
Online Reinforcement Learning by Bayesian

Inference

Zhongpu Xia, Dongbin Zhao

The State Key Laboratory of Management and Control of Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Email: zhongpu.xia@gmail.com.dongbin.zhao@ia.ac.cn

Abstract-Policy evaluation has long been one of the core
issues of the online reinforcement learning, especially in the
continuous state domain. In this paper, the issue is addressed
by employing Gaussian processes to represent the action value
function from the probability perspective. By modeling the return
as a stochastic variable, the action value function can sequentially
update according to observed variables such as state and reward
by Bayesian inference during the policy evaluation. The update
rule shows that it is a temporal difference learning method
with the learning rate determined by the uncertainty of a
collected sample. Incorporating the policy evaluation method
with the E-greedy action selection method, we propose an online
reinforcement learning algorithm referred as to Bayesian-SARSA.
It is tested on some benchmark problems and the empirical results
verifies its effectiveness.

I. INTRODUCTION

Reinforcement learning simulates the self-learning mecha
nism of an organism which learns from its interaction with the
environment [1]. It is able to learn an available control policy
based on the collected data. This metric makes it a research
hotspot in the control community [2]-[4]. Nevertheless, how
to calculate the value function for a given control policy from
collected samples is the core issue in its application, especially
in the continuous state domain [5], [6].

In the continuous state domain, it is infeasible to represent
the value function explicitly, and so a class of parametric
approximations such as multi-layer perceptron [7]-[9], linear
approximation architecture [10], [11] is mainly adopted to ap
proximate the value function. However, features selection and
architectures are hard to manipulate, and require experience
and repeated testing on collected data. Otherwise, it will result
in underfitting or overfitting [12].

Fortunately, these problems can be avoided with a non
parametric approximation architecture since the number of its
features grows along with the collection of data. Moreover,
non-parametric approximation architectures have been proven
to be consistent with mild assumptions for the reinforcement
learning [13], [14]. Gaussian process is one of the kernel ma
chines and provides a state-of-the-art non parametric Bayesian
regression framework commonly used in machine learning
[15]. It is able to represent not only the estimation of the target
value, but also the uncertainty of the estimation. Rasmussen
al. et. [16]-[18] employed Gaussian processes to identify the
model of an underlying system and the value function thus can

This work is supported by National Natural Science Foundation of China
(NSFC) under Grants No. 61273136 and No. 61034002.

978-1-4799-1959-8/15/$31.00 @2015 IEEE

be solved in a closed form, but extra computation is required
to identify the model. Represented the value function directly
by Gaussian Processes, Engel al. et. proposed the Gaussian
process temporal difference (GPTD) learning algorithm [19].
Furthermore, they illustrated that GPTD inherited the metrics
of the temporal difference learning which was endowed with
a low variance and that Monte Carlo learning could efficiently
use the collected data. Previous works commonly focused on
addressing the policy evaluation problem from the perspective
of regression.

In this paper, Gaussian processes are employed to represent
the action value function to solve the issue of the policy
evaluation from the probability perspective. The return of the
collected data is modeled as a stochastic variable with its
expectation as the action value function. Based on such a style
of modeling, the action value function can sequentially update
according to the collected data through Bayesian inference. It
is the first contribution of this paper. Moreover, an online rein
forcement learning algorithm, referred to as Bayesian SARSA,
is proposed by incorporating the update rule of the action value
function with the E-greedy action selection method. It is the
second contribution of this paper. At last, the effectiveness of
the algorithm is tested and verified by several different tasks.

The rest of the paper is mainly organized as follows. Sec
tion II introduces the fundamentals of reinforcement learning
and Gaussian processes. Section III presents an approach to
update the action value function by Bayesian inference. Section
IV proposes the online reinforcement learning algorithm. Sec
tion V tests and demonstrates the performance of the algorithm
by several different tasks, and then the conclusion is given in
section VI.

