Soft Comput (2016) 20:707-716
DOI 10.1007/s00500-014-1534-z

@ CrossMark

METHODOLOGIES AND APPLICATION

A neural-network-based online optimal control approach
for nonlinear robust decentralized stabilization

Ding Wang - Derong Liu - Hongliang Li -
Hongwen Ma - Chao Li

Published online: 25 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, the robust decentralized stabiliza-
tion of continuous-time uncertain nonlinear systems with
multi control stations is developed using a neural network
based online optimal control approach. The novelty lies in
that the well-known adaptive dynamic programming method
is extended to deal with the nonlinear feedback control prob-
lem under uncertain and large-scale environment. Through
introducing an appropriate bounded function and defining a
modified cost function, it can be observed that the decentral-
ized optimal controller of the nominal system can achieve
robust decentralized stabilization of original uncertain sys-
tem. Then, a critic neural network is constructed for solv-
ing the modified Hamilton—Jacobi—Bellman equation corre-
sponding to the nominal system in an online fashion. The
weights of the critic network are tuned based on the standard
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steepest descent algorithm with an additional term provided
to guarantee the boundedness of system states. The stability
analysis of the closed-loop system is carried out via the Lya-
punov approach. At last, two simulation examples are given
to verify the effectiveness of the present control approach.

Keywords Adaptive dynamic programming - Approxi-
mate dynamic programming - Neural networks - Online
optimal control - Robust decentralized stabilization -
Uncertain nonlinear systems

1 Introduction

How to construct truly brain-like systems has become one
of the advanced research topics in the field of computational
intelligence. Among them, adaptive or approximate dynamic
programming (ADP) is a biologically inspired and compu-
tational method proposed by Werbos (1992) to solve opti-
mization and optimal control problems efficiently. In general,
it is implemented by solving the Hamilton—-Jacobi-Bellman
(HJB) equation based on function approximators, such as
neural networks. In recent years, the research on ADP and
related fields has gained much attention from scholars, see,
e.g., Lewis et al. (2012), Liu et al. (2013c¢), Jiang and Jiang
(2013) and the references therein. It is worth mentioning that
the ADP method has been extensively used in feedback con-
trol applications, both for discrete-time systems (Al-Tamimi
et al. 2008; Zhang et al. 2009; Wang et al. 2012a,b; Liu et
al. 2012, 2013a, b; Heydari and Balakrishnan 2013; Ni et al.
2013; Ni and He 2013; Dierks and Jagannathan 2012; Zhang
et al. 2014) and for continuous-time systems (Abu-Khalaf
and Lewis 2005; Vamvoudakis and Lewis 2010; Bhasin et al.
2013; Wu and Luo 2012; Zhang et al. 2013; Yang et al. 2014,
Dierks and Jagannathan 2010; Nodland et al. 2013; Zhao et
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al. 2013; Adhyaru et al. 2011; Liu et al. 2014a,b). Thus, it
gradually plays an important role in designing adaptive learn-
ing and intelligent control systems. In Wang et al. (2012b),
the iterative globalized dual heuristic programming algo-
rithm was developed to conduct the optimal control design
of unknown nonaffine nonlinear discrete-time systems. In
Ni et al. (2013), an adaptive learning approach for tracking
control was given based on dual critic network design. In
Wu and Luo (2012), a neural-network-based online simul-
taneous policy update algorithm was proposed for handling
the nonlinear Hy, control problem. In Liu et al. (2014b),
an online synchronous approximate optimal learning algo-
rithm was provided for multiplayer nonzero-sum games with
unknown dynamics. It is not difficult to find that, however,
most of the existing results are inapplicable when the con-
trolled plant contains some kinds of uncertainties.

As is shown in Adhyaru et al. (2011), Haddad et al. (1998,
2000), Lin (2000), Wang et al. (2014) the unavoidable dis-
crepancies between system models and real-world dynamics
can sometimes result in the degradation of system perfor-
mance. Hence, the feedback control should be designed to
be robust with respect to system uncertainties. In Adhyaru
et al. (2011), an optimal control algorithm was proposed to
deal with the nonlinear robust control problem, but it was
constructed using the least square method and performed
in an offline fashion, not to mention the stability analysis
of the closed-loop system was not conducted. Recently, Liu
et al. (2014a) established an online learning optimal control
approach to deal with the decentralized stabilization problem
of nonlinear interconnected large-scale systems. It is a mean-
ingful attempt for extending ADP approach to decentralized
control of large-scale systems. However, the main algorithm
is implemented based on an initial admissible control, which
is not easy to acquire in some situations.

