
Consensus between networks based on streamline fiber tracking
and probabilistic fiber tractography

LI Qiaojun, JIANG Tianzi
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China

E-mail: qjli@nlpr.ia.ac.cn

Abstract: Exploring structural brain network from diffusion MRI has been established as a useful method for understanding
the topological organization of brain structure in health and disease. However, there is still no wildly accepted methods for
constructing structural network. Definition of structural network edge is one of the most important issues in network construction.
To generate network edges, streamline fiber tracking and probabilistic fiber tractography are wildly used. In this study, we
explored the effect of networks based on these two different methods and investigated whether these two kinds of networks
were mutually replaceable. To fulfill this, we compared four network properties (clustering coefficient, global efficiency, local
efficiency, and shortest path length) between blind and sighted subjects. We found a high agreement in these properties between
the two kinds of networks across a wide range of corresponding edge thresholds. Our findings demonstrated the utility of
analyzing networks based on both these two methods to identify consensus results.
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1 Introduction

Exploring the topological organization of brain structure
and their relation to neurological health and disease is very
important for our understanding of human brain. Construct-
ing the human structural network by diffusion MRI, which
can describe the segregation and integration of human brain
quantitatively in vivo, has gained a lot of attention [1]. Hu-
man brain network represented as a graph, is comprised of
two vital elements, nodes representing a parcellation of the
brain anatomy and edges representing white matter pathways
connecting grey matter regions.

However, there is currently no wildly accepted method
for constructing structural networks. A common method of
defining nodes is to warp the structural image to an anatom-
ical template. To date, many different templates, such as
the AAL template and the Freesurfer template, have been
used due to the absence of a well-defined template. Edges
of human brain networks are also defined in many different
ways. Among them, streamline fiber tracking and probabilis-
tic fiber tractography are two wildly used methods. Stream-
line fiber tracking is a deterministic approach which give a
single deterministic answer for the direction of the fiber [2].
Network based on this algorithm, herein called deterministic
network, has been used to explore the differences between
sighted and blind subjects [3], the relationship between brain
network and intelligence [4] and many others. On the other
hand, probabilistic fiber tractography is a probabilistic ap-
proach which depicts the variability of tractography results
by estimating local fiber directions [4]. Network based on
this algorithm, herein called probabilistic network, is also
wildly used, for example, by Li et al. [5] and Parker et al.
[6].

Studying the advantages and disadvantages of these two d-
ifferent methods on network construction as well as their re-
lationship has been an important topic. However, no consen-
sus conclusions have been reached, for example Buchanan
et al. [7] thought that probabilistic networks were better for
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data analysis, while Bastiani et al. [8] suggested that de-
terministic networks were better for a preliminary study. In
all these studies, the comparisons were fulfilled on the same
dataset. However, the effect of these two kinds of networks
for groups comparison, which is one of the most important
way of network analysis, has never been studied.

In this study, we investigated the effects of the determinis-
tic and probabilistic networks by applying to sighted subjects
and blind subjects on four usually used global network prop-
erties. The high agreement between the four network proper-
ties demonstrated that networks analysis based on streamline
fiber tracking and probabilistic fiber tractography are mutu-
ally replaceable for a preliminary study.

2 Materials and Methods

2.1 Subjects
97 right-handed blind subjects (68 males; mean age =

29.9 years, range 16-50 years) and 73 handedness-, age-,
and gender-matched normal sighted controls (55 males, 18
females; mean age = 28.6 years, range 20-54 years) were re-
cruited from the Special Education College of Beijing Union
University or by advertisement in the local communities. All
of these subjects have been carefully checked to ensure the
subjects were suitable for this study with the following crite-
ria: no history of any psychiatric or neurological illness, no
drug or alcohol abuse, no contraindications to MR examina-
tion, right handed, and no different ages of onset of blindness
in left and right eyes. This study was approved by the Ethics
Committee of Tianjin Medical University, and an informed
consent was signed by each participant before the study.

2.2 Data Acquisition and Preprocessing
All subjects were scanned using a 3.0 T Siemens MR s-

canner (Magnetom Trio, Siemens, Erlangen, Germany). The
Integral Parallel Acquisition Technique was applied with an
acceleration factor of 2 to reduce acquisition time and image
distortion from susceptibility artifacts. Both diffusion tensor
and T1-weighted 3D structural MR images were scanned.
The protocol for DTI imaging were: repetition time/echo
time (TR/TE) = 6000/90 ms; field of view (FOV) = 256 ×



256 mm2; acquisition matrix = 128 × 128, reconstruction
matrix = 256 × 256, in-plane resolution = 1 × 1 mm2; 45
continuous axial slices, slice thickness = 3 mm; 30 diffusion
gradients (b = 1000 s/mm2) and one non-diffusion-weighted
images (b = 0 s/mm2). The acquisitions were repeated 2
times to improve the signal-to-noise ratio. The parameters
for T1-weighted 3D images were: TR/TE = 2000/2.19 ms,
inversion time = 900 ms, flip angle = 9◦, slice thickness = 1
mm, FOV = 224 × 256 mm2, 176 continuous sagittal slices,
and voxel dimensions = 1 × 1 × 1 mm3.