II. BACKGROUND

A. Markov Decision Process

In reinforcement learning, an agent learns a control
policy by interacting with an underlying system. The in
teraction can be modeled as a Markov decision process
(MDP), which can be described as 5-tuples of the form
{S, A, P(s'ls,a), r(s,a), ')'}, whereSis the state space;Ais
the action set; P(s'ls, a) is the probability of a state transition
from s to s' by taking action a and a reward r(s, a) is given
to the agent during such a state transition; ')' is the discount
factor which ranges in [0, 1]. The discounted return is defined
as the sum of exponentially discounted rewards collected along

a trajectory from state s,
CXJ

R(s) = L '/r(st, at)lso = s, (1)
t=O

The control policy is a mapping from a state to an action
selection probability 71"(s) = p(als), Its performance over the
state and action space can be defined as the expectation of the
discounted return by taking action a from state s and thereafter
following a policy 71":

Q7r(s, a) = E {,(S, a) + ')'R7r(S')} , (2)

Consequentially, the greedy action on a state can be directly
selected by maximizing the action value function over the
action space

agreedy (s) = arg maxQ7r (s, a),
aEA

(3)

The action value function is usually applied in model-free
reinforcement learning as control policies can be improved
directly, It can be represented explicitly in the discrete state
and action domains by using Q-table, but it is impractical or
impossible for underlying systems with large or infinite state
spaces, Thus, a function approximation becomes necessary for
the policy evaluation for such cases, Here, Gaussian processes
are chosen to model the action value function.

B. Gaussian Processes

It is always assumed that Gaussian processes are a collec
tion of random variables with respect to inputs x, any finite
subsets of which have joint Gaussian distributions with a latent
function fo (x) and a positive semidefinite covariance function
k(x, x'), also called a kernel [15]. The squared exponential
(SE) function is commonly chosen as the kernel

k(x,x') = 0:6 exp (- �(x - x')TL -l(x - X')) (4)

which reflects the prior brief that we expect the latent function
to be smooth [15]. The element in L = diag ([iI, [2, . . . , inD
is the parameter of length scale which determines the degree of
correlation for each dimension of the input vector. Hence, the
latent function with respect to each input has a prior Gaussian
distribution N(fo, 0:6)·

Following the standard setup, the observations yare the
sum of the latent function fe) of inputs x plus independent
zero-mean Gaussian noises N(O, CT�). x is the collected input
data, also named bias vector. The kernel matrix K with
elements Ki,j = k(Xi, Xj) is the covariance matrix of the
collected data. While a new sample x' is collected, it has
a covariance vector k(x, x') related to the bias vector, and
thus the corresponding latent function value distribution can
be calculated as a conditional probability distribution of the
bias vector with the mean and variance:

fL(X') = fo + k(x, x') T (K + CT�I)-l(y - fo) (Sa)

CT2(X') = k(x',x') - k(x,x')T(K + CT;I))-lk(x,x'). (5b)

III. BAYESIAN POLICY EVALUATION

In reinforcement learning, the model of an underlying
system is always unavailable, namely, its state transition prob
ability P(s'l (s, a)) and the reward function are unknown. A
reinforcement learning agent has to learn a control policy
by interacting with the underlying system. The information
collected during the interaction at one time can be denoted
as a 4-tuple (St, at, 't, St+1), also called a sample, meaning
the agent takes action at when the underlying system stays
in a state St at time t, then a reward 't is received and
the underlying system transits to a next state St+1. Such
samples can be collected all through the operation of an
underlying system. We denote the collected samples till time
t as Dt = {(Si, ai, 'i, sHd Ii = 1, 2, 3, ··· , t}.

A. Modeling Action Value function

Policy evaluation is to calculate the action value function
of a control policy from the collected samples. By modeling
the collected samples as the observed variables and the action
value functions as the latent variables, the policy evaluation
is transformed into a problem of inferring the latent variables
from the observed variables based on the probability theory.
Thus, the action value function can be solved by Bayesian
inference,

p(QID) =
p(DtIQ)p(Q) t P(Dt) ' (6)

Through such a transformation, the goal is to determine the
probability distributions of prior p(Q) and likelihood p(Dt I Q).