In this paper, we investigate the robust decentralized sta-
bilization of continuous-time uncertain nonlinear systems
using neural-network-based online solution of the HIB equa-
tion. The robust decentralized stabilization problem is trans-
formed into an optimal control problem by introducing an
appropriate cost function. It can be proved that the decentral-
ized optimal controller of the nominal system is the robust
decentralized controller of the uncertain system. Then, a
critic network is constructed for facilitating the solution of
the modified HIB equation. Moreover, inspired by the work
of Dierks and Jagannathan (2010), Nodland et al. (2013),
Zhao et al. (2013), an additional stabilizing term is intro-
duced to verify the stability, which relaxes the need for an
initial stabilizing control. It also can be regarded as the main
idea of the reinforced training process of critic network.
The uniform ultimate boundedness (UUB) of the closed-
loop system is also proved using the well-known Lyapunov
approach. Besides, the approximated control input can con-
verge to the optimal control within a small bound. Signif-
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icantly, the developed approach is applicable to design the
robust decentralized control for a class of complex nonlinear
systems under an uncertain and large-scale environment.

The rest of this paper is organized as follows: in Sect. 2,
the problem statement of robust decentralized stabilization
is provided. In Sect. 3, the studied problem is transformed
into a decentralized optimal control problem with a modified
cost function. In Sect. 4, a neural network is constructed to
solve the modified HIB equation approximately in an online
fashion. Then, the stability of the overall closed-loop system
is proved. In Sect. 5, two numerical examples are given to
demonstrate the effectiveness of the established approach.
In Sect. 6, concluding remarks are presented to display the
usability of the established method corresponding to nonlin-
ear system with N control stations.

2 Problem statement

In this paper, we study the following continuous-time uncer-
tain nonlinear systems with two control stations:

X = F(x(), ui(t), uz(t))
= f(x @)+ g1(xO)ur(®) + g2(x(O)uz(t) + Af (x(1)),
(1)

where x (1) € R" is the state vectorand u; (1) € R™i i =1, 2,
are the control inputs, f(-) and g;(:), i = 1, 2, are differen-
tiable in their arguments with f(0) = 0, and Af (x(¢)) is the
nonlinear perturbation of the corresponding nominal system

X = Fx@), u1(r), uz(t))
= f(x (@) + g1(x(@)ur (1) + g2(x(1)uz(2). @)

Here, we let x(0) = x¢ be the initial state. In addition, as in
many other literature, we assume that f + giu; + gouo is
Lipschitz continuous on a set €2 in R” containing the origin
and that the system (2) is controllable.

For the system uncertainty Af(x), we assume that it has
the form

Af(x) = Gx)d(g(x)) 3)
with
dT(@(x))d(@(x)) < BT (p(x)h(p(x)), 4)

where G(-) € R™™" and ¢(-) satisfying ¢(0) = 0 are fixed
functions denoting the structure of the uncertainty, d(-) € R”
is an uncertain function with d(0) = 0, and A(-) € R" isa
given function with 4(0) = 0.

Remark 1 Note that the formula described in (3) represents
a general form of uncertainty, which includes the cases of
matched uncertainty and unmatched one.
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In this paper, we aim at finding two state feedback con-
trol functions u;(x), i = 1,2, such that the control pair
(u1(x), u2(x)) can stabilize system (1) for any possible
uncertainties. In this sense, we say the control pair ensures
robust decentralized stabilization of system (1).

