
An Efficient and Effective Performance Estimation
Method for DSE

Chen Lin, Xueliang Du, Xinwei Jiang, Donglin Wang
Institute of Automation, Chinese Academy of Sciences

No.95, Zhongguancun East Rd, HaiDian Dist, Beijing, China
{chen.lin, xueliang.du, xinwei.jiang, donglin.wang}@ia.ac.cn

Abstract—Design Space Exploration (DSE) is a critical step
in the chip design. The tradeoffs and interactions among param-
eters are traditionally evaluated by simulating or synthesizing a
variety of designs which is intractable. The predictive modeling
techniques have been applied to predict the design performance
for DSE. For the system-on-a-chip (SoC) DSE cases, however,
it is difficult to achieve high accuracy with previous methods
due to their limitations. In this paper, we proposed a new
estimation method based on Regression Random Forests (RRF)
to build accurate and reliable prediction models. Our method can
significantly improve the prediction accuracy and accelerate the
procedure. In addition, due to the comprehensible tree model,
RRF could guide the SoC design by ranking the parameters’
importance. The experimental results show that RRF can reduce
relative errors by about 60%, which demonstrate the effectiveness
of our method.

I. INTRODUCTION
The advancement of semi-conductor processing technol-

ogy has made it feasible to fabricate a very large scale
integrated (VLSI) circuit on the chip called system-on-a-
chip (SoC). The requirements of multi-function and high-
performance computing make SoC design a great challenge.
Modern SoCs consist of multiple processing elements (PEs)
and high-speed interconnection. Although the IP-based method
[1] reduces the design difficulty and increases productivity by
reusing pre-designed PEs and interconnections, Design Space
Exploration (DSE) is still a critical and difficult step which
determines the appropriate SoC configuration.

Design

Space

Search/

Choose
Meet

Constraints

Analysis/

Estimation

SoC

Architecture

No

Yes
Alternatives Proposal

Fig. 1. A framework of DSE
As illustrated in Figure 1, DSE is a largely iterative trial-

and-error procedure and composed of two key steps. One
is searching for the optimum from a large design space.
The other is evaluating alternatives, i.e., how to analyze or
estimate design configurations. Traditionally, at every step,
architects need to choose from a vast set of architectural
techniques and parameters according to their own experience
and intuition. Because of the large design space and time-
consuming simulation or synthesis, it is intractable to explore
the entire design space. To speed up the simulation, several fast
performance analysis approaches were proposed. One of them
is based on statistical analysis after scheduling and mapping

tasks [2, 3]. It is suitable for data-flow application tasks,
e.g., audio/video encoding and decoding. Another method uses
CPU trace logs to speed up the simulation [4], which is mainly
used for CPU DSE cases. In order to reduce the overall
simulation costs, the predictive modeling which reduces the
number of simulated configurations was also proposed [5–7].
However, the mentioned predictive approaches focus on DSE
for microprocessors rather than SoCs.

In this paper, we proposed an estimation method based
on the Regression Random Forests (RRF) to accelerate the
step of estimating alternatives for DSE. The results of the
experiments demonstrate that this method can provide with
high accurate predictions in less time, and offer architects
useful guide information due to its feature-ranking attribute.

The rest of this paper is organized as follows. Section
II introduces the related work. Section III presents our RRF
approach. Section IV reports the experiments. Section V
concludes this paper.

II. RELATED WORK
A. Design Space Exploration

The regression modeling technique reduces the number
of simulated/synthesized design configurations by learning
the relationships between design parameters and responses.
Following the supervised learning framework, Joseph et al.
[5] used clock-accurate simulator to build a linear regression
model which shows the relationship between 26 importance
parameters and CPI (Cycles Per Instruction). Ipek et al. [6]
utilized ANNs to describe a non-linear mapping from CPU
inner parameters to IPC (Instructions Per Cycle). Chen et
al. [7] exploited unlabeled design configurations to improve
accuracy of the M5P tree model, which is also used for
microprocessor DSE. As so far, these approaches mainly focus
on DSE for microprocessors. And there are a few studies about
exploiting regression models to illustrate the relationships
between SoC interconnection parameters and its metrics.
B. Random Forests

Beriman developed an algorithm for inducing a random
forest [8], and used Random Forests as the trademark.
Random Forest randomly samples not only in the training
examples, but also in the features, which can ensure the
independence of all the decision trees and predict without
bias by voting. Criminisi et al. proposed a decision forests

framework to extend the existing forest-based techniques and
to unify classification, regression, manifold learning and semi-
supervised learning. In recent years, Random Forests model is
widely used in machine learning, computer vision, and medical
image analysis [9].
III. REGRESSION RANDOM FORESTS FOR SOC DESIGN

SPACE EXPLORATION
The random forests model is an ensemble learning

method for classification, regression and other tasks, which
constructs a multitude of decision trees at training time and
outputting the class (classification) or mean prediction (regres-
sion) of the individual trees. Our proposed method is based
on regression random forests.