Gaussian processes would be an elegant solution to model
the action value function as a stochastic variable, Q (s, a) =

f(s, a) with prior expectation E(f(s, a)) = fo and prior
covariance E(f(s, a)f(s', a'))) = k ([s, a], [S', aiD for all
s, s' E S and a, a' E A. For clarity, we will collect a state
action pair into a vector Xt = [St, at], and define the bias vector
of this Gaussian process as Xt = {lSi, ail, i = 1, 2, 3" . . ,t}.
Therefore, the covariance matrix of the bias vector is [Ktkj =

k ([Xtli, [xtlj), kernel vector is [ktli = k (Xt, [Xtli) and kt,t =

k(xt, Xt). [ftli = f(Xi) and ft = f(xt) for clarity, too.

By assuming that the action value function is a Gaussian
process, we setup the relationship between the whole state
action pairs and the collected state-action pairs by the covari
ance matrix. The action value function can be estimated from
the collected samples

p(fIDt) = / p(fl£t)p(ftIDt)dft. (7)

Following the formulation of [19], the discounted return
R at each episode is decomposed into its mean E(R) and a
random, zero-mean Gaussian noise with variance CTh,

R = E{R} +N(O,CTh) (8)

where the expectation is the action value function as discussed
in (1), namely E{ R} = f. The expectation is deterministic
and no longer random in the classical probability theory, but
here it is viewed as a random entity by assigning it additional
randomness that is due to the subjective uncertainty regarding
the underlying system in reinforcement learning.

Till now, we have set up the relationships between the
return, collected samples and the action value function by (1),
(7) and (8). Besides, (7) can be solved easily by the property
of the Gaussian process regression associated with (5). Hence,
the following will focus on how to update the action value
function of the collected samples. It is detailed as:

(f ID) = J p(DtIR)p(Rlf)p(flft)p(ft)dRdf
(9) p t t P(Dt)

B. Online Updating

Here we are interested in updating the action value function
in a sequential form, in which a new observation is incorpo
rated at each time instant a sample of the underlying system
collected. Instead of recomputing the p(ftIDt) at every time
instant, the action value function is updated recursively for a
low-cost as follows:

p(ftIDt)
= p(ft-I, ftIDt-l, rt) (10a)

= J P(,t IRtH, Rt)p(Rt+1, Rtlft-l)P(ft-lIDt-ddRtdRtH
p(,tIDt-d

(lOb)

The equation (lOb) follows from (lOa) by expanding the
relationships of the variables according to (9), and then by
applying Bayesian inference. For simplicity, only 't from the
sample (St, at, 't, StH) is expressed explicitly in the above
formula. St, at, sHI are expressed implicitly, but they will be
explicitly detailed below.

According to (10), a new posterior probability p(ftIDt)
including the most recent action value function f(Xt) is
calculated after a new sample is included based on a prior
probability p(ft-IIDt-d. The calculated distribution p(ftIDt)
will become a prior probability at the next update. This process
repeats when a new sample is collected. In order to get the
solution of the equation, it is assumed that p(ft-IIDt-l) is a
known Gaussian process

After a new sample (St, at, 't, StH) is observed, the dis
tribution of the action value function on the new observes
(st,at) and (SHI,7r(StH)) conditioned on ft-I is still a joint
Gaussian distribution according to the property of Gaussian
processes

where

{
and Ct-I = Ki_\, qi = Ct-Iki with i, j = t, t + 1.

According to (8), the likelihood of the return dependent on
the action value function is calculated:

(13)

Similar to the distribution of Rt, we also can obtain the
likelihood of RH I

P(RtHlfHd = N (Rt+llftH' O"k) · (14)

According to (1), rt = Rt - ,,(RHI. Thus, the likelihood
of reward 't dependent on Rt, RtH can be calculated

p(,tIRt, RHd = N(,tIRt - "(Rt+l' 0";) . (15)

Here it is assumed that the measured reward is perturbed by
a zero-mean Gaussian noise N (0, O"�) .