3 Robust decentralized stabilization of the nonlinear
systems via optimal control design

In this section, inspired by the work of Haddad et al. (1998,
2000), we derive the following theorem, which facilitates
us to carry out the problem transformation between robust
decentralized stabilization and decentralized optimal control:

Theorem 1 [f there exists a continuously differentiable cost
function V (x) satisfying V (x) > Oforallx # 0and V(0) =
0, a bounded function T (x) satisfying T'(x) > 0, and two
feedback control functions ui(x) and uy(x) such that
(VV@E)TAf(x) < T(x), (%)
Ux,ur,u2) + T+ (VVO) T F(x, ur,u2) =0, (6)
where VV (x) = dV (x)/0x is the gradient of the cost func-
tion, U(x,ui, up) = Q(x) +u-1rR1u1 —}—u;—Rzuz, o) >0,
O(x) = 0 ifand only if x = 0, and Ry = R > 0 and
R, = R;r > 0 are constant matrices, then with the feed-
back control functions uy(x) and uy(x), there exists a neigh-
borhood of the origin such that system (1) is asymptotically
stable. Furthermore, if we define

J(x0, uy, u2) =/0 {U (D). u1(x(1)), uz(x(1)))
+F(x(t))}d1: @)

as the modified cost function of system (2), then we have

V(xo0) = J(x0, u1, uz).

Proof First, we show the asymptotic stability of system (1)
under the feedback control functions u(x) and u>(x). Let
dV(x)

Vix) 2 — = (VVE)TF(x,up, ua). (8)

Considering (5), (6), and (8), we can derive

Vx(®) = (VVE) T Fx,ur, uz) + (VV ) TAF(x)
(VVE) T Fx,up, uz) + D'x)
=—-U(x,uy,uz)

<0 )

A

for any x # 0. This implies that V (-) is a Lyapunov function
for system (1), which proves the asymptotic stability.

Next, note that (5) and (6) hold for any possible uncer-
tainties. When A f (x) = 0, we can easily derive that V(x) =
(VV(x))TF(x, ui, un). According to (6), we obtain

Ux,ui,u) +I'x) = —V(x) +U(x,uy,ur) +I'(x)

H(VV ) TF(x, up, u2)
= —V(x). (10)

By integrating over [0, t), we have

t
/ (UG ur,up) + T }dt = =V(x(1) + V(xo). (11
0

Letting t — 00, we can easily find that J(xo, u1, u2) =
V (x0). This completes the proof. O

Lemma 1 Forany continuously differentiable function V (x),
if we define

1
T(x) = h" (p(x)h(px)) + Z(VV(x))TG(x)GT(xWV(x),
(12)

then, the relation (VV(x))TAf(x) < I'(x) holds.

Remark 2 This lemma can easily be proved by combining
(3), (4), and (12) with the fact that éT(x)E(x) > 0, where

1
§(x) =d(p(x)) — EGT(X)VV(X)- (13)

Note that for system (1), with any continuously differentiable
function V (x), the bounded function I'(x) constructed as
in (12) satisfies (VV(x))TAf(x) < I'(x). The importance
of Lemma 1 lies in the fact that it presents a specific form
of I'(x), which is significant in dealing with the dynamic
uncertainty.

Remark 3 According to Theorem 1, the cost function V (x),
the bounded function I' (x), and feedback controls u (x) and
uy(x) satisfying (5) and (6) can guarantee the robust stabi-
lization of system (1). It is important to notice that the optimal
cost and optimal control of system (2) can provide specific
forms of the cost function and feedback control. Hence, we
should make great effort to solve the optimal control problem
of system (2) with V (xo) considered as the cost function. In
other words, we should minimize J (xo, u1, ua) with respect
to up and uy.

Considering system (2), since

Vxg) = / {U(x, u1,uz) + T(x)}dr
0

T
=/ (UG, ur,up) + T }dr + V(x(T)), (14)
0
we can find that

1
m —(V(x(T)) — Vi(x0)

li
T—-0T
T
+/ (UG, ur, un) + l"(x)}dt) =0, (15)
0

which is equivalent to (6). Hence, (6) is an infinitesimal ver-
sion of the modified cost function (14) and is the so-called
nonlinear Lyapunov equation.
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Now, for system (2) with modified cost function (14), we
define the Hamiltonian function of the optimal control prob-
lem as
H(x,ui,uz, VV(x)) = U(x, u1, u2) + I'(x)

