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Abstract In this paper, a novel value iteration adaptive
dynamic programming (ADP) algorithm, called “generalized
value iteration ADP” algorithm, is developed to solve infi-
nite horizon optimal tracking control problems for a class of
discrete-time nonlinear systems. The developed generalized
value iteration ADP algorithm permits an arbitrary positive
semi-definite function to initialize it, which overcomes the
disadvantage of traditional value iteration algorithms. Con-
vergence property is developed to guarantee that the iterative
performance index function will converge to the optimum.
Neural networks are used to approximate the iterative per-
formance index function and compute the iterative control
policy, respectively, to implement the iterative ADP algo-
rithm. Finally, a simulation example is given to illustrate the
performance of the developed algorithm.
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1 Introduction

Optimal tracking control of nonlinear systems has always
been the key focus in the control field in the latest several
decades (Rugh 1971; Mohler and Kolodziej 1981; Biswas et
al. 2014; Fortier et al. 2014; Rubio 2014). Although dynamic
programming is a powerful tool to solve the optimization and
optimal control problems for nonlinear systems (Kundu et al.
2014; Kouramas et al. 2013; Chang 2013), it is often compu-
tationally untenable to run true dynamic programming algo-
rithms, i.e., as a result of the well-known “curse of dimen-
sionality” (Bellman 1957). Adaptive dynamic programming
(ADP), proposed by Werbos (1977, 1991), is an effective
adaptive learning control approach to solve optimal control
problems forward-in-time (Liu et al. 2005, 2008; Ni and He
2013; Prokhorov andWunsch 1997;Wang et al. 2011;Xu and
Jagannathan 2013; Heydari and Balakrishnan 2013; Wei et
al. 2014a). There are several synonyms used for ADP includ-
ing “adaptive critic designs” (Werbos 1991; Al-Tamimi et
al. 2007), “adaptive dynamic programming” (Murray et al.
2002; Wang et al. 2009), “approximate dynamic program-
ming” (Werbos 1992; Liu and Wei 2014a), “neural dynamic
programming” (Enns and Si 2003), “neuro-dynamic pro-
gramming” (Bertsekas and Tsitsiklis 1996), and “reinforce-
ment learning” (Si and Wang 2001; Sutton and Barto 1998).
Iterative methods are important methods in ADP to obtain
the optimal control law iteratively and have received lots of
attention (Bhasin et al. 2013; Liu and Wei 2014a; Song et
al. 2013, 2014; Wei and Liu 2012, 2013; Wei et al. 2013;
Wei and Liu 2014b, c, d; Wei et al. 2014b; Zhang et al. 2013,
2014).

There are two main iterative ADP algorithms which are
based on policy and value iterations (Lewis et al. 2012). Pol-
icy iteration algorithms for optimal control of continuous-
time systems were given in Abu-Khalaf and Lewis (2005),
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Murray et al. (2002), Zhang et al. (2011). In Liu and Wei
(2014b), policy iteration algorithm for discrete-time systems
was developed. Value iteration algorithms are a class of the
most important iterative ADP algorithms (Al-Tamimi et al.
2008; Bertsekas 2007; Powell 2007;Wei et al. 2009;Wei and
Liu 2014a, b). Value iteration algorithms of ADP were given
in Bertsekas and Tsitsiklis (1996), where the initial admissi-
ble control law of the policy iteration algorithm is avoided.
In Al-Tamimi et al. (2008) and Lincoln and Rantzer (2006),
starting from a zero initial performance index function, it is
proven that the iterative performance index function is a non-
decreasing sequence and converges to the optimum. In 2008,
Zhang et al. applied value iteration algorithm to solve optimal
tracking control problems for nonlinear systems. In Zhang et
al. (2009), value iteration of ADP, which was referred to
as dual heuristic dynamic programming (DHP), was imple-
mented using RBF neural networks.

However, in the previous value iterations, to guarantee the
monotonicity of value iteration algorithms, nearly all the tra-
ditional value iteration algorithms are required to start from
a zero initial condition. These value iteration algorithms are
called “traditional value iteration algorithms.” To the best of
our knowledge, there are no discussions on the value iteration
algorithms with non-zero initial conditions. This motivates
our research.

