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Abstract—In this paper, we present a simple yet effective vi-
sual tracking algorithm with an appearance model based on 2D
discrete cosine transform (2D-DCT) representations. The DCT
has the properties of decorrelation and energy compaction, and
is robust against geometry and illumination changes. Hence,
it is suitable for appearance modeling and the features of
our appearance model are extracted from an optimized low
dimensional subspace. In order to adapt to the appearance
change caused by environment change or ego motion, we also
propose to update the observation appearance model through
a nonlinear weighted method. Numerous experiments on some
challenging video sequences demonstrated that our algorithm
is effective and it considerably outperforms the other methods.

I. INTRODUCTION

In recent years, visual tracking is one of the major
research issue in computer vision and has many successful
applications such as the video surveillance, robot vision and
human robot interaction [1]. Although there are many works
[2]–[12] proposed to solve the visual tracking problem during
the last decades, it is still dif�cult to design a robust tracking
system due to some factors, such as occlusion, illumination
variation, deformation, scale and appearance change, etc.
In general, a typical visual tracking problem covers three
key components: appearance model, tracking strategy and
appearance model update strategy.
The core problem of visual tracking is how to represent the

target object. Target representation is implemented through
the object appearance modeling. Hence, how to construct
an effective appearance model plays a critical role in visual
tracking. There are many ways to build an appearance model
for the target. [13], [14] and [15] used interest points for
tracking. In [16], Yilmaz et al. used contour feature to
track object, but the high computational cost of the level
set method limits its application in real-time scenarios. The
histogram re�ects the global statistic information of the target
and the histogram representation is often used for appearance
modeling due to its good anti-noise performance [17]. In
view of this, Bradski proposed a tracking algorithm based
on color histogram [18] and Nummiaro et al. proposed to
use color histogram in particle �lter framework for tracking
[19]. Besides, histograms of oriented gradients (HOG) are
also used for appearance modeling [20]. Wang et al. proposed
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a Gaussian Mixture Model fusing the spatial and the color
information for the sake of using the statistical information
of color feature as time changes [21]. Although it makes
the target representation more accurate, it may fail when
suffering from heavy posture change. Recently, the subspace
method is proposed to use the history information of the
target appearance to adapt to the object appearance change
[9]. Furthermore, there are also some other appearance
modeling methods such as tensor representation [22], MRF
[23], saliency model [24], etc.
Besides, tracking strategy is also very important in visual

tracking. In mean shift, non-parameter kernel density esti-
mation method was adopted to handle the tracking problem
[3]. It is considered as a local pattern matching optimization
problem. However, it may fail when suffering from color
clutter in background, illumination change and occlusion.
Recently, the discriminative model based algorithms have
been attracting much attention [1], [7], [10]. These methods
take visual tracking as a binary classi�cation task aiming
at discriminate the interesting object from the background.
Although they are suitable for situation with deformation,
occlusion, scale and appearance changes, their high compu-
tational cost may limit their real-time applications. Further-
more, visual tracking can also be casted as a state estimation
issue using the state space method. As a Bayesian sequential
importance sampling technique, the particle �lter can be used
to estimate the posterior distribution of state variables [25].
It can handle non-Gaussian or nonlinear model and is able
to run in real-time. This paper uses the particle �lter as
tracking framework. And the target state will be estimated
sequentially via particle �lter during the process of tracking.
In this paper, we present a simple yet effective visual

tracking algorithm with an appearance model based on 2D
discrete cosine transform (2D-DCT) representations. The
DCT is robust against geometry and illumination, and has
the properties of decorrelation and energy compaction. Thus
the original image can be approximately described via using
the low frequency components without introducing visual
distortion in the reconstructed image. Hence, it is suitable for
appearance modeling. In our appearance model, the features
are extracted from an optimized low dimensional subspace.
Besides, we also propose to update the observation appear-
ance model through a nonlinear weighted method to adapt to
the appearance change caused by environment change or ego
motion. Numerous experiments on some challenging video
sequences demonstrated that our algorithm is effective and
it considerably outperforms the other methods.
The organizational structure of the remainder of this paper

is as follows. In Section II, the detail of our target appearance
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Fig. 1. This �gure shows the 2-D DCT basis images for N = 8. Each
patch represents one DCT basis image. Neutral gray represents zero, white
represents positive amplitudes, and black represents negative amplitude.

model is given. Section III shows our tracking strategy with
particle �lter. The experimental results are shown in Section
IV. Finally, we give some conclusions in Section V.