HVVE) F(x,ur, ). (16)

Besides, the optimal cost function of system (2) can be
defined as

J*o) = min /{U<x(r>,m(x(r)),uz(x(r)))
ur,u2eW() Jo
+T (x(7)) }dr, (I7)

where W (2) is the set of admissible controls on 2. Note that
J*(x) satisfies the modified HIB equation

0= min

H(x,uy,uz, VI*(x)), (18)
uy,ureWV ()

where VJ*(x) = dJ*(x)/dx. Assume that the minimum on
the right-hand side of (18) exists and is unique. Then, the
optimal control of system (2) is

1
u(x) = —ERi_lgiT(x)VJ*(x), i=1,2. (19)
Hence, the modified HIB equation becomes
0= Ux,uj,u}) + (VI*())F(x,uf, u})
T Lo s T T *
+h (<p(X))h(<p(X))+Z(VJ (x) GG (x)VJI™(x)
(20

with J*(0) = 0. Denoting D; = gl(x)Rl_lgI(x) and D, =
g2(X)Ry ! g;— (x) and substituting (19) into (20), we can obtain
the formulation of the modified HIB equation in terms of
VJ*(x) as follows:

0= Q)+ (VI* ) f(x) +hT (p(x))h(p(x))
—%<VJ*(x))T(Dl + DYVIF()

)T 6T VI ) 1)
4

with J*(0) = 0.
The following theorem proves that ] and u} can indeed
realize the robust decentralized stabilization of system (1).

Theorem 2 Let u and u given by (19) form the decentral-
ized optimal control of system (2) with cost function (14).
Then, the control pair (uT, ui) ensures robust decentralized
stabilization of uncertain nonlinear system (1).

Proof According to Lemma 1, we can find that

(VI )AL (x) < BT (0(x)h(p(x))
+%(VJ*(x))TG(x)GT(x)VJ*(x).
(22)
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Then, we have
J¥(x) = (VI*() T F(x, ul, u3)

= (VI*O))TF(x,uf, u3) + (VI* ) TAS (x)
(VI* DT F (x, uf, uf) + b (0(x)h(p(x))

+‘1—‘(VJ*(x))TG(x)GT(x)VJ*(x). (23)

IA

Since the HIB equation (20) implies that
(VI )T F(x, uf, ub)
= —U(x,u},u3) — h" (p(x)h(p(x))
1
—Z(VJ*(x))TG<x>GT(x>VJ*(x>, (24)
we can further obtain that J* (x) < —U (x, uj, u3) < Oholds

for any x # 0. Therefore, the control pair (47, u3) achieves
robust decentralized stabilization of system (1). O

Next, let 71 and 7> be positive numbers. We can further
obtain the following conclusion:

Theorem 3 Let u and u} given by (19) be the decentral-
ized optimal control of system (2) with cost function (14). The
control pair (mu*l‘, nzug) can ensure the robust decentral-
ized stabilization of uncertain nonlinear system (1) provided
that ty > 1/2 and mo > 1/2.

Proof Based on (21), we have
(VI )T f(x) = —0(x) — kT (9(x)h(p(x))
+%<VJ*<x>)T(D1 + D)V ()

Lo e T T %
— 1 (V@GOG (VI ().

(25)

Hence, by combining (22) and (25), we can find that

J¥x) = (VI*) T F(x, mut, mous)

(VI*C)TF (x, muf, moul) + (VI*(x))TAS (x)

= (VI f(0) + (VI ) TAf (x)

1 (VI* )T g1 (uf + mo (VI () g2 (x)uj

1
< —Q(x) + Z(W*(x»T(Dl + Dy)VJ*(x)

+1 (VI*(0) T g1 (0wt + ma (VI (x) T ga (x)us.
(26)

By observing (19), the equation (26) is in fact

. 1 1
J(x) < —0) — E(m - 5) IR el v

K

1 1 10
—5(7'[2 - E) |R; "% ed () VI* (x) 27)
which implies that J*(x) < 0 holds for any x # 0 and
provided that r1 > 1/2 and m, > 1/2. This completes the

proof. O
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Remark 4 According to Theorems 2 and 3, once the solution
of the modified HIB equation (21) corresponding to system
(2) is derived, we can establish the robust decentralized con-
trol scheme of system (1). Hence, we should put emphasis
upon solving the modified HIB equation (21).