The denominator of (lOb), which corresponds to the
marginal likelihood, provides the predictive distribution of a
new observation 't given the past samples. According to the
characteristics of multivariate Gaussian distributions: the linear
combinations, the marginal and the conditional distributions of
Gaussian distributions are again Gaussian distributions. Hence,
it can be calculated by combining (12), (13), (14) with (15).

p('tIDt-d
= J p(,tIRt, RtH)P(Rt, RtHlft-dp(ft-IIDt-ddRdft-1
= N(rtITt, 0-;,)

(16)

with the mean and the variance of the distribution being

Tt = (1 - "()fo + �ki Ct(ft-I - fo)
,2 k 2k O"r, = t,t + "(HI,HI - 2"(kt,tH

+ �kiMt-l�kt + 0"; + (1 + "(2)O"k

(17a)
(17b)

The state-action pair Xt = (St, at) is added to the bias
vector Xt = Xt-I UXt at the instant the new sample is collected.
Combining (11) with (12), the predictive distribution of f(Xt)
given the collected samples can be calculated as

p(ftIDt-l) = J p(ftlft-I)P(ft-IIDt-ddft-1
= N(ftlit, o-J')

with the mean and the variance being

{ it = fo + kICt-1(ft-1 - fo)
o-J, = kt,t + kIMt-1kt

(18)

After the new sample is incorporated into the bias vector, the
inverse of the kernel matrix will be updated by

K-I _ C _ [Ct-I 0] +
1 [qt] [qt] T

(19) t - t - OT 0 O"l,t -1 -1

Therefore, all involved distributions (12), (13), (14) and
(15) appearing in (10b) are Gaussian distributions. Based on
these relations, the posterior distribution can be calculated after
the new sample is collected, and expressed as

(20a)

(20b)

(20c)

h h [�t-I Ct-I �kt] . h . w ere t =

k k + A kTM k IS t e covanance t,t - 'Y t,t+1 L...J. t t-I t
vector between ft and rt.

The update rule is depicted in (20b). It shows the action
value function learns from the temporal difference 't - rt, with
the learning rate as ht/ if;,. It means that the learning rate is
determined by the uncertainty of the collected sample, different
from the original SARSA learning algorithm [2] in which the
learning rate is required to be determined in advance. Besides,
it updates the action value function by Bellman residual [7]
rather than predictions based on the bootstrap method [2]. Such
an update rule makes an efficient use of the collected samples,
which has also been verified in the method of least-square
temporal difference learning [10], [11], [20].

When the first sample (xI,rl,x2) is collected, we can get
the joint distribution p(h, h) based on the prior assumption
of Gaussian processes. Consequentially, the recursion updates
can be initialized

(21)

with

C. Sparsi..fication

As mentioned above, the dimension of the bias vector
of Gaussian processes grows at each time step when a new
sample is incorporated. Unchecked, the growth would result
in the unbounded increase in the computation and memory
requirements. Engel al. et. [21] sparsified Gaussian processes
by transforming the data into a high-dimensional reproducing
kernel Hilbert space and thus data can be represented in a linear
form. The data which are approximately linear dependent
on the data in the bias vector will be removed, and so the
representative data are retained in the bias vector. The criterion
for approximately linear dependence is expressed as

0; = kt,t - ki Ct-1kt. (23)

And a threshold v is used for the criterion. If 0; > v, the
new sample will be added into the bias vector. Otherwise, it
can be removed with less information loss.

IV. ONLINE REINFORCEMENT LEARNING

The previous section presents the sequential update rule
for the action value function from the collected samples via
the way of Bayesian inference. Namely, the policy evaluation
can be undertaken when a new sample is collected. It provides
a way to implement the reinforcement learning in an online
form. More than that, a reinforcement learning agent has to
collect samples over the whole state-action space, in order to
give a valid evaluation for the control policy. Failing to do
that, the agent may never find the optimal control policy.

Here, the classic action selection method of E-greedy is
employed to explore an underlying system. It selects the action
with the maximized action value function with a probability
of 1 - E and selects a random action uniformly in the action
space with a probability of E as shown in (24). The random
action can prompt the agent to explore the inexperienced parts
of the underlying system.