In this paper, inspired by Lincoln and Rantzer (2006),
Liu and Wei (2013), Zhang et al. (2008), a new value itera-
tion ADP algorithm, called “generalized value iteration algo-
rithm,” is developed for discrete-time nonlinear systems.
First, it will show that the developed value iteration algo-
rithm permits to start from an arbitrary positive semi-definite
function. By system transformations, the optimal tracking
problem is transformed into an optimal regulation problem.
Next, the convergence properties of the developed value iter-
ation algorithm are presented to guarantee that the iterative
performance index function is convergent to the optimum.
Implementing the algorithms by neural networks, the effec-
tiveness of the developed algorithm will be justified by sim-
ulation results.

This paper is organized as follows: In Sect. 2, the problem
statement is presented. In Sect. 3, the generalized value iter-
ation algorithm will be derived. The convergence properties
will also be analyzed in this section. In Sect. 4, the neural
network implementation for the optimal control scheme is
discussed. In Sect. 5, a simulation example is given to demon-
strate the effectiveness of the proposed algorithm. Finally, in
Sect. 6, the conclusion is drawn.

2 Problem statement

Consider the following class of nonlinear systems with the
form

xk+1 = F(xk, uk), (1)

where xk ∈ �n is the system state and uk ∈ �m is the
control input. For infinite-time optimal tracking problem, the
objective is to design optimal control u(xk) for system (1)
such that the state xk tracks the specified desired trajectory
ηk ∈ �n, k = 0, 1, . . .. In this paper, we assume that there
exists a feedback control ue,k , which satisfies the following
equation:

ηk = F(ηk, ue,k), (2)

where ue,k is called the desired control.

Remark 1 It should be pointed out that for a large class of
nonlinear systems, there exists a feedback control ue,k that
satisfies (2). For example, for all the affine nonlinear systems
with expression

xk+1 = f (xk) + g(xk)uk, (3)

where g(xk) is invertible, the desired control ue,k can be
expressed as

ue,k = g−1(ηk)(ηk+1 − f (ηk)), (4)

where g−1(ηk)g(ηk) = I and I ∈ �m×m is the identity
matrix. Hence, the investigation of the optimal control prob-
lem for system (1) is valuable.

Define the tracking error as

zk = xk − ηk . (5)

Define the following quadratic performance index

J (z0, u0) =
∞∑

k=0

{
zT

k Qzk + (uk − ue,k)
T R(uk − ue,k)

}
,

(6)

where Q ∈ �n×n and R ∈ �m×m are positive definite matri-
ces and u0 = (v0, v1, . . .). Let

U (zk, vk) = zT
k Qzk + vT

k Rvk (7)

be the utility function, where vk = uk − ue,k and ue,k is the
desired control that satisfies (2).

We will study optimal tracking control problems for (1).
The goal of this paper is to find an optimal tracking control
scheme which tracks the desired trajectory ηk and simulta-
neously minimizes the performance index function (6). The
optimal performance index function is defined as

J ∗(zk) = inf
vk

{
J (zk, vk)

}
, (8)
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where vk = (vk, vk+1, . . .). According to Bellman’s princi-
ple of optimality, J ∗(zk) satisfies thediscrete-timeHamilton–
Jacobi–Bellman (HJB) equation

J ∗(zk) = inf
vk

{
U (zk, vk) + J ∗(F(zk, vk))

}
. (9)

Then, the optimal control law is expressed as

v∗(zk) = arg inf
vk

{
U (zk, vk) + J ∗(zk+1)

}
. (10)

Hence, the HJB Eq. (9) can be written as

J ∗(zk) = U (zk, v
∗(zk)) + J ∗(zk+1). (11)

Generally, J ∗(zk) is a high nonlinear and non-analytic
function, which cannot be obtained by directly solving the
HJB equation (11). In this paper, a new generalized value
iteration is developed to obtain J ∗(zk) iteratively with new
convergence analysis.

3 Generalized value iteration algorithm of ADP for
optimal tracking problems

In this section, a new generalized value iteration algorithm
is developed to obtain the optimal tracking control law for
nonlinear systems (1). The goal of the present iterative ADP
algorithm is to construct an optimal control law u∗(zk),
k = 0, 1, . . ., which moves an arbitrary initial state x0 to
the desired trajectory ηk , and simultaneously minimizes the
performance index function. Convergence property will be
analyzed to guarantee that the performance index functions
converge to the optimum.