4 Online HJB solution of the decentralized optimal
control problem based on neural networks

Note that for system (2), it is always difficult or even impossi-
ble to obtain the analytical solution of the modified HIB equa-
tion (21). Here, the ADP method is employed to help solving
the problem by constructing a single neural network. There-
fore, the idea of ADP is introduced to the framework of robust
decentralized stabilization of nonlinear systems with multi-
control-stations and dynamic uncertainties. Before proceed-
ing, we recall the following assumption, which is typically
used to facilitate designing the optimal control:

Assumption 1 (cf. Dierks and Jagannathan 2010; Nodland
et al. 2013; Zhao et al. 2013) Consider system (2) with cost
function (14) and optimal control (19). Let J;(x) be a con-
tinuously differentiable Lyapunov function candidate satis-
fying J; (x) = (VJ; ()T (f (1) + g1 (0uf + g2(0)u3) < 0,
where VJ;(x) = 0J5(x)/dx. Assume there exists a positive
definite matrix A(x) satisfying ||A(x)|| = 0 if and only if
11l = 0, such that (V.J5(x)T (f () +g1(x)u} +g2(x)u3) =
—(VJ5s(x)TA(x)V Jy(x) holds.

4.1 The critic network and online learning algorithm

According to the universal approximation property of neural
networks, the continuously differentiable function V (x) can
be reconstructed by a single-layer neural network on a com-
pact set €2 as

V(x) = 0] oo(x) + £c(x), (28)

where w, € R/ is the ideal weight, o.(x) € R! is the activa-
tion function, / is the number of neurons in hidden layer, and
&c(x) is the approximation error of neural network. Then,

VV () = (Vo (x)) o + Ve (x), (29)

where Vo.(x) = 0do.(x)/dx and Ve .(x) = de.(x)/0x.
Here, we assume that the weight vector w,, the gradient
Vo, (x), and the approximation error €. (x) and its derivative
Ve (x) are all bounded on the compact set 2 (Vamvoudakis
and Lewis 2010; Bhasin et al. 2013; Dierks and Jagannathan
2010).

In this paper, an artificial neural network, called critic net-
work, is constructed to approximate the cost function as

V(x) =& oe(x), (30)

where &, € R/ is the estimated weight of the ideal one and
o.(x) is selected such that V(x) > O for any x # 0 and
V(x) = 0 when x = 0. Then, we have

VV(x) = (Vo (x)) T é, 31

where VV(x) = 8‘7(x)/8x. Then, according to (19) and
(29), we can derive the accurate expression of the optimal
control function as

i (x) = —%R;lgf(x)((wc(x»Twc +Ve(x), i=1,2.
(32)

Besides, in light of (19) and (31), the corresponding approx-
imate control function can be given as

hi(x) = —%Ri_lgiT(x)(VaC(x))Té)C, i=1,2. (33)

Applying the state feedback control function (33) to system
(2), we can obtain the closed-loop system dynamics as

) 1 R

= f) =D+ D) (Vo (x)" . (34)
Based on (29), the Hamiltonian function (16) is in fact

H(x,0)) = Q)+ ! Vo (x) f (x)

L oTve (xX)(D; + Dy)(V T
4% c 1 2) (Vo (x)) wc

+hT (p(x))h(p(x))
+iwIVJC(x)G(x)GT(x)(Vac<x>)Twc +ecn
= 0, (35)

where

ecn = (Vecx) f(x)
—%(Vec(x))T(Dl + D) (Vo () e
—%(vtsc(x))T(Dl + D)) Ve (x)
+%<Vec(x))TG(x)GT(x)(Vac<x>>Twc
+%<v8c<x>>TG<x)GT<x>Vec<x) (36)

is the residual error. Similarly, based on @,, we can derive
the approximate Hamiltonian function as

H(x, &) = Q)+ & Vo (x) f(x)
L OTVoL@(Dy + D) (Vo) o
+hT (@(x)h(p(x))
1 ~T T TA
+70 Vo (x)G(x)G (x)(Voe(x)) wc

