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Abstract-Policy evaluation has long been one of the core 
issues of the online reinforcement learning, especially in the 
continuous state domain. In this paper, the issue is addressed 
by employing Gaussian processes to represent the action value 
function from the probability perspective. By modeling the return 
as a stochastic variable, the action value function can sequentially 
update according to observed variables such as state and reward 
by Bayesian inference during the policy evaluation. The update 
rule shows that it is a temporal difference learning method 
with the learning rate determined by the uncertainty of a 
collected sample. Incorporating the policy evaluation method 
with the E-greedy action selection method, we propose an online 
reinforcement learning algorithm referred as to Bayesian-SARSA. 
It is tested on some benchmark problems and the empirical results 
verifies its effectiveness. 

I. INTRODUCTION 

Reinforcement learning simulates the self-learning mecha­
nism of an organism which learns from its interaction with the 
environment [1]. It is able to learn an available control policy 
based on the collected data. This metric makes it a research 
hotspot in the control community [2]-[4]. Nevertheless, how 
to calculate the value function for a given control policy from 
collected samples is the core issue in its application, especially 
in the continuous state domain [5], [6]. 

In the continuous state domain, it is infeasible to represent 
the value function explicitly, and so a class of parametric 
approximations such as multi-layer perceptron [7]-[9], linear 
approximation architecture [10], [11] is mainly adopted to ap­
proximate the value function. However, features selection and 
architectures are hard to manipulate, and require experience 
and repeated testing on collected data. Otherwise, it will result 
in underfitting or overfitting [12]. 

Fortunately, these problems can be avoided with a non­
parametric approximation architecture since the number of its 
features grows along with the collection of data. Moreover, 
non-parametric approximation architectures have been proven 
to be consistent with mild assumptions for the reinforcement 
learning [13], [14]. Gaussian process is one of the kernel ma­
chines and provides a state-of-the-art non parametric Bayesian 
regression framework commonly used in machine learning 
[15]. It is able to represent not only the estimation of the target 
value, but also the uncertainty of the estimation. Rasmussen 
al. et. [16]-[18] employed Gaussian processes to identify the 
model of an underlying system and the value function thus can 
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be solved in a closed form, but extra computation is required 
to identify the model. Represented the value function directly 
by Gaussian Processes, Engel al. et. proposed the Gaussian 
process temporal difference (GPTD) learning algorithm [19]. 
Furthermore, they illustrated that GPTD inherited the metrics 
of the temporal difference learning which was endowed with 
a low variance and that Monte Carlo learning could efficiently 
use the collected data. Previous works commonly focused on 
addressing the policy evaluation problem from the perspective 
of regression. 

In this paper, Gaussian processes are employed to represent 
the action value function to solve the issue of the policy 
evaluation from the probability perspective. The return of the 
collected data is modeled as a stochastic variable with its 
expectation as the action value function. Based on such a style 
of modeling, the action value function can sequentially update 
according to the collected data through Bayesian inference. It 
is the first contribution of this paper. Moreover, an online rein­
forcement learning algorithm, referred to as Bayesian SARSA, 
is proposed by incorporating the update rule of the action value 
function with the E-greedy action selection method. It is the 
second contribution of this paper. At last, the effectiveness of 
the algorithm is tested and verified by several different tasks. 

The rest of the paper is mainly organized as follows. Sec­
tion II introduces the fundamentals of reinforcement learning 
and Gaussian processes. Section III presents an approach to 
update the action value function by Bayesian inference. Section 
IV proposes the online reinforcement learning algorithm. Sec­
tion V tests and demonstrates the performance of the algorithm 
by several different tasks, and then the conclusion is given in 
section VI. 