3.1 Derivation of the generalized value iteration algorithm

In the developed generalized value iteration algorithm, the
performance index function and control law are updated by
iterations, with the iteration index i increasing from 0 to
infinity.

For ∀zk ∈ �n , let the initial function�(zk) be an arbitrary
positive semi-definite function. Then, let the initial perfor-
mance index function

V0(zk) = �(zk), (12)

and the iterative control law v0(zk) can be computed as fol-
lows:

v0(zk) = argmin
vk

{U (zk, vk) + V0(zk+1)}
= argmin

vk
{U (zk, vk) + V0(F(zk, vk))}, (13)

where V0(zk+1) = �(zk+1). The performance index func-
tion can be updated as

V1(zk) = U (zk, v0(zk)) + V0(F(zk, v0(zk)). (14)

For i = 1, 2, . . ., the iterative ADP algorithm will iterate
between

vi (zk) = argmin
vk

{U (zk, vk) + Vi (zk+1)}
= argmin

vk
{U (zk, vk) + Vi (F(zk, vk))} , (15)

and

Vi+1(zk) = min
vk

{U (zk, vk) + Vi (zk+1)}
= U (zk, vi (zk)) + Vi (F(zk, vi (zk)). (16)

Remark 2 In the traditional value iteration algorithms, such
as Al-Tamimi et al. (2007, 2008), Bertsekas (2007), Lin-
coln and Rantzer (2006), Powell (2007), Zhang et al. (2008,
2009), the initial performance index function is required to
be zero. From (12)–(16), the generalized value iteration ADP
algorithmpermits an arbitrary positive semi-definite function
to initialize it. Hence, we can say that the traditional value
iteration algorithms are just special cases of the developed
generalized value iteration algorithm.

From the generalized iterative ADP algorithm (12)–(16),
we can see that the iterative performance index function
Vi (zk) is used to approximate J ∗(zk) and the iterative control
law vi (zk) is used to approximate u∗(zk). Therefore, when
i → ∞, the algorithm should be convergent which makes
Vi (zk) and vi (zk) converge to the optimal ones. In the next
subsection, we will show the properties of the generalized
value iterative ADP algorithm.

3.2 Properties of the generalized value iteration algorithm

In Al-Tamimi et al. (2008), Lincoln and Rantzer (2006), for
zero initial performance index function, it was proven that
the iterative performance index function is monotonically
non-decreasing and converges to the optimum. However, for
arbitrary positive semi-definite initial functions, the analy-
sis method for the traditional value iteration algorithms is
invalid. In Lincoln and Rantzer (2006), Liu and Wei (2013),
the upper bound of the iterative performance index func-
tion were use to analyze the convergence of their algorithms
instead of analyzing the value of iterative performance index
function. In this paper, inspired by Lincoln and Rantzer
(2006), Liu and Wei (2013), new convergence analysis for
the generalized value iteration algorithm is developed in this
section.
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Theorem 1 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). Let �, �, ς and ς be constants that
satisfy

0 < � ≤ � < ∞ (17)

and

0 ≤ ς ≤ ς < 1, (18)

respectively. If for ∀zk , the constants �, �, ς and ς satisfy

�U (zk, vk) ≤ J ∗(F(zk, vk)) ≤ �U (zk, vk) (19)

and

ς J ∗(zk) ≤ V0(zk) ≤ ς J ∗(zk) (20)

uniformly, we have the iterative performance index function
Vi (zk) satisfies

(
1 + ς − 1

(1 + � −1)
i

)
J ∗(zk) ≤ Vi (zk)

≤
(
1 + ς − 1

(1 + �−1)
i

)
J ∗(zk).

(21)

Proof The theorem can be proved in two steps.
(1) Prove the left side of the inequality (21).
Mathematical induction is employed to prove the conclu-

sion. Let i = 1. We have

V1(zk) =min
vk

{U (zk, vk) + V0(zk+1)}

≥min
vk

{
U (zk, vk) + ς J ∗(zk+1)

}

≥min
vk

{(
1 + �

ς − 1

1 + �

)
U (zk, vk)

+
(

ς − ς − 1

1 + �

)
J ∗(zk+1)

}

≥
(
1 + ς − 1

(1 + � −1)

)
min
vk

{
U (zk, vk) + J ∗(zk+1)

}

=
(
1 + ς − 1

(1 + � −1)

)
J ∗(zk). (22)