1>

(37)

@ Springer



712 D. Liu et al.

Let the weight estimation error of the critic network be S
&c = w, — &,. Then, by combining (35) with (37), we can 5

. . . ~ L. Critic _ | Equation |_
obtain the expression of e, with respect to ., which is useful nétwork A (38)
. .. . ~ / V(x)

to derive the dynamic information of @,. remy L

When training the critic network, it is desired to design {ﬁ](x)}
@ to minimize E. = (1/ 2)82—66. The weights of the critic i, (x)

network are tuned based on the standard steepest descent
algorithm with an additional term introduced to guarantee
the boundedness of system state, i.e.,

5 IE,
w, = —« _—
‘ N oo

1 PR
+oasTl, iy, #2)Voe (x)(Dr + D2)VJs(x), - (38)

where o, > 01is the learning rate of the critic network, oy > 0
is the learning rate of the additional term, and Js(x) is the
Lyapunov function candidate given in Assumption 1. Here,
0E./0, = e.(de./dd.), where de./dd. can be derived
from (37). The function IT(x, it, i17) denotes the additional
stabilizing term defined based on the Lyapunov condition for
stability, i.e.,

[(x, iy, d2)
0, if Ji(x) = (VI )T F(x, i, i) <0,

1, else. (39)

Note that the second term in (38) plays an important role of
reinforcing the training process, which is conducted along the
negative gradient direction of (VJy(x))T F(x, i, ii2) with
respect to @, i.e.,

(VI GDTF(x, iy, 1)

RIOR
_ _(a_m)Ta(my(x))TF(x, i1, i)
9o il
_(aﬁ2 )T (VI )T F(x, iy, 1))
A, Ay
= SVo@Di + D)V (). (40)

The structural diagram of the online learning algorithm is
illustrated in Fig. 1, noticing that the solid line and the dashed
line represent the signal and the back-propagating path of the
critic network, respectively.

4.2 Stability analysis of the closed-loop system

Theorem 4 Consider the nonlinear system with two control
stations given by (2). Let the control inputs be provided by
(33) and the weights of the critic network be tuned by (38).
Then, the state x and the weight estimation error @, are
UUB. Moreover, the approximate control ii; given by (33)
converges to optimal control u;k with bound €;,, i = 1, 2.

@ Springer

Controlled system

A A
i,(x) i, (x)
Control Control
function 1 function 2

|

Fig. 1 Structural diagram of the online learning algorithm

Proof Here, we choose a Lyapunov function candidate as

1 _+. R
L(t) = —&] & + —J,(x), (41)
20 o

c

where J;(x) is given in Assumption 1. Note that the dynam-
ics of the weight estimation error can be obtained by con-
sidering the fact that cf)c = —é)c. Besides, the closed-
loop system dynamics is presented in (34). Thus, by denot-
ing that A = Vo.(x)(D; + D>)(Voe(x))T and B =
Vo (x)G(x)GT(x)(Voe(x))T, we can obtain the derivative
of L(t) with respect to time 7, i.e.,

L) = ~aTé+ 2 (Va0

Q. Q.

1 1
= —(@Ivoc(x)fc — Z@IA@ — Z@IB@C

1.1
+§wc Bw. + e g

1 1
x (cDCTVaC(x))'c - ECD;I—BCDC + EJ)IB%)

o A A~
*T(x, i1, #2)@] Vo (x)(Dy + D2)VJs(x)

c

A T.
—i—a—(VJs(x)) x. (42)

Here, we assume that A1, > Oand A1, > 0 are the lower and
upper bounds of the norm of matrix A. Similarly, assume that
Aom > 0and Ayps > 0O are the lower and upper bounds of the
norm of matrix B. In addition, assume that | Vo, (x)x| < A3,
|Bwe|l < Ag, and |lecy |l < As, where A3, A4, and A5 are all
positive constants. Then, we can find that

L(t) < —27ll@c)* + Agll@c)? + 22
o AN A~
ST (x, i1, l12)@] Vo (x)(Dy + D)V Jy(x)

