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ABSTRACT

Error correcting code (ECC) is an essential method in protection
of NAND Flash memories. Complexity of it is increasing rapidly
with the increment of error correction capability. Traditionally,
the software implementation of ECC which has less cost and high
flexibility is nearly ignored due to its inefficiency. This situation
can be changed by design of faster software-based ECC scheme.
We have found that the reliability is constantly changing with
Program/Erase cycles and retention time during the lifetime of
memories. However, regular ECC methods fail to take into account
the variable kinds of reliability and result in a great waste of
computations. In order to achieve better software implementation,
an adaptive ECC scheme is proposed to provide various amount of
protection. By assigning appropriate ECC, an adaptive ECC with
Hamming and more efficient BCH codes is designed to provide
corresponding protection. Proposed ECC scheme is suitable for
diverse devices and applications. The coding time can be obviously
decreased, making it possible to replace hardware methods with
software methods.

Index Terms— Error correcting code, flash memories, adaptive
protection, software, BCH

1. INTRODUCTION

NAND Flash memories are widely used for mass storage because
of their low power, great storage and low cost[1]. However, they
also suffer from program disturb errors and data retention errors[2].
In order to enhance reliability, error correcting code(ECC) is widely
used in fault tolerant design. Hamming which is the most efficient
1-bit ECC has already been used in SLC products[3]. Since the
reliability of flash memories is decreased with the growth of storage
density, ECCs with higher error correction capability must be found.
Bose-Chaudhuri-Hocquenghem(BCH) is one of the most popular
ECCs for flash memories, which has less check bits and can adapt to
random and burst errors[4].

A large amount of researches have been done to improve
the efficiency of ECC, but most of the attempts are focus on
hardware implementation[2, 4]. People seem to forget the software
implementation methods because of their inefficiency. However,
the hardware methods need to design additional hardware circuit,
and have longer design-time and higher cost. At present, a serial
BCH[5], a parallel BCH[6] and a fast BCH based on efficient root
finding method[7] have already been introduced. Although the
coding time is still long and the data throughput can only satisfy
several real-time applications, it tells us the software methods can
still do the error correcting job. If the efficiency of software methods
can be further increased, it will be possible to replace some hardware
methods.

Meanwhile we found that the complexity of ECC was rapidly

increasing with the growth of error correction capability. The
implementation of BCH needs a large amount of computations
because of the increasing raw bit error rate(RBER). However, during
the life time of memories, the RBER is changing. Research shows
the errors in memories have Program/Erase(P/E) cycle dependence
and retention time dependence[8]. The reliability will continuously
decrease with the increment of P/E cycle count and retention
time[8]. So the error-correcting requirement is dynamic and can be
influenced by the effect factors. Regular ECC methods[2, 4, 5, 6, 7]
are designed based on the worst reliability cases and have a great
waste of computations. A reconfigurable ECC for protection of
SRAM is provided in [9] to solve this problem, but it can only use
hardware method and doesn’t match the structure of NAND Flash.
So an adaptive ECC scheme is presented here in order to take full
use of the ECC and improve the software efficiency.

Three contributions are made in this paper: A ECC selection
method based on P/E cycle count and retention time is provided
to select suitable ECC. A more efficient BCH decoding method is
introduced to reduce decoding time. And a structure of adaptive
codec based on Hamming and BCH is designed to provide various
amount of protection. When data need protection, we first determine
the ECC selection according to the running environment, then the
corresponding level of ECC is invoked to provide protection. No
need additional hardware cost, the error correcting time running
by ADSP-TS201 can be reduced to several microseconds, and the
performance can be greatly improved to satisfy most real-time
applications.

The rest of paper is organized as follows. Section 2 presents
how to select ECC for memories. Section 3 describes the structure
of proposed adaptive ECC encoder and decoder, and provides a
more efficient BCH decoding method. Section 4 presents the DSP
implementation of proposed ECC scheme. Section 5 concludes the
paper.