Assume the conclusion holds for i = l − 1, l = 1, 2, . . ..
Then for i = l, we have

Vl+1(zk)

=min
vk

{U (zk, vk) + Vl(zk+1)}

≥min
vk

{
U (zk, vk) +

(
1 + ς − 1

(1 + � −1)
l−1

)
J ∗(zk+1)

}

≥
(
1 + ς − 1

(1 + � −1)l

)
min
vk

{
U (zk, vk) + J ∗(zk+1)

}

=
(
1 + ς − 1

(1 + � −1)l

)
J ∗(zk). (23)

(2) Prove the right side of the inequality (21).
We also use mathematical induction to prove the conclu-

sion. Let i = 1. We have

V1(zk) =min
vk

{U (zk, vk) + V0(zk+1)}
≤min

vk

{
U (zk, vk) + ς J ∗(zk+1)

}

≤min
vk

{
U (zk, vk) + ς J ∗(zk+1)

− ς − 1

(1 + �)

(
J ∗(zk+1) − �U (zk, vk)

)}

≤
(
1 + ς − 1

(1 + � −1)

)
min
vk

{
U (zk, vk) + J ∗(zk+1)

}

=
(
1 + ς − 1

(1 + � −1)

)
J ∗(zk). (24)

Assume that the conclusion holds for i = l −1, l = 1, 2, . . ..
Then for i = l, we have

Vl+1(zk)

=min
vk

{U (zk, vk) + Vl(zk+1)}

≤min
vk

{
U (zk, vk) +

(
1 + ς − 1

(1 + �−1)
l−1

)
J ∗(zk+1)

}

≤
(
1 + ς − 1

(1 + �−1)l

)
min
vk

{
U (zk, vk) + J ∗(zk+1)

}

=
(
1 + ς − 1

(1 + �−1)l

)
J ∗(zk). (25)

The proof is completed. 
�
Theorem 2 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). Let �, �, ς and ς be constants that
satisfy (17) and

0 ≤ ς ≤ 1 ≤ ς < ∞. (26)

If for ∀zk , the constants �, �, ς , and ς make (19) and (20) hold
uniformly. Then, we have the iterative performance index
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function Vi (zk) satisfies

(
1 + ς − 1

(1 + � −1)
i

)
J ∗(zk) ≤ Vi (zk)

≤
(
1 + ς − 1

(1 + � −1)
i

)
J ∗(zk).

(27)

Proof The left side of inequality (27) can be proven accord-
ing to (22) and (23). Nowwe prove the right side of inequality
(27) by mathematical induction. Let i = 0. We have

V1(zk) =min
vk

{U (zk, vk) + V0(F(zk, vk))}

≤min
vk

{
U (zk, vk) + ς J ∗(F(zk, vk))

+ ς − 1

(1 + �)

(
�U (zk, vk) − J ∗(F(zk, vk))

) }

≤
(
1 + ς − 1

(1 + � −1)

)
J ∗(zk). (28)

Assume that the conclusion holds for i = l −1, l = 1, 2, . . ..
Then for i = l, we have

Vl+1(zk) =min
vk

{U (zk, vk) + Vl(F(zk, vk))}

≤min
vk

{
U (zk, vk)

+
(
1 + ς − 1

(1 + � −1)
l−1

)
J ∗(F(zk, vk))

}

≤
(
1 + ς − 1

(1 + � −1)l

)
J ∗(zk). (29)

The proof is completed. 
�

Theorem 3 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). Let �, �, ς and ς be constants that
satisfy (17) and

1 ≤ ς ≤ ς < ∞, (30)

respectively. If for ∀zk , the constants �, �, ς and ς make (19)
and (20) hold uniformly, then we have the iterative perfor-
mance index function Vi (zk) satisfies (21).