II. TARGET APPEARANCE MODEL
In [26], Khayam claimed that the Discrete Cosine Trans-

form (DCT) attempts to decorrelate the discrete signal via
using a set of mutually uncorrelated cosine basis functions
in a linear manner without losing compression ef�ciency.
The DCT is often used for feature extraction due to its
robustness against geometry and illumination changes. It has
many applications in pattern recognition, computer vision,
and multimedia [27], such as face recognition [28], image
retrieval [29], etc. In this section, We will show how to
construct an effective yet very simple appearance model
based on 2D-DCT representations for visual tracking.

A. The One-Dimensional DCT
The 1D Discrete Cosine Transform (1D-DCT) and Inverse

Discrete Cosine Transform (IDCT) are de�ned as follow

c(u) =
N−1

∑
x=0

α(u) f (x)cos[
π(2x+1)u

2N
] (1)

f (x) =
N−1

∑
u=0

α(u)c(u)cos[
π(2x+1)u

2N
] (2)

where u ∈ {1,2, · · · ,N − 1}, f (x) is the 1-D discrete se-
quence, N is the length of f (x). In both equations (1) and
(2), α(u) is de�ned as

α(u) =

⎧⎨
⎩

√
1
N , u= 0√
2
N , others

(3)

We de�ne p(u,x) as p(u,x) = α(u)cos[π(2x+1)u
2N ], then (2)

can be rewritten as

f (x) =
N−1

∑
u=0
c(u)p(u,x) (4)

Fig. 2. The source image (80× 80 pixels) is transformed from the pixel
domain to the frequency domain through DCT transform. In general, images
are highly redundant and relevant. Hence only a small part of the frequency
components of the coef�cient are not zero, most coef�cient are zero (or
close to zero) after transforming into the frequency domain. In this �gure,
from the top left to the bottom right corner, as frequency increasing, the
values in the top left corner are relatively large, while the bottom right
corner small. In other words, the energy of an image is almost concentrated
in the low frequency components in the top left corner.

where p(u,x) is the 1D-DCT cosine basis functions which
are orthogonal.

B. The Two-Dimensional DCT

The 2D Discrete Cosine Transform (2D-DCT) and Inverse
Discrete Cosine Transform (IDCT) are de�ned as follow

c(u,v) =
N−1

∑
x=0

N−1

∑
y=0

f (x,y)q(u,v,x,y) (5)

f (x,y) =
N−1

∑
u=0

N−1

∑
v=0
c(u,v)q(u,v,x,y) (6)

where q(x,y,u,v) = α(u)α(v)cos[π(2x+1)u
2N ]cos[π(2y+1)v

2N ], and
q(u,v,x,y) is the 2D-DCT cosine basis functions which are
orthogonal. u∈{1,2, · · · ,N−1}, v∈{1,2, · · · ,N−1}. f (x,y)
is the 2D discrete signal (e.g. digital image) with size of
N×N. The de�nition of α(u) and α(v) are the same as (3).
And Fig. 1 shows the cosine basis functions for N=8 [29].
In Fig. 1, each patch represents one DCT basis image

qi(x,y) corresponding to the DCT coef�cient c(u,v). Accord-
ing to (6), an original image can be expressed as a linear
combination of DCT basis image blocks after projected onto
the DCT coef�cient space, and the corresponding weighted
coef�cient is c(u,v). Then we can use a certain order (such
as zig-zag sequence [29]) to scan the 2D coef�cients and
retain a one dimensional vector �C = (c0,c1, · · · ,cN×N−1)T .
Thus, the (6) can be rewritten as

f (x,y) =
N×N−1

∑
i=0

ciqi(x,y) (7)