(0%
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+ 2 (VI )T 43)
s ’
Qc
where
1 Lo 1 5\,
)"7 = g)"lm)"Zm - (§¢1 + E(pZ))‘IM
1

3 3
+33m (§¢§ + Rd)ﬁ)A%M, (44)

4

+(l TR i)xz + L2 45)
2 16¢7  16g2) T 4T
and @1, ¢2, ¢3, and ¢4 are constants chosen for the design
purpose. In the following, the two cases, i.e., [1(x, i1, i) =
0 and IT(x, i1, itp) = 1 will be considered, respectively.
Case 1 Tl(x,u1,12) = 0. Considering the fact that
(VJIs(x)Tx < 0, there exists a positive constant Ag such
that 0 < A6/ V(0| < =(VJs ()%, ie., (VI(0)) Tk <
—A6||VJs(x)||. Then, the inequality (43) becomes

A lx A+AA+(3+1+3)A2
8§ = ZA2MAS 3A4 - -5 — 3
2 87  8¢3

; a4 ~ 02 52 %
L(1) < =A7ll@c[I” + Aglloe |7 + A5 a—MIIVJs(x)II-
c

(46)
Hence, given the inequality
) Ag +\/4A2h7 + A3 .
el > = ) (47)
207
or
o (42207 + A2)
V()| = —2— £ 5 (48)

dog Aoy

holds, then L(7) < 0.

Case 2 T1(x, i1, tip) = 1. Assume that | D| + D3| < A9
and ||[Ve:(x)|| < A19, where Ag and Ajq are also positive
constants. Let A,, be the minimum eigenvalue of the pos-
itive definite matrix A(x); then we have A, ||V Jg (x)||2 <
(VJs (x))TA(x)VJs (x). By adding and subtracting the term
as(VI;(x) V(D) + Dy) Ve, (x)/(2a,) to the right-hand side
of (43) and according to Assumption 1, we have

L(t) < —Mll@c* + Aglldc)? + 22
U

o
==l VIO + = rohp0ol VL@l (49)
o 20
Hence, given the inequality
3 A A2 A3 aada?
locl = |22 4 |25 4 28y ZIORI0 8 g (50)
2)»7 )\7 4)\.7 160lc)um)n7
or
Xorio (@220 +22)  A3A2
IVl = + =2 8 2 120 =
iy 4otg Ay 1613,

(S

holds, then L(z) < 0.

Thus, if the inequality ||@.| > max(e/], @) = </ or
IVIs(x)|| > max(AB;, $B) = P holds, then L) < 0.
According to the standard Lyapunov extension theorem
(Lewis et al. 1999), we can derive that x and @, are UUB.

Next, according to (32) and (33), we have

uf — iy = —%R;‘g,-T(m((vU(x))chc +Ve(x),  (52)

wherei = 1, 2. Assume that | R; || < Ry1, lgi (0l < gims
and | Vo (x)|| < ogm. Then, we can further obtain

R I __
lluf — ;| < ERM,}giM(UdMﬂf + A10) = Eius (53)

where i = 1, 2. This completes the proof. O

5 Simulation examples

Example 1 Consider the continuous-time nonlinear system
with two control stations and dynamic uncertainty

. —X1 — 2x2 " 1
= X1 — 4xp — cos x| sinx22 3"
2
+ |:1 :| uy + Af(x), (54)

where x = [xl,xz]T and Af(x) = [px; sinxz,O]T with
p € [—0.5,0.5]. We choose G(x) = [I,O]T and ¢(x) =
x. Then, we have d(¢(x)) = pxisinx;. Hence, we can
select h(p(x)) = 0.5x1sinxp. Considering the nominal
system with modified cost function, we let Q(x) = xTx,
Ry = R, = I, where [ is an identity matrix with suit-
able dimension. For the purpose of solving the decentralized
optimal control problem, a critic network is constructed as

Vix) = (I)clx% + Werx1x2 + L?)C3x%.