7r(St) +-- aEA
{argmax Q(St,a)

a E A

with prob. 1 - E

with prob. E
(24)

The value of E is employed to manage the degree of the
exploration. It diminishes during the interaction to ensure a
sufficient exploration of the environment at the beginning and
gradually shift to the exploitation as the collected samples
increase, as it is shown in the following equation:

(25)

where Ed is the decayed factor. The parameter '" is used to
determine the time of exploration decaying. The exploration
rate may decay after a number of samples are collected, or
after an episode is terminated.

The above content explicitly presents the approach of the
policy evaluation by Bayesian inference and the diminishing E
greedy action selection method. Integration of the two will for
m an online reinforcement learning algorithm, named Bayesian
SARSA. It continuously updates the action value function for
the behavior control policy and at the same time the policy
updates toward greediness with respect to the action value
function, meaning it is an on-policy algorithm.

V. EMPIRICAL RESULTS

In this section Bayesian SARSA will be tested and demon
strated in two different tasks. To precisely illustrate its per
formance, the online version of least-square policy iteration
(online LSPI) [10], [11] which can make an efficient use of
the samples are brought in for comparisons. The algorithm is
selected because it is also an on-policy and online model-free
approach.

A. Mountain Car Task

The mountain car task is to drive a car up to a steep
mountain road from the bottom of a valley [2]. The difficulty
is that the car is underpowered to accelerate up the steep slope
directly from the start position, and therefore a control policy
should be learned to drive the car up as fast as possible. There
are three actions { -1, 0, I}, which respectively represents full
throttle forward, zero throttle and full throttle backward. The
reward is -1 for all time steps before the car moving past the
goal position Pgoal = 0.5, and the reward is 0 when the car
reaches the goal. (26) is the state update of the car.

{Pt+!
Vt+l

= Pt + Vt+1
= Vt + O.OOlat - 0.0025 cos(3pt)

(26)

where Pt is the position of the car limited in the range of
[-1.2, 0.5] and Vt is the velocity limited in the range of
[-0.07, 0.07]' at is the action. The car starts from the bottom

700

20 40

- Bayesian SARSA-Ieaming
_ 95% confidence interval
- . _ . . online LSPI
_ 95% confidence interval

60 80 100
Episode

Fig. 1. Steps to the goal averaged over 30 trials and the corresponding 95%
confidence interval.

of the valley with a state of do = - 7f /6 and Vo = 0 in each
episode. When it gets to the left side, velocity is set to 0; when
it gets to the right side, the goal is reached and the episode is
terminated.

The kernel of the Gaussian processes is the SE function
with 0:0 = 1 and h = 0. 1, l2 = 0.007, the sparsification factor
is v = 10-3 and 'Y = 0.99. The radial bias function is chosen
for online LSPI with 7 * 5 centers distributed uniformly in the
state space. In the simulation, each episode has a maximum
time step of 500, and 100 episodes are taken in each trial. The
initial exploration factor is EO = 0.6 and decays every episode
with Ed = 0.96, which makes sure the exploration rate at the
end of each trial is below 0.01.

The two different algorithms are applied to the mountain
car task. The steps to the goal with respect to each episode
averaged over 30 trials are shown in Fig. 1. Both Bayesian
SARSA and online LSPI can search the goal within 5 episodes
and learn within 50 episodes a near-optimal control policy
which can drive the car up to the goal within 120 steps.
These results argue that Bayesian SARSA can make the same
efficient use of data with online LSPI. In addition, after 50
episodes the steps to the goal by Bayesian SARSA have
smaller confidence intervals and less fluctuations than those
by online LSPI, indicating it is more robust. This argument
is also supported by the comparison of the corresponding
control policies respectively learned by both algorithms, which
is shown in Fig. 2. It depicts that Bayesian SARSA learns the
near-optimal control policy which is almost available in the
whole state space, while online LSPI learns that only available
in the vicinity of the trajectory at the end of the trials.