II. BACKGROUND 

A. Markov Decision Process 

In reinforcement learning, an agent learns a control 
policy by interacting with an underlying system. The in­
teraction can be modeled as a Markov decision process 
(MDP), which can be described as 5-tuples of the form 
{S, A, P(s'ls,a), r(s,a), ')'}, whereSis the state space;Ais 
the action set; P(s'ls, a) is the probability of a state transition 
from s to s' by taking action a and a reward r(s, a) is given 
to the agent during such a state transition; ')' is the discount 
factor which ranges in [0, 1]. The discounted return is defined 
as the sum of exponentially discounted rewards collected along 



a trajectory from state s, 
CXJ 

R(s) = L '/r(st, at)lso = s, (1) 
t=O 

The control policy is a mapping from a state to an action 
selection probability 71"(s) = p(als), Its performance over the 
state and action space can be defined as the expectation of the 
discounted return by taking action a from state s and thereafter 
following a policy 71": 

Q7r(s, a) = E {,(S, a) + ')'R7r(S')} , (2) 

Consequentially, the greedy action on a state can be directly 
selected by maximizing the action value function over the 
action space 

agreedy (s) = arg maxQ7r (s, a), 
aEA 

(3) 

The action value function is usually applied in model-free 
reinforcement learning as control policies can be improved 
directly, It can be represented explicitly in the discrete state 
and action domains by using Q-table, but it is impractical or 
impossible for underlying systems with large or infinite state 
spaces, Thus, a function approximation becomes necessary for 
the policy evaluation for such cases, Here, Gaussian processes 
are chosen to model the action value function. 

B. Gaussian Processes 

It is always assumed that Gaussian processes are a collec­
tion of random variables with respect to inputs x, any finite 
subsets of which have joint Gaussian distributions with a latent 
function fo (x) and a positive semidefinite covariance function 
k(x, x'), also called a kernel [15]. The squared exponential 
(SE) function is commonly chosen as the kernel 

k(x,x') = 0:6 exp (- �(x - x')TL -l(x - X')) (4) 

which reflects the prior brief that we expect the latent function 
to be smooth [15]. The element in L = diag ([iI, [2, . . .  , inD 
is the parameter of length scale which determines the degree of 
correlation for each dimension of the input vector. Hence, the 
latent function with respect to each input has a prior Gaussian 
distribution N(fo, 0:6)· 

Following the standard setup, the observations yare the 
sum of the latent function fe) of inputs x plus independent 
zero-mean Gaussian noises N(O, CT�). x is the collected input 
data, also named bias vector. The kernel matrix K with 
elements Ki,j = k(Xi, Xj) is the covariance matrix of the 
collected data. While a new sample x' is collected, it has 
a covariance vector k(x, x') related to the bias vector, and 
thus the corresponding latent function value distribution can 
be calculated as a conditional probability distribution of the 
bias vector with the mean and variance: 

fL(X') = fo + k(x, x') T (K + CT�I)-l(y - fo) (Sa) 

CT2(X') = k(x',x') - k(x,x')T(K + CT;I))-lk(x,x'). (5b) 

III. BAYESIAN POLICY EVALUATION 

In reinforcement learning, the model of an underlying 
system is always unavailable, namely, its state transition prob­
ability P( s'l (s, a)) and the reward function are unknown. A 
reinforcement learning agent has to learn a control policy 
by interacting with the underlying system. The information 
collected during the interaction at one time can be denoted 
as a 4-tuple (St, at, 't, St+1), also called a sample, meaning 
the agent takes action at when the underlying system stays 
in a state St at time t, then a reward 't is received and 
the underlying system transits to a next state St+1. Such 
samples can be collected all through the operation of an 
underlying system. We denote the collected samples till time 
t as Dt = {(Si, ai, 'i, sHd Ii = 1, 2, 3, ··· , t}. 

A. Modeling Action Value function 

Policy evaluation is to calculate the action value function 
of a control policy from the collected samples. By modeling 
the collected samples as the observed variables and the action 
value functions as the latent variables, the policy evaluation 
is transformed into a problem of inferring the latent variables 
from the observed variables based on the probability theory. 
Thus, the action value function can be solved by Bayesian 
inference, 

p(QID ) = 
p(DtIQ)p(Q) t P(Dt) ' (6) 

Through such a transformation, the goal is to determine the 
probability distributions of prior p( Q) and likelihood p(Dt I Q). 