Theorem 4 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). Let �, �, ς and ς be constants that
satisfy (17) and

0 ≤ ς ≤ ς < ∞, (31)

respectively. If for ∀zk , the constants �, �, ς and ς make
(19) and (20) hold uniformly, then we have the iterative per-
formance index function Vi (zk) convergent to the optimal
performance index function J ∗(zk), i.e.,

lim
i→∞ Vi (zk) = J ∗(zk). (32)

Proof According to (21) and (27), respectively, let i → ∞
and we can obtain

lim
i→∞

{(
1 + ς − 1

(1 + � −1)
i

)
J ∗(zk)

}

= lim
i→∞

{(
1 + ς − 1

(1 + �−1)
i

)
J ∗(zk)

}

= lim
i→∞

{(
1 + ς − 1

(1 + � −1)
i

)
J ∗(zk)

}

=J ∗(zk). (33)

The proof is completed. 
�

Remark 3 From Theorem 4, we can see that the iterative
performance index function will converge to the optimum as
i → ∞, which is independent from the initial performance
index function �(zk). Furthermore, for arbitrary constants
�, �, ς and ς that satisfy (17) and (30), respectively, the iter-
ative performance index function Vi (zk) can be guaranteed
to converge to the optimum as i → ∞. Hence the estimation
of the constants �, �, ς and ς can be avoided.

Corollary 1 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). If for ∀zk , the initial performance
index function �(zk) ≤ J ∗(zk), then for ∀i ≥ 0, we have

Vi (zk) ≤ J ∗(zk) (34)

holds.

Proof The statement can be proven by mathematical induc-
tion. The conclusion holds obviously for i = 0. For i = 1,
as �(zk) ≤ J ∗(zk), we have

V1(zk) = U (zk, v0(zk)) + �(zk+1)

= min
vk

{U (zk, vk) + �(zk+1)}
≤ min

vk

{
U (zk, vk) + J ∗(zk+1)

}

= J ∗(zk). (35)

Assume that the conclusion holds for i = l −1, l = 1, 2, . . ..
Then, for i = l, we have
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Vl+1(zk) = U (zk, vl(zk)) + Vl(zk+1)

= min
vk

{U (zk, vk) + Vl(zk+1)}
≤ min

vk

{
U (zk, vk) + J ∗(zk+1)

}

= J ∗(zk), (36)

which complete the proof. 
�
Corollary 2 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). If for ∀zk , the initial performance
index function �(zk) ≥ J ∗(zk), then for ∀i ≥ 0, we have
Vi (zk) ≥ J ∗(zk) holds.

Theorem 5 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). If for ∀zk ∈ �n, we have

V1(zk) ≤ V0(zk) (37)

holds, where V0(zk) is expressed by (12), then the iterative
performance index function Vi (zk) is a monotonically non-
increasing sequence for ∀ i ≥ 0, i.e.,

Vi+1(zk) ≤ Vi (zk). (38)

Proof We prove this by mathematical induction. First, we let
i = 1. According to (16) and (37), we have

V2(zk) = min
vk

{U (zk, vk) + V1(zk+1)}
≤ min

vk
{U (zk, vk) + V0(zk+1)}

= V1(zk). (39)

Assume the conclusion holds for i = l − 1, l = 1, 2, . . .;
then for i = l we have

Vl+1(zk) = min
vk

{U (zk, vk) + Vl(zk+1)}
≤ min

vk
{U (zk, vk) + Vl−1(zk+1)}

= Vl(zk). (40)

The proof is completed. 
�
Theorem 6 For i = 0, 1, . . ., let Vi (zk) and vi (zk) be
obtained by (12)–(16). If for ∀zk ∈ �n, we have

V1(zk) ≥ V0(zk) (41)

holds, where V0(zk) is expressed by (12), then the iterative
performance index function Vi (zk) is a monotonically non-
decreasing sequence for ∀ i ≥ 0, i.e.,

Vi+1(zk) ≥ Vi (zk) (42)

for ∀ i ≥ 1.

Remark 4 If for ∀zk ∈ �n , let the initial performance index
function V0(zk) ≡ 0, and then the generalized value iter-
ation algorithm is reduced to the traditional value iteration
algorithms in Al-Tamimi et al. (2008), Zhang et al. (2008). In
the traditional value iteration algorithms, the iterative perfor-
mance index function is monotonically non-decreasing and
converges to the optimum. In the generalized value itera-
tion algorithm, the iterative performance index function can
be monotonically non-increasing, non-decreasing and non-
monotonically converge to the optimum. So, we can say that
the convergence property of the traditional value iteration
algorithms is a special case of the generalized value iteration
algorithm.