2. ECC SELECTION METHOD

In this section, a method generated by considering of the effect
factors of reliability is given to determine appropriate ECC. The
factors such as P/E cycle count and retention time have the long-
term accumulation influence on reliability[1]. The effects of these
two factors are additive, the increasing of each one can result in a
larger error rate[8]. We introduce them separately.

The tests in [1] are used to show the relationship between the
RBER and the retention time. Fig.1a uses the test results to show the
RBER versus retention time of 0 to 12000 hours under the situation
of 1K P/E cycles. Note that a increasing RBER is obtained with
the growth of retention time. When the retention time is increased
from 1 day to 1 year, the RBER can be regarded as 8.8 × 10−8 to
6.9 × 10−7. Then we can assume that the RBER in the retention
time of 1.5 years can be about 10 times higher than that in 1-day
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(a) Retention time (b) P/E cycle count

Fig. 1. RBER versus retention time and P/E cycle count for MLC
devices.

Fig. 2. Major steps in the determination of ECC.

retention time.
Except for the retention time, all types of errors are also closely

connected with P/E cycle count [8]. P/E cycle count is the key factor
in determining the reliability of memories. Tests in [1] show the
increasing tendency of RBER with P/E cycle count. The test results
of P/E cycle induced RBER when the retention time is 1 day is
simulated as in Fig.1b. We can see that when the P/E cycle count
is over 1K, the increasing tend becomes obviously. And when the
P/E cycle count is between 1K and 10K, the RBER can be regarded
as ranging from about 2 × 10−8 to 5 × 10−7. Finally, the RBER
will reach to a stable value when the P/E cycle count reaches to the
maximum number.

By considering the effects of retention time and P/E cycle count,
the following steps as shown in Fig.2 are done to select ECC.
A threshold method is used to divide the levels of retention time
and P/E cycle count. The maximum error correction capability is
designed to be 4 which can satisfy most of reliability requirements
[8]. The related ECC levels are divided as three: 1, 2 and 3. The level
1 uses Hamming as 1-bit ECC, the level 2 uses BCH(4122,4096,5)
as 2-bit ECC and the level 3 uses BCH(4148,4096,9) as 4-bit
ECC. During the lifetime of memories, the initial ECC level is
1, afterwards if the prospective retention time is larger than the
threshold, the ECC level adds 1. If the P/E cycle count is also
larger than the threshold, the ECC level adds another 1. After the
two comparisons, the level of ECC can be selected. When data need
protection, this ECC selection is output to the adaptive ECC encoder.

3. ADAPTIVE ECC ENCODER AND DECODER

The adaptive ECC encoder and decoder are the key modules in pro-
posed ECC scheme. An adaptive 4-bit ECC codec with Hamming,
BCH(4122,4096,5) and BCH(4148,4096,9) is presented to realize
the maximum 4-bit error-correcting capability. The structure of
adaptive ECC encoder and decoder is introduced separately.

Fig. 3. Major steps in the adaptive ECC encoder.

3.1. Adaptive ECC Encoder

The structure of adaptive ECC encoder is shown in Fig.3. When data
need protection, the following steps will be done:

1. The adaptive ECC encoder receives the ECC selection as
mentioned in section 2, and determines which level of ECC should
be chosen;

2. If the ECC level is 1, Hamming encoder[3] is applied, then
turn to step 5 directly. Otherwise adaptive BCH encoder is invoked;

3. Since the procedure of BCH encoder can be written as[6]:

C(x) = xn−km(x) + [xn−km(x)]mod(g(x)) (1)

Where C(x) is the generated BCH codeword, m(x) represents
the information bits, n is the length of codeword, k is the length of
information bits, mod is the modulus operation, g(x) is the generator
polynomial. The g(x) look-up table(LUT) is used to implement BCH
encoder in parallel[6]. We find that the only difference between 2-
bit BCH and 4-bit BCH is g(x) LUT. So in step 3, the corresponding
g(x) LUT of 2-bit or 4-bit BCH is called to provide various divisors;