In general, for regression, there are a set of labeled
training examples {xi, yi}

N

i=1
, where xi ∈ X = R

M , yi ∈
Y = R

K , N is the total number of the training examples.
Regression Random Forests model (RRF) typically describes
a non-linear mapping M : RM → R

K , where an example x

is mapped to a target prediction y. This mapping is learned
by an ensemble of binary decision trees {Tt}Tt=1

, where T is
the number of these trees.

In the RRF-based estimation framework for SoC DSE, xi

is the i-th SoC design with M interested configuration param-
eters, e.g., width or frequency of interconnection, the depth of
cross-clock domain FIFO. And yi is the corresponding SoC
response, e.g., performance metrics like the benchmark simu-
lation time, power, area. Here we take benchmark simulation
time as an example. The N design configurations randomly
sampled from SoC design space are simulated by benchmarks
to label the execution time. These labeled examples are used
for RRF supervised-learning. The RRF supervised-learning
procedure is as follows:
1) Construct a training set from labeled examples for one

decision tree using the bootstrap sample method.
2) Each node of Tt randomly samples a set of splitting

functions φ(x) to split training data into two subsets. To
minimize the uncertainty of the target variables, the best
splitting function φ∗(x) on every node is measured by
the criterion of maximum information gain.

3) The Tt recursively splits until the stopping conditions are
met, e.g., a maximum tree depthD or a minimum number
of samples left in the splitting node. Once one of these
criteria is fulfilled, the splitting node becomes the leaf
node, whose density model is calculated by all samples
falling in it.

4) Repeat the above steps to create T trees to form the RRF
model.
The definition of T and D will be discussed in details in

the part D of Section IV.
Compared with the most powerful learning models, such

as ANNs and ensembles, RRF is a more comprehensible
model. Because of the basis of decision tree model, RRF
can evaluate the importance of different SoC parameters. The
relative rank (i.e. depth) of a feature can be used to assess the
feature’s relative importance with respect to the predictability.

Features that are closer to the top (i.e. root) contribute more
to the final prediction.

IV. EXPERIMENTS
A. SoC Design Space Definition

Figure 2 shows the SoC architecture in our experiment.
CPU is the central processing unit whose responsibility is task
scheduling. PE is the processing unit which is responsible for
the large scale data computing. Bridge is the bus intercon-
nection between a master and a slave with any combination
of different data port widths, different clock frequencies,
and different endianness. HSM is the high-speed memory,
e.g., DDR3 DRAM. In our experiment, the instruction set
architecture (ISA) of the CPU is ARMv7. An innovative
algebraic processing engine is utilized as PE. In order to
illustrate the university of RRF, we adopt three SoC topologies
in the experiments, such as 4 PEs and 1 HSM (4p1m), 4 PEs
and 2 HSMs (4p2m), 8 PEs and 2 HSMs (8p2m).

CPU

PE1

In
te

rc
o

n
n

e
ct

io
n PE2

Bridge

Bridge
HSM

PE3

PE4

PE8

HSM

Bridge

Bridge

Bridge

PE5 Bridge

Fig. 2. The architecture of SoC.
In general, according to the requirements of SoC appli-

cations and the constraints of specifications, architects should
define the SoC fixed and variable parameters at the beginning.
In our experiment, the SoC fixed and variable parameters are
respectively shown in Table I.

TABLE I
SOC FIXED AND VARIABLE PARAMETERS.

The fixed parameters
Name Description
CPU 800MHz, data width = 128bit
PE 1GHz, data width = 128bit

Interconnection AXI3.0, the max burst length = 16
The variable parameters

Name Description Value
HSM width high-speed memory width 32,64,128,256,512
w x2x depth write channel FIFO depth 4,6,8,10,12,14,16
r x2x depth read channel FIFO depth 4,6,8,10,12,14,16
MP depth master port synchronizer 2,3
SP depth slave port synchronizer 2,3

freq PE clk PE interface frequency 400,500,600,700,800
freq HSM clk HSM interface frequency 400,500,600,700,800

Total 7 24500

B. Benchmarks for SoC Evaluation
The most common way to evaluate the SoC performance

is to measure the execution time of a specific application. We
employed power flow calculation which is a power system

vocabulary as the benchmark. It is used to calculate all
parameters of a stable power system based on its structure, the
parameters of generators and loads. There are two well-known
algorithms for power flow calculation, i.e., the Newton method
and the PQ decomposition method. The Newton method
consists of four key steps, i.e., Y matrix calculation (ym),
polar to rectangular coordinate transformation (p2r), Jacobi
matrix calculation (jm), gaussian iteration and revise solution
to equation (gr).

