pe = PE = 0) by a specific setting of the joint distribution:

p11 = p1, p12 = 0,
p21 = 0, p22 = p2.

(27)

This point is always admissible and independent of error types.
Point A: This point shows the maximum ranges of H(T|Y) = 1 for class-balanced classifications

(p1 = p2). Three specific classification settings can be obtained for representing this point. The two
settings from Equation (24c) are actually no classification:

p11 = 1/2, p12 = 0,
or

p11 = 0, p12 = 1/2,

p21 = 1/2, p22 = 0, p21 = 0, p22 = 1/2.
(28)

They also indicate zero information [36] from the classification decisions. The other setting is a
random guessing from Equation (25):

p11 = 1/4, p12 = 1/4,
p21 = 1/4, p22 = 1/4.

(29)

For the Bayesian errors, this point is always included by both Fano’s bound and Kovalevskij’s
bound. However, according to the upper bounds defined in Equation (21a), this point is
non-admissible whenever the relation p1 6= p2 holds. For the non-Bayesian errors, the point is either
admissible or non-admissible depending on the given information about p1 and p2. This example
suggests that the admissible property of a point should generally rely on the given information
in classifications.

Point D: This point occurs for the non-Bayesian classifications in a form of:

p11 = 0, p12 = p1,
p21 = p2, p22 = 0.

(30)

In this case, one can exchange the labels for a perfect classification.
Point B: This point is located at the corner formed by the curved and linear upper bounds,

with H(T|Y) = 0.8 and e = 0.4. In apart from Point O, this is another point obtained from
Equation (21) that locates at Kovalevskij’s upper bound. The point can be realized from either
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Bayesian or non-Bayesian classifications. Suppose p1 > p2 = 0.4 for the Bayesian classifications.
One will achieve Point B by Equation (21):

p11 = 0.2, p12 = 0.4,
p21 = 0.0, p22 = 0.4,

(31)

for a one-to-one mapping. In other words, this point is uniquely determined by Equation (31) and
only corresponding to pmin = 0.4 within the Bayesian classifications. If non-Bayesian classifications
are considered, this point becomes a one-to-many mapping and shows pmin 6= 0.4. For example,
one can get another setting of joint distribution from solving H(pmin) = 0.8 for pmin = 0.2430 first.
Then, by substituting the relations of p2 = pmin and PE = 0.4 into Equation (25), one can get the error
components, that is, e1 = 0.2312 and e2 = 0.1688, for the new setting of joint distribution on Point B.

Point B becomes non-admissible when pmin = 0.5 (Figure 4), which means no joint distribution
exists to satisfy Equation (9). In this situation, we can understand why the new upper bound is
generally tighter than Kovalevskij’s upper bound.

Point B′: The point is with H(T|Y) = 0.9710 and e = 0.4 in the diagram (Figure 4). It is exactly
located at the lower bound and is able to produce a one-to-many mapping for either the Bayesian
errors or non-Bayesian errors. One specific setting in terms of the Bayesian errors is:

p11 = 0.6, p12 = 0.0,
p21 = 0.4, p22 = 0.0,

(32)

which suggests zero information from classifications. More settings can be obtained from
Equation (15). For example, if given p1 = 0.55, p2 = 0.45 and Pe = 0.4, one can have:

p11 = 0.45, p12 = 0.10,
p21 = 0.30, p22 = 0.15.

(33)

Another setting is for the balanced error components:

p11 = 0.3, p12 = 0.2,
p21 = 0.2, p22 = 0.3.

(34)

The non-Bayesian errors will enlarge the set of one-to-many mapping for an admissible point
due to the relaxed condition of Equation (13). Equation (24c) will be applicable for deriving a specific
setting when p1 and e are given. For example, two settings can be obtained:

i f p1 = 0.250, PE = 0.400,
then p11 = 0.075, p12 = 0.175,

p21 = 0.225, p22 = 0.525,
(35)

i f p1 = 0.300, PE = 0.400,
then p11 = 0.075, p12 = 0.225,

p21 = 0.175, p22 = 0.525,
(36)

for representing the same Point B′.
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Remark 11. One can observe that Equations (35) and (36) will lead to a zero mutual information, but
Equations (33) and (34) are not. The observations reveal new interpretations about Fano’s bound in
association with two situations in the independent properties of the variables, which have not been
reported before.