C. The Properties of DCT

The Discrete Cosine Transform (DCT) has some properties
which are of particular value to digital image processing
applications.
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1) Decorrelation: the DCT is an orthogonal transforma-
tion and can transform the covariance matrix into diago-
nalization. It means the components are uncorrelated (i.e.
decorrelation characteristic). Besides, the DCT is an effective
approximation of the KL transform, and is often used in the
area of image processing for the purpose of feature selection.
2) Energy compaction: after DCT, we can obtain a co-

ef�cient matrix with the same size of the input image. In
the coef�cient matrix, the position and amplitude of every
element re�ects the spatial frequency and energy of an
image. Low frequency components of the coef�cient matrix
will be located in the top left corner, while high frequency
components in the bottom right corner.
As shown in Fig. 2, the energy is concentrated in the low

frequency components and the DCT coef�cients in these
regions have much larger values. As claimed in [26], the
original image can be approximately described via using the
low frequency components without introducing visual distor-
tion in the reconstructed image. That is to say, low frequency
components describe most of the original image information,
while the high frequency components describe the detail. Or
rather, the high frequency components provide the details
and the low frequency components offer a framework.

D. DCT Representations
As shown in (4) and (7), the discrete signal (one-

dimensional discrete sequence signal or digital image) can be
expressed as a linear combination of mutually uncorrelated
DCT cosine basis functions. Based on these functions, the
original signal is converted to the orthogonal DCT coef�cient
space. Besides, the output of the DCT is often very sparse,
especially suitable for signal compression and dimension
reduction for data.
At the given time t, the target region in the image frame

ft is denoted by Rt . Do DCT operation on the image region
Rt then produce a coef�cient matrix C with the same size of
Rt . In this paper, we use the zig-zag sequence to scan the top
left part of the 2D coef�cients and retain a one dimensional
vector. Then reserve the �rst K (here K = 64) elements in
the top left corner, thus the other coef�cient components
with small coef�cient will be discarded. The one dimensional
vector is �Ct = (c0t ,c1t , · · · ,cK−1t )T . Thus we can use the �rst
K DCT coef�cient to describe the target image region. And
the target image region Rt can be approximately expressed
by

Rt =
K−1

∑
i=0
citqi(x,y) (8)

This operation is equivalent to the image projected onto an
optimized low dimensional subspace, and the corresponding
feature vector represents the target appearance model and the
position in the subspace.

E. Update of Observation Appearance Model
In visual tracking, the appearance of the target may

change over time due to some factors, such as illumination
variation, pose change, etc. If we use a �xed observation

appearance model, the tracking algorithm can not adapt
to the environment change and ego motion, and it will
cause tracking failure. If we directly update the observation
appearance model using the newest image sample to adapt to
the appearance change of the target, the appearance model
will degenerate when encountering occlusion. Finally, the
tracker will result in drift.
In this paper, we propose a method to update the observa-

tion appearance model via a nonlinear weighted method. The
appearance of the target may change over time. However,
the change is very small between two consecutive video
frames, i.e. only a small details change. As we know, the
high frequency components provide the details and the low
frequency components offer a framework. So the small
details change occur in high frequency components. Hence,
we assign large weight to high frequency components, and
the low frequency components is assigned small weight. The
appearance model can be updated as follow:

�C∗ = (�1−�α) ·�C∗+�α ·�C∗
t (9)

where �α = (α1,α2, · · · ,αK)T . αi is a weight coef�cient and
its corresponding DCT coef�cient value is cit . Before trans-
formed to a one dimensional vector, the position coordinate
of cit in 2-D DCT coef�cient matrix c(u,v) is (u,v). So αi
can be computed by αi = exp{− (u−1)2+(v−1)2

λ 2 } where λ is
a constant coef�cient. And �1 = (1,1, · · · ,1)T is a column
vector with the same size of �α . �C∗ is the target appearance
model. �C∗

t is the observation appearance of the tracked target
at the t-th video frame.