In our experiments, we randomly generated 200 of 24500
design configurations without assuming the superiority of any
specific one. To obtain the real performance value, we simu-
lated the configurations with verilog HDL in Register Transfer
Level (RTL) which can provide high accuracy. Simulating
the configurations for 4 benchmarks of 3 different PEs and
HSMs topologies consumed about 150 hours on a cluster
with 16 Intel Xeon E5-2620 CPUs. Among the 200 simulated
configurations, 180 design configurations were considered as
the training set and the rest were the test set.

C. Performance Evaluation of RRF
To demonstrate the effectiveness of RRF on the per-

formance of estimation for SoC DSE, we compared RRF
with Ridge Regression model, Artificial Neural Network and
Adaboost. Ridge regression model utilizes the regularized least
squares method which can overcome the over fitting. ANN
is the state-of-the-art predictive model [6]. Adaboost is the
representative model ensemble method which is closely related
to our method.

We used Scikit-learn toolbox [10] to implement Ridge
Regression model, Adaboost and Regression Random Forest,
and used pybrain toolbox [11] to implement ANN. Ridge Re-
gression model adopted the optimal regularization parameter
α of 0.5. ANN adopted one 16-unit hidden layer, a learning
rate of 0.6, the max training epoch of 500. Adaboost adopted
the decision tree model as the weak learner whose number is
20. RRF adopted T of 20 and D of 20.

Fig. 3. The quantitative comparison of the different regression models.

Figure 3 presents the detailed comparisons of prediction
results on test data, where Ridge Regression model (RR),
ANN-based model (ANN), Adaboost model (Ab) and Re-
gression Random Forests model (RRF). We can clearly see
that RRF significantly outperforms other approaches over all
12 situations formed by combinations of 3 SoC topologies
and 4 benchmarks. The average Relative Error (RE) of RRF
is 2.93%, which is much smaller than the average RE of
RR (26.77%), ANN (7.84%) and Adaboost (7.33%). Most
notably, on the situation gr 4p1m, RRF reduces RE by 93.4%
of RR, by 76.8% of ANN, by 74.3% of Adaboost. Even on
the situation with the least RE reduction (jm 8p2m), RRF
reduces RE by 84.3% of RR, by 34.8% of ANN, by 34.1%
of Adaboost. On the easy-to-predict situation gr 4p2m, the
average RE of these four models is 23% and RRF reduces RE
by 89.1% of RR, by 78.3% of ANN, by 63.7% of Adaboost.
On the hard-to-predict situation p2r 4p2m, the average RE of
these four models is 57% and RRF reduces RE by 87.0% of
RR, by 55.3% of ANN, by 51.2% of Adaboost.

TABLE II
THE AVERAGE TRAINING AND TEST TIME ON ALL SITUATIONS.

RR ANN Adaboost RRF
time(s) 0.0014 52.0423 0.0230 0.0227

On the other hand, from the comparisons of the average
learning and test time on all situations shown in Table II, RR
is the fastest. The speed of Adaboost and RRF is similar. RRF
is slightly faster than Adaboost. ANN is the slowest because
of the large number of iterations. Hence, we can conclude
that RRF is much more practical than other three regression
modeling techniques due to its high prediction accuracy and
fast computing speed.
D. The Effect of RRF Parameters

We further evaluated the impact of the number of decision
tree T and the maximum of tree depth D on the prediction
accuracy of RRF.