4 Implementation of the generalized value iteration
algorithm by neural networks

In this section, three-layer back-propagation (BP) neural net-
works are introduced to approximate Vi (zk) and compute
the control law vi (zk), respectively. Assume that the number
of hidden layer neurons is denoted by l. The weight matrix
between the input layer and hidden layer is denoted by Y,
and the weight matrix between the hidden layer and output
layer is denoted by W . Then the output of three-layer neural
network is represented by

F̂(X, Y, W ) = W T σ(Y T X), (43)

where σ(Y T X) ∈ Rl , [σ(z)]i = e i − e− i

e i + e− i
, i = 1, . . . l,

are the activation function.
There are two networks, which are critic and action net-

works, respectively, to implement the generalized value iter-
ation algorithm. The whole structure diagram is shown in
Fig. 1.

Fig. 1 The structure diagram of the algorithm
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4.1 The critic network

The critic network is used to approximate the performance
index function Vi (zk). The output of the critic network is
denoted as

V̂i (zk) = W T
ci σ(Y T

ci zk). (44)

The target function can be written as

Vi+1(zk) = U (zk, v̂i (zk)) + V̂i (zk+1). (45)

Then, we define the error function for the critic network as

eci (k) = V̂i+1(zk) − Vi+1(zk). (46)

The objective function to be minimized in the critic network
training is

Eci (k) = 1

2
e2ci (k). (47)

So the gradient-based weight update rule (Si and Wang
2001) for the critic network is given by

wc(i+1)(k) = wci (k) + �wci (k), (48)

�wci (k) = αc

[
−∂ Eci (k)

∂wci (k)

]
, (49)

∂ Eci (k)

∂wci (k)
= ∂ Eci (k)

∂ V̂i (zk)

∂ V̂i (zk)

∂wci (k)
, (50)

where αc > 0 is the learning rate of critic network andwci (k)

is the weight vector of the critic network.

4.2 The action network

In the action network, the state error zk is used as the input to
create the optimal control law as the output of the network.
The output can be formulated as

v̂i (zk) = W T
aiσ(Y T

ai zk). (51)

The target of the output of the action network is given by
(15). So we can define the output error of the action network
as

eai (k) = v̂i (zk) − vi (zk). (52)

Theweights of the action network are updated tominimize
the following performance error measure:

Eai (k) = 1

2
eT

ai (k)eai (k). (53)

The weight updating algorithm is similar to the one for the
critic network. By the gradient descent rule, we can obtain

wa(i+1)(k) = wai (k) + �wai (k), (54)

�wai (k) = βa

[
−∂ Eai (k)

∂wai (k)

]
, (55)

∂ Eai (k)

∂wai (k)
= ∂ Eai (k)

∂eai (k)

∂eai (k)

∂vi (k)

∂vi (k)

∂wai (k)
(56)

where βa > 0 is the learning rate of action network.
The generalized value iteration algorithm implemented by

action and critic networks is explained step by step and shown
in Algorithm 1.

Algorithm1Neural network implementation for generalized
value iteration.
Initialization:
1: Given a desired trajectory ηk .
2: Collect an array of system data for system (1).
3: Give a positive semi-definite function �(xk).
4: Give the computation precision ε > 0.
Iteration:
5: According to ηk and xk , obtain the tracking error zk .
6: Obtain the desired control law ue,k by (2).
7: Let i = 0 and let V0(zk) = �(xk).
8: Train the action and critic networks to obtain v0(zk) and V1(zk) by

v0(zk) = argmin
vk

{U (zk , vk) + V0(zk+1)}
= argmin

vk
{U (zk , vk) + V0(F(zk , vk))}

and

V1(zk) = U (zk , v0(zk)) + V0(F(zk , v0(zk)),

respectively.
9: Let i = i + 1.
10: Train the action and critic networks to obtain vi (zk) and Vi+1(zk)

by

vi (zk) = argmin
vk

{U (zk , vk) + Vi (zk+1)}
= argmin

vk
{U (zk , vk) + Vi (F(zk , vk))} ,

and

Vi+1(zk) = min
vk

{U (zk , vk) + Vi (zk+1)}
= U (zk , vi (zk)) + Vi (F(zk , vi (zk)).

11: If |Vi+1(zk) − Vi (zk)| ≤ ε, then goto next step. Otherwise, goto
Step 9.

12: Obtain u∗
k by u∗

k = vi (zk) + ue,k .
13: return Vi (zk) and u∗

k .
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5 Simulation study

In this section, the performance of our developed algorithm
will be justified by simulation results.