4. After the injection of g(x) LUT, the BCH encoder introduced
in equation (1) is invoked to calculate the ECC check bits;

5. Finally the generated ECC codeword is stored into memories.

3.2. Adaptive ECC Decoder

ECC decoder is the most complexity step in proposed ECC scheme,
the improvement of it has a huge influence on efficiency. The
adaptive ECC decoder takes advantage of Hamming decoder and
adaptive BCH decoder to provide dynamic protection. Hamming
decoder is the same with [3]. BCH decoder presented here has
focused on the improvement of software performance running by
DSP. During BCH decoding, the number of elements in syndrome is
t, which is equal to the error correction capability. A 4-bit simplified
Peterson-Gorenstein-Zierler(PGZ) method is applied to calculate the
error location polynomial. The same with [7], a fast root finding
method is applied to find roots of the error location polynomial,
but proposed method uses Zinoviev method[10] directly, rather than
BTA method. Fig.4 shows the structure of adaptive ECC decoder,
which includes the BCH decoding process.

1. The number of ECC check bits is used to determine which
ECC is selected. If the number of them is 24, the Hamming decoder
in [3] is selected, otherwise adaptive BCH decoder is selected.

2. If the number of check bits is 26, the 2-bit BCH is selected.
otherwise the 4-bit BCH is selected. In order to recognize the
existence of errors as early as possible, corresponding 2-bit or 4-bit
BCH encoder is invoked to encode received vector r(x) again after
the ECC judgment. The new ECC check bits will be generated as
ECCnew. Then the following steps are the same.
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Fig. 4. Major steps in the adaptive ECC decoder.

3. In step 3, XOR operation between ECCnew and the original
ECC check bits ECCold is done. If all bits in the XOR result
syn(x) are zero, there are no errors here. Finish the decoding
and read the data out directly. Otherwise, calculate syndrome by
Si = syn(α2i−1), where α2i−1 ∈ GF (2m) and i = 1, 2 . . . , t.
Syndrome can be obtained as S(x) = {S1, S2, . . . , St}, and the
number of elements in syndrome is t = 4 here.

4. After syndrome generation, the error location polynomial
σ(x) is calculated by the 4-bit simplified PGZ method, which
is more suitable for DSP implementation than Berlekamp-
Massey(BM) algorithm [6]. The error location polynomial can
be represented as σ(x) = σ0 + σ1x + . . . + σtx

t. There are three
situations:

If the syndrome satisfies: S2 = S3
1 , there is 1 error in r(x). The

error location polynomial σ(x) = 1 + S1x;
Otherwise, if S2S

3
1 = 0, there are 2 errors in r(x). The error

location polynomial is σ(x) = 1 + S1x+
S2+S3

1
S1

x2;
If the above conditions are all not satisfied, there may be 3 or

4 errors. Calculate the coefficients of error location polynomial
directly by:σ0 = 1, σ1 = S1, σ2 =

S1(S4+S7
1)+S2(S3+S5

1)

S2(S2+S3
1)+S1(S3+S5

1)
,

σ3 = (S2 + S3
1) + S1σ2, σ4 =

(S2
1S2+S3)+(S2+S3

1)σ2

S1
. In this case

if σ4 = 0, there are 3 errors in r(x), otherwise there are 4 errors in
r(x).

5. Since the roots of σ(x) are the reciprocal of the real error
locations. We have to find them rapidly by the Zinoviev method[10].
Three situations are taken into account separately.