III. VISUAL TRACKING WITH PARTICLE FILTER
Visual tracking can be viewed as a Bayesian inference task

in Markov model with hidden state variables [9]. The task
of visual tracking is to estimate the state of target in image
frame. We use a rectangular bounding box to describe the
target in the video frame, namely the state of the target. Each
target image region is resized to a standard 32×32 pixels sub-
image patch. Over the given time t, the state of the target
is de�ned as Xt = {xt ,yt ,sxt ,syt}, where (xt ,yt) represents
the pixel coordinate of the target rectangular bounding box
center in the image frame ft . sxt and syt represent the ratio
of the target’s width and height to the sub-image’s width and
height, respectively. De�ne Zt as the observed appearance at
the t-th frame. Given a set of observed appearance sequence
Z1:t , the posteriori probability density of the target state Xt
can be estimated by

p(Xt |Z1:t) ∝ p(Zt |Xt)p(Xt |Zt−1) (10)

p(Xt |Zt−1) =
∫
p(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1 (11)

where p(Xt |Z1:t−1) is the prior probability predicted through
using the historical observed appearance, and p(Zt |Xt) de-
notes observation appearance model using DCT represen-
tations, aiming at estimating the likelihood of observation
Zt at the state Xt . p(Xt |Xt−1) is the state transition model
between two consecutive states and can be formulated by
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a Gaussian distribution around its previous state Xt−1, i.e.
P(Xt |Xt−1) =N(Xt ;Xt−1,Σ), where Σ is a diagonal covariance
matrix.
Then the optimal state of the tracked target X̂t can be

obtained by the Maximum a Posteriori (MAP) estimation
over the N samples at each time t by:

X̂t = argmax
Xit

p(Xit |Z1:t), i= 1,2, · · · ,N (12)

Particle �lter is an approximate algorithm for solving
Bayesian estimation by non-parametric Monte Carlo method,
and is also known as Sequential Monte Carlo method. It
is suitable for nonlinear, non-Gaussian and multimode state
estimation problem of dynamic system, and is a very active
research �eld in visual tracking. In our particle �lter frame-
work, we employ the standard Condensation algorithm [25],
which maintains N weighted particles Xit (i = 1,2, · · · ,N)
at the t-th frame ft , to simulate a posteriori probability
distribution. These particles are drawn from an importance
distribution function q(Xt |X0:t−1,Z1:t), then the posteriori
probability density of the target state Xt can be represented
as

p(Xit |Z1:t) ∝
N

∑
i=1

ω it δ (Xt −X
i
t ) (13)

where δ (·) is a Dirac function and the weights ω it (i =
1,2, · · · ,N) of particles are updated recursively as

ωt = ωt−1
p(Zt |Xt)p(Xt |Xt−1)
q(Xt |X0:t−1,Z1:t)

(14)

If we make q(Xt |X0:t−1,Z1:t) equal to p(Xt |Xt−1), we can
obtain ωt = ωt−1p(Zt |Xt). That is to say the weights of
particles over time t are given by the observation likelihood.
In order to avoid degeneracy for each particle, the particles

are resampled according to their weights. Those particles
with higher weights have much great possibility to be re-
sampled, and the particles with lower weights have lower
possibility to be resampled.

IV. EXPERIMENTS

Our algorithm is tested on 10 challenging video sequences
using VS2008 on a PC with Inter i5-2400 CPU (3.1GHz)
with 4GB memory, and runs at 20 frames per second (FPS).
The adopted video sequences shown in Table I are from
previous works [8]–[10], [30], [31] which are all publicly
available. The challenges of these sequences include illu-
mination variation, occlusion, fast direction change, pose
change, viewpoint change, scale and appearance change.
Besides, we also test some state-of-the-art tracking algo-
rithms using the source code provided by the authors for
comparison. These tracking algorithms include the color-
based particle �lter (CPF) [2], IVT [9], MILTracker [10] and
CT [12] algorithms.
To quantitatively evaluate the performance of the proposed

algorithm with other trackers, we use two metric in this
paper. The �rst metric is the center location error which
is de�ned as the average Euclidean distance between the