Gaussian processes would be an elegant solution to model 
the action value function as a stochastic variable, Q (s, a) = 

f(s, a) with prior expectation E(f(s, a)) = fo and prior 
covariance E(f(s, a)f(s', a'))) = k ([s, a], [S', aiD for all 
s, s' E S and a, a' E A. For clarity, we will collect a state­
action pair into a vector Xt = [St, at], and define the bias vector 
of this Gaussian process as Xt = {lSi, ail, i = 1, 2, 3" . .  ,t}. 
Therefore, the covariance matrix of the bias vector is [Ktkj = 

k ([Xtli, [xtlj), kernel vector is [ktli = k (Xt, [Xtli) and kt,t = 

k(xt, Xt). [ftli = f(Xi) and ft = f(xt) for clarity, too. 

By assuming that the action value function is a Gaussian 
process, we setup the relationship between the whole state­
action pairs and the collected state-action pairs by the covari­
ance matrix. The action value function can be estimated from 
the collected samples 

p(fIDt) = / p(fl£t)p(ftIDt)dft. (7) 

Following the formulation of [19], the discounted return 
R at each episode is decomposed into its mean E(R) and a 
random, zero-mean Gaussian noise with variance CTh, 

R = E{R} +N(O,CTh) (8) 

where the expectation is the action value function as discussed 
in (1), namely E{ R} = f. The expectation is deterministic 
and no longer random in the classical probability theory, but 
here it is viewed as a random entity by assigning it additional 
randomness that is due to the subjective uncertainty regarding 
the underlying system in reinforcement learning. 



Till now, we have set up the relationships between the 
return, collected samples and the action value function by (1), 
(7) and (8). Besides, (7) can be solved easily by the property 
of the Gaussian process regression associated with (5). Hence, 
the following will focus on how to update the action value 
function of the collected samples. It is detailed as: 

(f ID ) = J p(DtIR)p(Rlf)p(flft)p(ft)dRdf 
(9) p t t P(Dt) 

B. Online Updating 

Here we are interested in updating the action value function 
in a sequential form, in which a new observation is incorpo­
rated at each time instant a sample of the underlying system 
collected. Instead of recomputing the p(ftIDt) at every time 
instant, the action value function is updated recursively for a 
low-cost as follows: 

p(ftIDt) 
= p(ft-I, ftIDt-l, rt) (10a) 

= J P(,t IRtH, Rt)p(Rt+1, Rtlft-l)P(ft-lIDt-ddRtdRtH 
p(,tIDt-d 

(lOb) 

The equation (lOb) follows from (lOa) by expanding the 
relationships of the variables according to (9), and then by 
applying Bayesian inference. For simplicity, only 't from the 
sample (St, at, 't, StH) is expressed explicitly in the above 
formula. St, at, sHI are expressed implicitly, but they will be 
explicitly detailed below. 

According to (10), a new posterior probability p(ftIDt) 
including the most recent action value function f(Xt) is 
calculated after a new sample is included based on a prior 
probability p(ft-IIDt-d. The calculated distribution p(ftIDt) 
will become a prior probability at the next update. This process 
repeats when a new sample is collected. In order to get the 
solution of the equation, it is assumed that p(ft-IIDt-l) is a 
known Gaussian process 

After a new sample (St, at, 't, StH) is observed, the dis­
tribution of the action value function on the new observes 
(st,at) and (SHI,7r(StH)) conditioned on ft-I is still a joint 
Gaussian distribution according to the property of Gaussian 
processes 

where 

{ 
and Ct-I = Ki_\, qi = Ct-Iki with i, j = t, t + 1. 

According to (8), the likelihood of the return dependent on 
the action value function is calculated: 

(13) 

Similar to the distribution of Rt, we also can obtain the 
likelihood of RH I 

P(RtHlfHd = N (Rt+llftH' O"k) · (14) 

According to (1), rt = Rt - ,,(RHI. Thus, the likelihood 
of reward 't dependent on Rt, RtH can be calculated 

p(,tIRt, RHd = N(,tIRt - "(Rt+l' 0";) . (15) 

Here it is assumed that the measured reward is perturbed by 
a zero-mean Gaussian noise N (0, O"�) . 