Example Our example is chosen as the example in Zhang et
al. (2008). Consider the following nonlinear system:

xk+1 = f (xk) + guk (57)

where xk = [ x1k x2k ]T and uk = [ u1k u2k ]T . Let the sys-
tem function be expressed as

f (xk) =
[
0.2x1k exp(x22k)

0.3x32k

]
, g =

[
0.2 0
0 0.2

]
.

The desired trajectory is set to

ηk =
[
sin

(
k + π

2

)
0.5 cos(k)

]T
. (58)

According to (57) and (58), we can easily obtain the desired
control

ue,k = −
[
5 0
0 5

] (
ηk+1 −

[
0.2η1k exp(η22k)

0.3η32k

])
. (59)

The performance index function is defined as in (6), where
Q = R = I ∈ �2×2 and I denotes the identity matrix.

We use neural networks to implement the generalized
value iteration ADP algorithm. The structures of the critic
and the action networks are chosen as 2–8–1 and 2–8–2,
respectively. We choose a random array of state variable
in [−1, 1] to train the neural networks. For each iterative
step, the critic network and the action network are trained
for 2000 steps under the learning rate α = 0.005 so that the
approximation error limit 10−6 is reached. The generalized
value iteration algorithm runs for 30 iterations to guarantee
the convergence of the iterative performance index function.
To illustrate the effectiveness of the algorithm, four differ-
ent initial performance index functions are considered. Let
the initial performance index function be the quadratic form
which are expressed by� j (zk) = zT

k Pj zk , j = 1, . . . , 4. Let
P1 = 0. Let P2–P4 be initialized by positive definitematrices
with the forms P2 = [9.07, −0.26;−0.26, 11.62], P3 =
[10.48, 2.16; 2.16, 13.24], and P4 = [ 11.59, 0.61; 0.61,
13.40 ], respectively.

According to Theorem 4, we know that for arbitrary pos-
itive semi-definite function, the iterative performance index
function will converge to the optimum. The curve of the iter-
ative performance index functions under the four different
initial performance index functions � j (zk), j = 1, . . . , 4,
are displayed in Fig. 2, which justify the convergence prop-
erty of our developed algorithm.

0 10 20 30
0

1

2

3

4

5

6

Iteration steps
(a)

P
er

fo
rm

an
ce

 in
de

x 
fu

nc
tio

n

0 10 20 30
5

5.1

5.2

5.3

5.4

5.5

Iteration steps
(b)

P
er

fo
rm

an
ce

 in
de

x 
fu

nc
tio

n

0 10 20 30
5

6

7

8

9

Iteration steps
(c)

P
er

fo
rm

an
ce

 in
de

x 
fu

nc
tio

n

0 10 20 30
5

5.5

6

6.5

7

Iteration steps
(d)

P
er

fo
rm

an
ce

 in
de

x 
fu

nc
tio

n

Fig. 2 The trajectories of the iterative performance index functions
with � j (zk), j = 1, 2, 3, 4. a �1(zk). b �2(zk). c �3(zk). d �4(zk)
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Fig. 3 The state and desired state trajectories

The optimal state and desired trajectories are shown in
Fig. 3. The tracking error trajectories are shown in Fig. 4.
The optimal control trajectories are shown in Fig. 5.

Remark 5 For P1 = 0,wehaveV 1
0 (zk) ≡ 0. The generalized

value iteration algorithm is then reduced to the traditional
value iteration algorithm in Zhang et al. (2008). In Theorem
2 in Zhang et al. (2008), it shows that the iterative perfor-
mance index function will be monotonically non-decreasing
and converge to the optimum. From the simulation results
we can see that the convergence properties of the traditional
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Fig. 4 The tracking error
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Fig. 5 The trajectories of the optimal controls

value iteration algorithm can be verified by the generalized
value iteration algorithm.

6 Conclusion

In this paper, an effective generalized value iteration ADP
algorithm is investigated to find the infinite horizon optimal
tracking control law for a class of discrete-time nonlinear
systems. In the developed iterative ADP algorithm, the ini-
tial performance index function can be chosen as an arbitrar-

ily positive semi-definite function. Convergence property is
developed to guarantee that the iterative performance index
function will converge to the optimum. Neural networks are
used to implement the proposed ADP algorithm. Finally, a
simulation example is given to illustrate the performance of
the developed algorithm.
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