Figure 4 offers an illustrative example about the relation-
ship between the prediction accuracy of RRF and its parame-
ters, i.e. T and D. When T is fixed, the prediction accuracy of
RRF clearly increases as D increases when D < 10. And the
accuracy tends to be a stable value without obvious overfitting
when D is greater than 10. Meanwhile, as T increases, the
curves which illustrate the relationship between prediction
accuracy and D become smoother. Therefore, we find that
although RRF is a parametric model, the definition of its
parameters are not as difficult as ANN. According to the
Figure 4, we believe that the RRF model with T = 20 and
D = 20 is good and stable enough to predict reliable results.
E. Feature Ranking for SoC DSE

RRF can not only predict SoC performance, but also
rank the importance of SoC parameters. Taking ym 8p2m as
an example, Table III shows that RRF ranks the importance
of SoC parameters regarding the execution time. In this SoC

0 10 20 30 40 50

D

92

93

94

95

96

97

98

99

100

T
h
e

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

gr_4p2m (T=1)

(a)
0 10 20 30 40 50

D

93

94

95

96

97

98

99

100

T
h
e

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

gr_4p2m (T=5)

(b)

0 10 20 30 40 50

D

93

94

95

96

97

98

99

100

T
h
e

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

gr_4p2m (T=20)

(c)
0 10 20 30 40 50

D

93

94

95

96

97

98

99

100

T
h
e

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

gr_4p2m (T=100)

(d)
Fig. 4. The test accuracy of different T and D.

topology, the data width of HSM is the most effective factor of
performance. The least two effective factors are the the number
of synchronizers in bus bridge. These information will help
architects efficiently improve SoC design. For example, since
the effect of synchronizer number is subtle, this parameter
can be fixeqd on the next exploration step to prone the SoC
design space. And if the first target is SoC’s performance,
the top priority is the bandwidth of HSM. Because the SoC
performance is sensitive to the frequency and width of HSM.
Furthermore, we can find that the importance of write channel
FIFO depth in bus bridge is greater than that of read channel.
So architects can configure different write/read channel FIFO
depths to meet the performance requirement and to reduce the
area.

TABLE III
THE SOC PARAMETER RANKING.

1. HSM width (0.728715)
2. freq HSM aclk (0.238023)
3. freq PE aclk (0.019272)
4. w x2x depth (0.011598)
5. r x2x depth (0.001610)
6. MP depth (0.000504)
7. SP depth (0.000278)

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed an estimation method based

on RRF models to speed up SoC evaluation for DSE. RRF
is a supervised-learning regression model which can explore
the relationship between SoC parameters and performance.
Compared with other regression models, the RRF approach
predicts faster and more accurately. Furthermore, it presents

the features/parameters ranking to guide the design, and thus,
the optimal SoC configurations can be acquired more efficient-
ly.

In the future, we plan to leverage unlabeled configurations
and semi-supervised learning to improve the accuracy of RRF.
We also aim to propose an innovative exploration method
combined with RRF models to complete the DSE flow.

ACKNOWLEDGMENT
This work was supported by the Strategic Priority Re-

search Program (Category A) of the CAS under Grant X-
DA06011000.

REFERENCES
[1] P. Bricaud, “Ip reuse creation for system-on-a-chip de-

sign,” in Custom Integrated Circuits, 1999. Proceedings
of the IEEE 1999, 1999, pp. 395–401.

[2] S. Kim et al., “Schedule-aware performance estimation
of communication architecture for efficient design space
exploration,” in Hardware/Software Codesign and Sys-
tem Synthesis, 2003. First IEEE/ACM/IFIP International
Conference on, Oct 2003, pp. 195–200.

[3] S. Sombatsiri et al., “An amba hierarchical shared bus
architecture design space exploration method consider-
ing pipeline, burst and split transaction,” in Electrical
Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), 2013 10th
International Conference on, May 2013, pp. 1–6.

[4] C. Lee et al., “A systematic design space exploration
of mpsoc based on synchronous data flow specification,”
Journal of Signal Processing Systems, vol. 58, no. 2, pp.
193–213, 2010.

[5] P. Joseph et al., “Construction and use of linear re-
gression models for processor performance analysis,”
in High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, Feb 2006, pp. 99–
108.

[6] E. Ïpek et al., “Efficiently exploring architectural design
spaces via predictive modeling,” SIGPLAN Not., vol. 41,
no. 11, pp. 195–206, Oct. 2006.

[7] T. Chen et al., “Effective and efficient microprocessor
design space exploration using unlabeled design config-
urations,” ACM Trans. Intell. Syst. Technol., vol. 5, no. 1,
pp. 20:1–20:18, Jan. 2014.

[8] L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, 2001.

[9] A. Criminisi et al., “Decision forests: A unified frame-
work for classification, regression, density estimation,
manifold learning and semi-supervised learning,” Foun-
dations and Trends in Computer Graphics and Vision:
Vol. 7: No 2-3, pp 81-227, 2012.

[10] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[11] T. Schaul et al., “PyBrain,” Journal of Machine Learning
Research, vol. 11, pp. 743–746, 2010.