B. Puddle World Task

Puddle world [22] is a two dimensional continuous grid
world with two puddles. In the world, an agent moves along
four different directions (East, South, West and North) with
distance 0.05. It starts from an initial state (0.2, 0.6) to search
for a fast path to the goal region in the northeast corner while
trying to avoid two puddles. The puddles are 0. 1 in radius
and located at the center points (0. 1, 0.75) to (0.45, 0.75)
and (0.45, 0.4) to (0.45, 0.8). The movements of the agent
are perturbed by a Gaussian noise with a standard deviation
of 0.01 along both dimensions. The reward in this problem is
-1 until the agent reaches the goal region, and an additional

(a)

.

c;
...

.

-1 -0.5
position

-1

(b)

...

-0.5
position

"

o

-1
0.5

Fig. 2. Learned control policy at the end of one trial: (a) by Bayesian SARSA;
(b) by online LSPI. The three different gray-scales represent the three actions,
respectively. The red dotted lines represent the state trajectories from the start
to the goal region.

penalty will be given if the agent trapped into the puddle. The
value of the penalty is -200 times the distance to the nearest
edge. When the agent reaches the goal region, the reward is 0
and the episode is terminated.

The kernel of the Gaussian processes is the SE function
with 0:0 = 1 and h = 0.05, 12 = 0.05, the sparsification factor
is v = 10-3 and 'Y = 0.98. The online LSPI algorithm selects
radial bias functions as the bias functions with 9 * 9 centers
distributed uniformly in the state space. In the experiment, each
episode has a maximum time step of 200, and 100 episodes
are taken in a trial. The parameter settings for the E-greedy
method are the same as the ones in mountain car task.

Both algorithms are tested on this task and the steps from
the start to the goal region averaged over 30-trials are shown
in Fig. 3. Bayesian SARSA performs much better than online
LSPI in both the steps to the goal region and the corresponding
confidence interval. Some significant fluctuations exist in the
confidence interval as the actions are perturbed by noises.
Taking a look inside, Bayesian SARSA can learn a near
optimal control policy at the end of each trial, while online
LSPI successes within only 1/5 of the trials. This stems from
the fact that a sudden change happened in the value of reward
results in the lost of experience for online LSPI, when the
agent 'traps' into the puddle. While Bayesian SARSA can
avoid the sudden changes as it incorporates a prior information
and learns from the temporal difference.

Furthermore, a comparison of the two learned control
policies is shown in Fig. 4. The first one is randomly selected
from the trials by Bayesian SARSA and the second one is
selected from the trials which has successfully reached the goal
region by online LSPI. Similar to the results of the mountain
car task, the control policy learned by Bayesian SARSA is
almost near-optimal in the whole state space, while the one
learned by online LSPI is only available in the vicinity of the
trajectory.

VI. CONCLUSIONS

In this paper, a Bayesian SARSA algorithm is proposed
to study the policy evaluation issue of the reinforcement
learning in the continuous state domain from the probability
perspective. It is implemented by modeling the action value
function as a stochastic variable via Gaussian processes and
then updating it according to Bayesian inference. The algorith
m was tested and demonstrated on two different benchmark

20 40 60 80 100
Episode

Fig. 3. Steps to the goal averaged over 30 trials and the corresponding
confidence interval.

(a) (b)

Fig. 4. Learned control policy at the end of one trial: (a) by Bayesian SARSA;
(b) by online LSPl. The four different gray-scales represent the four actions,
respectively. The red dotted lines represent the state trajectories from the start
to the goal region.

problems by comparing with online LSPI. Empirical results
show that Bayesian SARSA can make an efficient use of data
and learn fast the near-optimal control policy. Moreover, it
outperforms the online LSPI algorithm in the performance of
robustness and optimality.

In order to learn an optimal control policy, a reinforcement
learning agent always has to explore the uncertainty part of the
state-action space. As mentioned previously, Bayesian SARSA
also learns the uncertainty of each state-action pair, not just
the action value function. Hence, how to efficiently explore an
underlying system according to such an uncertainty will be a
promising research area in the future work.