The denominator of (lOb), which corresponds to the 
marginal likelihood, provides the predictive distribution of a 
new observation 't given the past samples. According to the 
characteristics of multivariate Gaussian distributions: the linear 
combinations, the marginal and the conditional distributions of 
Gaussian distributions are again Gaussian distributions. Hence, 
it can be calculated by combining (12), (13), (14) with (15). 

p('tIDt-d 
= J p(,tIRt, RtH)P(Rt, RtHlft-dp(ft-IIDt-ddRdft-1 
= N(rtITt, 0-;,) 

(16) 

with the mean and the variance of the distribution being 

Tt = (1 - "()fo + �ki Ct(ft-I - fo) 
,2 k 2k O"r, = t,t + "( HI,HI - 2"(kt,tH 

+ �kiMt-l�kt + 0"; + (1 + "(2)O"k 

(17a) 
(17b) 

The state-action pair Xt = (St, at) is added to the bias 
vector Xt = Xt-I UXt at the instant the new sample is collected. 
Combining (11) with (12), the predictive distribution of f(Xt) 
given the collected samples can be calculated as 

p(ftIDt-l) = J p(ftlft-I)P(ft-IIDt-ddft-1 
= N(ftlit, o-J') 

with the mean and the variance being 

{ it = fo + kICt-1(ft-1 - fo) 
o-J, = kt,t + kIMt-1kt 

(18) 

After the new sample is incorporated into the bias vector, the 
inverse of the kernel matrix will be updated by 

K-I _ C _ [Ct-I 0] + 
1 [ qt ] [ qt ] T 

(19) t - t - OT 0 O"l,t -1 -1 

Therefore, all involved distributions (12), (13), (14) and 
(15) appearing in (10b) are Gaussian distributions. Based on 
these relations, the posterior distribution can be calculated after 
the new sample is collected, and expressed as 

(20a) 

(20b) 

(20c) 



h h [ �t-I Ct-I �kt ] . h . w ere t = 

k k + A kTM k IS t e covanance t,t - 'Y t,t+1 L...J. t t-I t 
vector between ft and rt. 

The update rule is depicted in (20b). It shows the action 
value function learns from the temporal difference 't - rt, with 
the learning rate as ht/ if;,. It means that the learning rate is 
determined by the uncertainty of the collected sample, different 
from the original SARSA learning algorithm [2] in which the 
learning rate is required to be determined in advance. Besides, 
it updates the action value function by Bellman residual [7] 
rather than predictions based on the bootstrap method [2]. Such 
an update rule makes an efficient use of the collected samples, 
which has also been verified in the method of least-square 
temporal difference learning [10], [11], [20]. 

When the first sample (xI,rl,x2) is collected, we can get 
the joint distribution p(h, h) based on the prior assumption 
of Gaussian processes. Consequentially, the recursion updates 
can be initialized 

(21) 

with 

C. Sparsi..fication 

As mentioned above, the dimension of the bias vector 
of Gaussian processes grows at each time step when a new 
sample is incorporated. Unchecked, the growth would result 
in the unbounded increase in the computation and memory 
requirements. Engel al. et. [21] sparsified Gaussian processes 
by transforming the data into a high-dimensional reproducing 
kernel Hilbert space and thus data can be represented in a linear 
form. The data which are approximately linear dependent 
on the data in the bias vector will be removed, and so the 
representative data are retained in the bias vector. The criterion 
for approximately linear dependence is expressed as 

0; = kt,t - ki Ct-1kt. (23) 

And a threshold v is used for the criterion. If 0; > v, the 
new sample will be added into the bias vector. Otherwise, it 
can be removed with less information loss. 

IV. ONLINE REINFORCEMENT LEARNING 

The previous section presents the sequential update rule 
for the action value function from the collected samples via 
the way of Bayesian inference. Namely, the policy evaluation 
can be undertaken when a new sample is collected. It provides 
a way to implement the reinforcement learning in an online 
form. More than that, a reinforcement learning agent has to 
collect samples over the whole state-action space, in order to 
give a valid evaluation for the control policy. Failing to do 
that, the agent may never find the optimal control policy. 