In this example, we let the initial state of the controlled
plant be xo = [1, —1]7. The Lyapunov function candidate
Jg(x) can be obtained by selecting a quadratic polynomial,
suchas Jg(x) = (l/2)xTx. Set the learning rates as o, = 0.8
and oy = 0.5. When conducting the online optimal con-
trol algorithm, an exploration noise described by 4 (¢) =
sin2(¢) cos(r) +sin%(21) cos(0.17) +sin?(—1.2¢) cos(0.57) +
sin’ (¢) is introduced to satisfy the persistency of excitation
condition. The evolution of system state is illustrated in Fig.
2. After a learning session, the weights of the critic network
converge to [0.2736, —0.1035, 0.1285]T as shown in Fig. 3,
where the legends wg¢1, wqc2, and wge3 represent the ele-
ments @1, @c2, and @3, respectively. It should be pointed
out that the initial weights of the critic network are all set to
zero, which implies that the initial stabilizing control is not
needed in the developed approach.
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Fig. 3 Convergence of weight vector of the critic network

Next, based on the converged weight vector, the scalar
parameter p = —0.5 is chosen for evaluating the control per-
formance. The robust decentralized controllers when choos-
ing (my = 1,1 = 1) and () = 2, 1, = 2) are applied
to system (54), respectively. The system trajectories of the
first 10 seconds are presented in Fig. 4, which verifies the
conclusions of Theorems 2 and 3.

Example 2 Consider the continuous-time nonlinear system
described by

i —0.5x1 + x2 + 0.5x3 0.
~ | —sinxj cosxa — 0.5x2 — 0.5x3 —0.5 "

4] |+ aron 59)

where x = [x1, xz]T is the state vector. The system uncer-

tainty is Af(x) = [p1x1 sinxz,pzxf COsz]T with p; €
[-0.5,0.5] and p>» € [—0.2,0.2]. In this example, we

@ Springer

Time (s)

Fig. 5 Evolution of system state during the experiment

also choose ¢(x) = x. However, according to the form of
dynamic uncertainty, the G(x) and d(¢(x)) are chosen as

G(x) = [é ?} d(p() = [”1’” - }

pgxf COS X7 (56)

Then, we can select (¢ (x)) = [0.5x1 sin x2, O.fo cos xz]T.
Other parameters are set the same as Example 1. After carry-
ing out a sufficient learning session in an online fashion, the
evolution of system state during the experiment is given in
Fig. 5. In addition, the weights of the critic network converge
to [0.9496, 0.1291, 1.0650]T, which can be seen clearly by
observing Fig. 6.

Next, using the converged weight vector, the scalar para-

meters p; = 0.5 and p, = —0.2 are given for evaluating
the control performance. Based on the decentralized optimal
controller, i.e., the case 71 = 1 and mp = 1, the system

trajectory of system (55) during the first 20 s is illustrated
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Fig. 7 The state trajectory (p; = 0.5, pp = —0.2)

in Fig. 7. Remarkably, as the statement of Theorem 3, the
robust decentralized stabilization of system (55) also can be
achieved when choosing 71 = 2 and m, = 3 (see Fig. 7).
To summarize, these results verify the effectiveness of the
present control approach.

6 Conclusions

A novel strategy for robust decentralized stabilization of
uncertain nonlinear systems is established. This is accom-
plished by properly modifying the cost function to account
for system uncertainty so that the solution of the transformed
decentralized optimal control problem is the robust decen-
tralized controller of the uncertain nonlinear system. A critic
network is constructed to solve the modified HIB equation

online. Two numerical examples are provided to reinforce
the theoretical results.

Actually, the extension of the developed method to the
case that the original system contains N control stations can
also be obtained. Consider the nonlinear system with N con-
trol stations

2(t) = Fx(), ur(1), uz(t), ..., un (1))

N
= f(X(t))+Zgi(X(t))ui(t)+Af(x(t))- (57)

i=1

The corresponding nominal system is
X(t) = F(x(0), ur(t), uz (1), ..., un(r))

N
= fx@®)+ D gix@)ui(t). (58)

i=1

Under such circumstances, based on the established online
optimal control strategy, we can derive N state feedback con-
trol functions u;(x), i = 1,2,..., N, such that the con-
trol pair (u1(x), uz(x), ..., un(x)) achieves robust decen-
tralized stabilization of system (57).
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