REFERENCES

[1] F. L. Lewis and D. Vrabie, "Reinforcement learning and adaptive dy
namic programming for feedback control," IEEE Circuits and Systems

Magazine, vol. 9, no. 3, pp. 32-50, 2009.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

Cambridge: MIT Press, 1998.

[3] F. Wang, H. Zhang, and D. Liu, "Adaptive dynamic programming: an
introduction," IEEE Computational Intelligence Magazine, vol. 4, no. 2,
pp. 39-47, 2009.

[4] D. Liu, D. Wang, and H. Li, "Decentralized stabilization for a class of
continuous-time nonlinear interconnected systems using online learning
optimal control approach," IEEE Transactions on Neural Networks and

Learning Systems, vol. 25, no. 2, pp. 418-428, 2014.

[5] c. Dann, G. Neumann, and J. Peters, "Policy evaluation with temporal
differences: A survey and comparison," Journal of Machine Learning

Research, vol. 15, pp. 809-883, 2014.

[6] D. Zhao and Y. Zhu, "MEC-a near-optimal online reinforcement learn
ing algorithm for continuous deterministic systems," IEEE Transactions

[7]

[8]

[9]

[10]

[11]

on Neural Networks and Learning Systems, vol. 26, no. 2, pp. 346 -
356, 2014.

D. Zhao, Z. Xia, and D. Wang, "Model-free optimal control for affine
nonlinear systems with convergence analysis," IEEE Transactions on
Automation Science and Engineering, no. 99, pp. 1-8, 2014.

D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, "FuU
range adaptive cruise control based on supervised adaptive dynamic
programming," Neurocomputing, vol. 125, pp. 57-67, 2014.

D. Zhao, X. Bai, F-Y. Wang, J. Xu, and W. Yu, "DHP method for
ramp metering of freeway traffic," IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 4, pp. 990-999, 2011.

M. G. Lagoudakis and R. Parr, "Least-squares policy iteration," The

Journal of Machine Learning Research, vol. 4, pp. 1107-1149, 2003.

L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, "Online
least-squares policy iteration for reinforcement learning control," in
Proceedings of American Control Conference, 2010, pp. 486-491.

[12] Z. Xia, D. Zhao, and H. Tang, "Model-free adaptive dynamic program
ming for optimal control of discrete-time affine nonlinear system," in
Proceedings of International Federation of Automatic Control World

Congress, South Africa, 2014, pp. 7049-7054.

[13] D. Ormoneit and S. Sen, "Kernel-based reinforcement learning," Ma

chine learning, vol. 49, no. 2-3, pp. 161-178,2002.

[14] N. Jong and P. Stone, "Kernel-based models for reinforcement learning,"
in ICML Workshop on Kernel Machines and Reinforcement Learning,

Pittsburgh. PA. USA, 2006.

[15] C. E. Rasmussen, Gaussian processes for machine learning. Citeseer,
2006.

[16] c. E. Rasmussen and M. Kuss, "Gaussian processes in reinforcement
learning," in Advances in Neural Information Processing Systems 16.
MIT Press, 2004, pp. 751-758.

[17] M. P. Deisenroth, Efficient reinforcement learning using gaussian pro
cesses. KIT Scientific Publishing, 2010.

[18] T. Jung and P. Stone, "Gaussian processes for sample efficient reinforce
ment learning with RMAX-Iike exploration," in Machine Learning and

Knowledge Discovery in Databases. Springer, 2010, pp. 601-616.

[19] Y. Engel, S. Mannor, and R. Meir, "Reinforcement learning with
gaussian processes," in Proceedings of International Conference on

Machine learning. ACM, 2005, pp. 201-208.

[20] J. A. Boyan, "Least-squares temporal difference learning," in Proceed

ings of International Conference on Machine learning. Citeseer, 1999,
pp. 49-56.

[21] Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares
algorithm," IEEE Transactions on Signal Processing, vol. 52, no. 8, pp.
2275-2285, 2004.

[22] R. S. Sutton, "Generalization in reinforcement learning: Successful ex
amples using sparse coarse coding," in Advances in Neural Information

Processing Systems 8. MIT Press, 1996, pp. 1038-1044.