Here, the classic action selection method of E-greedy is 
employed to explore an underlying system. It selects the action 
with the maximized action value function with a probability 
of 1 - E and selects a random action uniformly in the action 
space with a probability of E as shown in (24). The random 
action can prompt the agent to explore the inexperienced parts 
of the underlying system. 

7r(St) +-- aEA 
{argmax Q(St,a) 

a E A 

with prob. 1 - E 

with prob. E 
(24) 

The value of E is employed to manage the degree of the 
exploration. It diminishes during the interaction to ensure a 
sufficient exploration of the environment at the beginning and 
gradually shift to the exploitation as the collected samples 
increase, as it is shown in the following equation: 

(25) 

where Ed is the decayed factor. The parameter '" is used to 
determine the time of exploration decaying. The exploration 
rate may decay after a number of samples are collected, or 
after an episode is terminated. 

The above content explicitly presents the approach of the 
policy evaluation by Bayesian inference and the diminishing E­
greedy action selection method. Integration of the two will for­
m an online reinforcement learning algorithm, named Bayesian 
SARSA. It continuously updates the action value function for 
the behavior control policy and at the same time the policy 
updates toward greediness with respect to the action value 
function, meaning it is an on-policy algorithm. 

V. EMPIRICAL RESULTS 

In this section Bayesian SARSA will be tested and demon­
strated in two different tasks. To precisely illustrate its per­
formance, the online version of least-square policy iteration 
(online LSPI) [10], [11] which can make an efficient use of 
the samples are brought in for comparisons. The algorithm is 
selected because it is also an on-policy and online model-free 
approach. 

A. Mountain Car Task 

The mountain car task is to drive a car up to a steep 
mountain road from the bottom of a valley [2]. The difficulty 
is that the car is underpowered to accelerate up the steep slope 
directly from the start position, and therefore a control policy 
should be learned to drive the car up as fast as possible. There 
are three actions { -1, 0, I}, which respectively represents full 
throttle forward, zero throttle and full throttle backward. The 
reward is -1 for all time steps before the car moving past the 
goal position Pgoal = 0.5, and the reward is 0 when the car 
reaches the goal. (26) is the state update of the car. 

{Pt+! 
Vt+l 

= Pt + Vt+1 
= Vt + O.OOlat - 0.0025 cos(3pt) 

(26) 

where Pt is the position of the car limited in the range of 
[-1.2, 0.5] and Vt is the velocity limited in the range of 
[-0.07, 0.07]' at is the action. The car starts from the bottom 
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Fig. 1. Steps to the goal averaged over 30 trials and the corresponding 95% 
confidence interval. 

of the valley with a state of do = - 7f /6 and Vo = 0 in each 
episode. When it gets to the left side, velocity is set to 0; when 
it gets to the right side, the goal is reached and the episode is 
terminated. 

The kernel of the Gaussian processes is the SE function 
with 0:0 = 1 and h = 0. 1, l2 = 0.007, the sparsification factor 
is v = 10-3 and 'Y = 0.99. The radial bias function is chosen 
for online LSPI with 7 * 5 centers distributed uniformly in the 
state space. In the simulation, each episode has a maximum 
time step of 500, and 100 episodes are taken in each trial. The 
initial exploration factor is EO = 0.6 and decays every episode 
with Ed = 0.96, which makes sure the exploration rate at the 
end of each trial is below 0.01. 

The two different algorithms are applied to the mountain 
car task. The steps to the goal with respect to each episode 
averaged over 30 trials are shown in Fig. 1. Both Bayesian 
SARSA and online LSPI can search the goal within 5 episodes 
and learn within 50 episodes a near-optimal control policy 
which can drive the car up to the goal within 120 steps. 
These results argue that Bayesian SARSA can make the same 
efficient use of data with online LSPI. In addition, after 50 
episodes the steps to the goal by Bayesian SARSA have 
smaller confidence intervals and less fluctuations than those 
by online LSPI, indicating it is more robust. This argument 
is also supported by the comparison of the corresponding 
control policies respectively learned by both algorithms, which 
is shown in Fig. 2. It depicts that Bayesian SARSA learns the 
near-optimal control policy which is almost available in the 
whole state space, while online LSPI learns that only available 
in the vicinity of the trajectory at the end of the trials. 