Points E and E′: All points located at the general upper bound, like Point E, will correspond to the
settings from the non-Bayesian errors. If a point located at the lower bound, say E′, it can represent
settings from either the Bayesian or non-Bayesian errors depending on the given information in
classifications. Points E and E′ form the mirrored points. Their settings can be connected by a relation
in Equation (23) but are not necessary. For example, one specific setting for Point E′ with p1 = 0.3
and p2 = 0.7 is:

p11 = 0.0, p12 = 0.3,
p21 = 0.0, p22 = 0.7,

(37)

the other for Point E with p1 = 0.8 and p2 = 0.2 is:

p11 = 20
30 , p12 = 4

30 ,
p21 = 5

30 , p22 = 1
30 .

(38)

They are mirrored to each other but have no label-switching relation.
Points A′ and A′′: When PE = 0.5 and pmin = 0.1, Points A′ and A′′ form a pair as the ending

points for the given conditions. Supposing p1 = 0.9 and p2 = 0.1, one can get the specific setting for
Point A′ from Equation (21c):

p11 = 0.4, p12 = 0.5,
p21 = 0.0, p22 = 0.4,

(39)

and one for Point A′′ from Equation (25):

p11 = 0.45, p12 = 0.45,
p21 = 0.05, p22 = 0.05.

(40)

Points Q and R: The two points are specific due to their positions in the diagrams. For either
type of errors, both points are non-admissible in the diagrams, because no joint distribution exists in
binary classifications which can represent the points.

7. Summary

This work investigates into lower and upper bounds between entropy and error probability.
An optimization approach is proposed to the derivations of the bound functions from a joint
distribution. As a preliminary work, we consider binary classifications for a case study.
Through the approach, Fano’s lower bound receives novel interpretations. A new upper bound is
derived and shows tighter in general than Kovalevskij’s upper bound. The closed-form relations
between bounds and error components are presented. The analytical results lead to a better
understanding about the sharp conditions of bounds in terms of error components. Because
classifications involve either Bayesian errors or non-Bayesian ones, we demonstrate the bounds
comparatively for both types of errors.

We recognize that analytical tractability is an issue for the proposed approach. Fortunately, a
symbolic software tool is helpful for solving complex problems successfully with different
semi-analytical means (such as in [37,38]). The semi-analytical solution used in this work refers to the
analytical derivation of all possible solutions, but the numerical verification of the final solution(s).
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8. Discussions

To emphasize the importance of the study, we present discussions below from the perspective of
machine learning in the context of big-data classifications. We consider that binary classifications will
be one of key techniques to implement a divide-and-conquer strategy [39] for efficiently processing large
quantities of data. Class-imbalance problems with extremely-skewed ratios are mostly formed from
a one-against-other division scheme [31] in binary classifications. Researchers and users, of course,
concern error components in types for performance evaluations [32]. The knowledge of bounds in
relation to error components is desirable for theoretical and application purposes.

From a viewpoint of machine learning, the bounds derived in this work provide a basic
solution to link learning targets between error and entropy in the related studies. Error-based
learning is more conventional because of its compatibility with our intuitions in daily life, such
as “trial and error”. Significant studies have been reported under this category. In comparison,
information-based learning [40] is relatively new and uncommon in some applications, such as
classifications. Entropy is not a well-accepted concept related to our intuition in decision making.
This is one of the reasons why the learning target is chosen mainly based on error, rather than on
entropy. However, error is an empirical concept, whereas entropy is theoretical and general [41].
In [35], we demonstrated that entropy can deal with both notions of error and reject in abstaining
classifications. Information-based learning [40] presents a promising and wider perspective for
exploring and interpreting learning mechanisms.

When considering all sides of the issues stemming from machine learning studies, we believe
that “what to learn” is a primary problem. However, it seems that more investigations focused
on the issue of “how to learn”, which should be put as the second-level problem. Moreover, in
comparison with the long-standing yet hot theme of feature selection, little study has been done from
the perspective of learning target selection. We propose that this theme should be emphasized in the
study of machine learning. Hence, the relations studied in this work are fundamental and crucial to
the extent that researchers, using either error-based or entropy-based approaches, are able to reach a
better understanding about its counterpart.
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Appendix

Figure A1. Maple code for deriving the lower bound.
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Figure A2. Maple code for deriving the upper bound.
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