Situation 1: the case σ(x) = 1 + S1x, the only root of σ(x) is:
x = S−1

1 .
Situation 2: the case of 2 errors, the βi LUT with m×1 elements

is called to find the roots. The m elements satisfy that: β2
i + βi =

αi+Tr(αi)αk, and Tr(αk) = αk+α2k+α22k . . .+α2m−1k = 1.
Let u = σ0σ2

σ2
1

=
∑m−1

i=0 uiα
i, where ui ∈ GF (2) and

αi ∈ GF (2m). The two roots of error location polynomial can
be obtained by: x1 = σ2

σ1

∑m−1
i=0 uiβi and x2 = x1 + 1.

Situation 3: the case there are 3 or 4 errors. We first
change the error location polynomial σ(x) to the equation as:
y(z) = z4 + az2 + bz + c. Zinoviev[10] provides a fast method
to find the roots of y(z). 1) Let L(z) = z4 + az2 + bz, and
L(αi) =

∑m−1
j=0 lijα

j . Where i = 0, 1, . . . ,m−1, αj ∈ GF (2m),
lij ∈ GF (2). 2) Let c =

∑m−1
j=0 cjα

j , where cj ∈ GF (2). 3) Let
z =

∑m−1
j=0 zjα

j , where zj ∈ GF (2). 4) The four roots Zi of y(z)
can be calculated by the linear equation:

∑m−1
i=0 li,jzi = cj . The

rank of it is 4, so we can obtain the four roots by Zi =
∑m−1

j=0 zjα
j ,

i = 1, 2, 3, 4. 5) Finally the roots of error location polynomial σ(x)
can be obtained by the inverse transform of y(z).

Fig. 5. Percentage of MBU errors in 4 proposed error models.

6. After the upper steps, the error locations can be found
rapidly. If errors are not corrected successfully, the BCH encoder
with higher error correction capability is invoked to protect the data
again. Otherwise the data can be read out to the data buffer.

The architecture of proposed ECC codec method has lower
complexity, which is more suitable for software method, especially
the DSP implementation. Through this adaptive ECC scheme, a
high speed ECC encoding and decoding can be obtained.

4. SIMULATION AND COMPARISON

In order to show the feasibility of proposed ECC scheme, several
error models are introduced to simulate typical stages of running
conditions. We introduce four error models during the 10K P/E
cycles to obtain average performance of proposed ECC scheme.
Based on the simulation of uncorrectable bit error rate(UBER), we
can see a larger possibility of Multiple Bit Upset(MBU) errors with
the increment of RBER in the memory block [2]. The following four
error models are assumed to simulate different running environment.

During the lifetime of 10K P/E cycles, the threshold of P/E cycle
count is set to be 5K and the threshold of retention time is 0.5 year,
the average coding time and UBER are obtained by the injection of
error models as shown in Fig.5. At the initial phase of P/E cycle
count less than 2500 and retention time less than 1 day, model 1 is
assumed as 10% 1-bit errors to represent the 2500 P/E operations,
the P/E cycle count and retention time are less than the thresholds,
the Hamming code is invoked to protect this stage. At the next 2500
P/E cycles, the retention time increases to 0.5 year which is above
the threshold, model 2 is presented as 18% 1-bit errors and 2% 2-
bit errors. The BCH(4122,4096,5) is selected to protect memories.
When the P/E cycle count ranges from 5K to 7.5K and the retention
time increases to 1 year, this relatively low reliability situation is
represented by model 3. 70% 0 errors, 24% 1-bit errors, 5% 2-bit
errors and 1% 3-bit errors will happen during the P/E operations.
The BCH(4148,4096,9) is invoked to protect this stage. The final
phase is presented by model 4. The P/E cycle count is larger than
7.5K and the retention time is 1 year. The BCH(4148,4096,9) is
invoked to correct a combination of 60% 0-bit errors, 28% 1-bit
errors, 8% 2-bit errors, 2% 3-bit errors and 2% 4-bit errors.