TABLE I
THE TRACKING VIDEO SEQUENCES USED IN OUR EXPERIMENTS

Sequence Main Challenges
david indoor moving camera,illumination change,scale change
Dudek illumination change,scale change,pose change
Faceocc1 moving camera,occlusion
Faceocc2 occlusion,heavy pose change
�sh illumination change,fast direction change
juice moving camera,fast direction change,scale change
person moving camera,occlusion

rubikscube moving camera,viewpoint change
Singer1 illumintation variation,scale change
Sylvester illumination change,pose change

center location of the tracked target and the manually la-
beled ground truth data. The other is the success rate using
bounding box overlap. The overlap score is de�ned as

S =
|rt ∩ ra|
|rt ∪ ra|

(15)

where rt is the tracked bounding box of the target, and ra is
the manually labeled ground truth bounding box. ∩ and ∪
denote the intersection and union of two regions respectively.
| · | measures the number of pixels in the region. Then we
count the number of successful image frames whose overlap
score S is large than the given threshold Sthr (i.e. S > Sthr,
here we set Sthr = 0.5) [32]. The success rate is de�ned as
the ratio between the successful frames and the total frames.
Both Table II and Table III are the quantitative results.

Table II shows the average center location errors of tracking
algorithm and Table III shows the success rate.

A. Scale, Pose and Illumination Variation
The target in david ind sequence undergoes illumination,

scale and pose change. The IVT, CT and our methods perfor-
m well on this sequence. For the Singer1 sequence, the scale
changes gradually. However it undergoes heavy illumination
variation. When the stage light changes drastically, most of
the other algorithms fail to track the target. As the light
and scale changing, all the other trackers fail. However,
the proposed tracker is robust to scale and illumination
changes due to the target appearance can be modeled well by
DCT representations and the update method with nonlinear
weight. Besides, Our tracker performs well on the Dudek and
Sylvester sequences where the targets undergo scale, pose
and illumination variation.

B. Occlusion and Pose Change
The target in Faceocc2 sequence undergoes heavy occlu-

sion and large pose change. The CPF, IVT and CT methods
perform well on this sequence. Our method performs best
not only in Faceocc2, but also in the Faceocc1 sequence and
person sequence.

C. View Point Variation and Fast Direction Change
The object in juice sequence undergoes fast direction

change because of fast moving camera. Besides, its scale
also changes gradually. Only the IVT method and our
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Fig. 3. Screenshots of sampled tracking results. The results of proposed tracker, CPF, IVT, MILTracker and CT algorithms are indicated by red, yellow,
green, pink and blue boxes, respectively.

TABLE II
AVERAGE CENTER LOCATION ERRORS OF TRACKING ALGORITHMS.

Sequence Frames CPF IVT MIL CT Our
david indoor 471 19 6 25 12 9
Dudek 1145 - 18 151 20 14
Faceocc1 892 21 19 28 18 14
Faceocc2 812 - 14 18 10 11
�sh 476 - 5 13 26 8
juice 405 31 5 7 7 6
person 306 12 3 9 7 4

rubikscube 717 6 3 9 4 3
Singer1 352 114 13 62 24 7
Sylvester 1346 - 99 45 13 10
Average - 34 18 37 14 9

tracker perform well on this sequence. For the �sh sequence,
the illumination changes gradually and this sequence also
undergoes fast direction change. Only the IVT, MILTracker
and our tracker perform well on this sequence. In addition, in
the rubikscube sequence, our tracker achieves the best result
both in average location error and success rate metric.

V. CONSLUSIONS

In this paper, we proposed a simple yet effective visual
tracking algorithm with an appearance model based on 2D
discrete cosine transform (2D-DCT) representations. The
DCT is robust against geometry and illumination, and has

the properties of decorrelation and energy compaction. The
original image can be approximately described via using
the low frequency components without introducing visual
distortion in the reconstructed image. Hence, it is suitable for
appearance modeling. The features of our appearance model
are extracted from an optimized low dimensional subspace.
Besides, we propose to update the observation appearance
model through a nonlinear weighted method to adapt to the
appearance change caused by environment change or ego
motion. Besides, it has the potential to work in real-time
applications. Numerous experiments on some challenging
video sequences demonstrated that our algorithm is effective
and it considerably outperforms the other methods.
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