B. Puddle World Task 

Puddle world [22] is a two dimensional continuous grid 
world with two puddles. In the world, an agent moves along 
four different directions (East, South, West and North) with 
distance 0.05. It starts from an initial state (0.2, 0.6) to search 
for a fast path to the goal region in the northeast corner while 
trying to avoid two puddles. The puddles are 0. 1 in radius 
and located at the center points (0. 1, 0.75) to (0.45, 0.75) 
and (0.45, 0.4) to (0.45, 0.8). The movements of the agent 
are perturbed by a Gaussian noise with a standard deviation 
of 0.01 along both dimensions. The reward in this problem is 
-1 until the agent reaches the goal region, and an additional 
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Fig. 2. Learned control policy at the end of one trial: (a) by Bayesian SARSA; 
(b) by online LSPI. The three different gray-scales represent the three actions, 
respectively. The red dotted lines represent the state trajectories from the start 
to the goal region. 

penalty will be given if the agent trapped into the puddle. The 
value of the penalty is -200 times the distance to the nearest 
edge. When the agent reaches the goal region, the reward is 0 
and the episode is terminated. 

The kernel of the Gaussian processes is the SE function 
with 0:0 = 1 and h = 0.05, 12 = 0.05, the sparsification factor 
is v = 10-3 and 'Y = 0.98. The online LSPI algorithm selects 
radial bias functions as the bias functions with 9 * 9 centers 
distributed uniformly in the state space. In the experiment, each 
episode has a maximum time step of 200, and 100 episodes 
are taken in a trial. The parameter settings for the E-greedy 
method are the same as the ones in mountain car task. 

Both algorithms are tested on this task and the steps from 
the start to the goal region averaged over 30-trials are shown 
in Fig. 3. Bayesian SARSA performs much better than online 
LSPI in both the steps to the goal region and the corresponding 
confidence interval. Some significant fluctuations exist in the 
confidence interval as the actions are perturbed by noises. 
Taking a look inside, Bayesian SARSA can learn a near­
optimal control policy at the end of each trial, while online 
LSPI successes within only 1/5 of the trials. This stems from 
the fact that a sudden change happened in the value of reward 
results in the lost of experience for online LSPI, when the 
agent 'traps' into the puddle. While Bayesian SARSA can 
avoid the sudden changes as it incorporates a prior information 
and learns from the temporal difference. 

Furthermore, a comparison of the two learned control 
policies is shown in Fig. 4. The first one is randomly selected 
from the trials by Bayesian SARSA and the second one is 
selected from the trials which has successfully reached the goal 
region by online LSPI. Similar to the results of the mountain 
car task, the control policy learned by Bayesian SARSA is 
almost near-optimal in the whole state space, while the one 
learned by online LSPI is only available in the vicinity of the 
trajectory. 

VI. CONCLUSIONS 

In this paper, a Bayesian SARSA algorithm is proposed 
to study the policy evaluation issue of the reinforcement 
learning in the continuous state domain from the probability 
perspective. It is implemented by modeling the action value 
function as a stochastic variable via Gaussian processes and 
then updating it according to Bayesian inference. The algorith­
m was tested and demonstrated on two different benchmark 
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Fig. 3. Steps to the goal averaged over 30 trials and the corresponding 
confidence interval. 

(a) (b) 

Fig. 4. Learned control policy at the end of one trial: (a) by Bayesian SARSA; 
(b) by online LSPl. The four different gray-scales represent the four actions, 
respectively. The red dotted lines represent the state trajectories from the start 
to the goal region. 

problems by comparing with online LSPI. Empirical results 
show that Bayesian SARSA can make an efficient use of data 
and learn fast the near-optimal control policy. Moreover, it 
outperforms the online LSPI algorithm in the performance of 
robustness and optimality. 

In order to learn an optimal control policy, a reinforcement 
learning agent always has to explore the uncertainty part of the 
state-action space. As mentioned previously, Bayesian SARSA 
also learns the uncertainty of each state-action pair, not just 
the action value function. Hence, how to efficiently explore an 
underlying system according to such an uncertainty will be a 
promising research area in the future work. 
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