In order to show the better performance of proposed ECC
scheme, two comparisons will be done. Firstly, the decoding time
of BCH mentioned in section 3.2 is compared with other software
implementation methods to show its efficiency. Next the comparison
of proposed adaptive ECC and regular 4-bit BCH will be provided.
The structure of proposed adaptive ECC can be run by various
devices, such as DSP, ARM and FPGA. Since there are many
judgments here, it’s particularly suited for DSP implementation. The
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Table 1. Comparison of the Different Implementations of BCH
Decoding.

BCH decoder 2-bit(µs) 4-bit(µs)

Proposed BCH 10.01 21.345

Serial BCH[5] 609.1 1268.6

Parallel BCH[6] 134.9 287.4

Fast BCH[7] 10.69 23.924

Table 2. Comparison of Proposed ECC Scheme and 4-bit BCH.
Encode Decode RBER UBER

time(µs) time(µs) (bit−1) (bit−1)

Proposed 6.90 7.99 2.1× 10−9 7.7× 10−18

4-bit BCH 9.54 10.93 2.1× 10−9 8.9× 10−19

embedded system we used is based on ADSP-TS201, the NAND
Flash is connected with the DSP through FPGA. The reading and
programming operations are controlled by the ADSP-TS201. All the
architectures of proposed ECC system including the ECC selection
and adaptive codec will be software-based implemented by ADSP-
TS201 and Visual DSP++ 5.0 compiler.

We first compare the performance of proposed BCH decoding
method with related software decoding methods[5, 6, 7] as shown in
Table 1. Note that proposed 2-bit BCH decoding time is 10.01µs,
the speedup of proposed 2-bit BCH is 13.5 times larger than parallel
BCH method and 1.1 times larger than fast BCH. And proposed 4-
bit BCH decoding time can be reduced to 21.345µs. They all show
a decrease of running time. The throughput of regular 4-bit BCH
by proposed BCH decoding method can reach 191.9Mbps, which
is already an acceptable speed of data transmission.

The adaptive ECC scheme can achieve another better result.
The comparison between proposed ECC scheme and regular 4-bit
BCH is shown in Table 2. The average efficiency is obviously
improved during the lifetime of 10K P/E cycles. The encoding
time is reduced from 9.54µs to 6.90µs, and the decoding time
is reduced from 10.93µs to 7.99µs. Since the error correction
capability is not waste in proposed ECC scheme, the average UBER
is about 10x higher than 4-bit BCH, but it will be sure to stay below
the safe UBER 10−15 to satisfy the reliability requirements. The
decoding throughput can reach 512.6Mbps. Although the hardware
throughput can reach to over 1Gbps [4] which is about 2 times larger
than proposed scheme, proposed scheme can also achieve the high
speed data transmission, e.g., the MP3 needed NAND Flash data
throughput is 320Kbps and the the application of H.264 baseline
video is 14Mbps[6].

From the above comparisons, we can draw a conclusion that
the proposed ECC scheme can achieve better results than regular
ECC methods under most of situations. Through the proposed ECC
scheme, we can avoid the waste of error-correcting capability and
reduce the coding time to ensure the throughput to fit real-time
requirements. It’s possible to replace the place of several hardware
methods to obtain lower cost and higher flexibility.

5. CONCLUSION

In this paper, an adaptive ECC scheme is proposed to provide
dynamic protection of flash memories. A ECC selection method and

an adaptive ECC with 4-bit error correction capability are designed
to provide variable protection. The coding time is obviously
optimized by assigning appropriate ECC and using efficient ECC
implementation method. The architecture of proposed ECC scheme
has high flexibility, low cost, low complexity and can adapt to
various devices. The ADSP-TS201 based average encoding time can
be decreased by 28%, the decoding time is reduced by 27%. The
data throughput of proposed ECC scheme can reach 512.6Mbps
under the situation of average UBER below 10−15, which is only
2 times less than hardware throughput. So proposed ECC scheme
can replace the place of several hardware methods and obtain
an acceptable data transmission speed. The future investigation
will include the further study of reliability factors and find more
reasonable ECC selection method.
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