All T1-weighted and diffusion tensor MR images were
checked by 2 radiologists to ensure each participant had
high quality images. Analysis of the diffusion and struc-
tural MR images were performed using the software FSL
4.1 (http://www.fmrib.ox.ac.uk/fsl) including (1) correction
for eddy current and head motion, (2) calculation of the dif-
fusion tensor and fractional anisotropy (FA). After the above
procedures, all T1-weighted images were co-registered to
the b = 0 image of each individual using FLIRT (a toolkit
in FSL) for getting a co-registered T1 image in DTI space
for the following network construction.

2.3 Constructions of Anatomical Networks
2.3.1 Definition of Network Nodes

90 regions (45 for each hemisphere with the cerebellum
excluded) from AAL template were used as the network
nodes, which have been used in several previous studies
[3, 4, 9]. Each individually co-registered T1 image was reg-
istered to the T1 template in Montreal Neurological Institute
(MNI) space, and then the resulting inverse transformation
was used to transform the AAL template in MNI space to
DTI native space using FSL. After defining the nodes, we
started to define edges to construct two different networks,
deterministic network and probabilistic network.

2.3.2 Construction of Deterministic Network

Edges of the deterministic network were defined based on
fibers from streamline fiber tracking method. It was con-
structed as follow using software Trackvis (including diffu-
sion toolkit) and in-house scripts developed in the MATLAB
7.8 platform. Firstly, we employed the streamline fiber track-
ing method to compute the fibers of the entire brain for each
subject. Only voxels with FA > 0.3 in each region were
chosen as seeds and the stop condition for tractography was
voxels with an FA < 0.15 or when the turning angle between
adjacent voxels was greater than 45◦ [3]. Secondly, the num-
ber of fibers that started from an AAL region and ended in
another AAL region was counted within each nodes pair of
all the 90 nodes which formed a weighted network. Lastly,
symmetric 90 × 90 binary anatomical networks were con-
structed for each subject by thresholding the weighted net-
work with threshold value (THd) from 1 to 10.

2.3.3 Constructions of Probabilistic Network

Edges of the probabilistic network were defined based on
probabilistic connectivity strength from probabilistic fiber
tractography. It was constructed as follow using FSL and our
in-house scripts developed in the Matlab 7.8 platform. First-

Fig. 1: Summary of construction of deterministic and proba-
bilistic networks using structural and diffusion images. The
pipeline stages are shown on the left and the implementa-
tions of the methods are shown on the right. Nodes were
defined by registration of the cortical parcels in AAL at-
las to diffusion space. Fiber density between all node pairs
were then calculated by performing streamline fiber track-
ing (deterministic tractography) and probabilistic fiber trac-
tography (probabilistic tractography). Edges for determin-
istic networks were defined by calculating the fiber num-
ber between node pairs and edges for probabiltistic networks
were defined by calculating the connectivity strength. Last-
ly, edges with weighted-value were thresholded to generate
binary networks for comparison of these two network con-
struction pipelines. Note that both of two methods and the
implementations used in this study had been used in many
previous studies.

ly, connectivity between nodes was estimated by performing
probabilistic fiber tractography between each pair of the 90
AAL regions for each subject. We adopted the default set-
tings in ProbTrack (a toolkit in FSL) for tractography. Sec-
ondly, connectivity strength between each pair of nodes was
calculated. If the number of voxels in a seed region was n,
the number of fibers passing through the target region divid-
ed by 5000 × n was then defined as the connectivity strength
from the seed region to this target region. The connectivity
strength between two nodes i and j was defined by averag-
ing the strength from i to j and the strength from j to i. This
definition for connectivity strength has been widely applied



by previous studies [5, 10]. After above implementations, a
weighted network was created for each subject. Lastly, sym-
metric 90 × 90 binary anatomical networks were constructed
for each subject by thresholding the weighted networks with
threshold value (THp) ranging from 0.01 and 0.1 at intervals
of 0.005.

2.4 Properties of Anatomical Networks
Binary network is represented as an N × N (N = 90 in

this study) graph, G, consisting of nodes (brain regions) and
undirected edges (fibers or connectivity strength) between
nodes. Here, we calculate some graph properties for network
analysis.

Cost Cost is usually used to evaluate the density of net-
work and it is defined as the total edges of network divided
the total edges when all nodes are full connected:

Cost =
1

N(N − 1)

∑
i∈G

Di,

where Di, i = 1, 2 · · · , 90 is defined as the number of direct
edges to that node and G represents the network.

Clustering coefficient Clustering coefficient (Cp) quanti-
fies the local efficiency of the network and is defined as

Cp =
1

N

∑
i∈G

Ci,

where
Ci =

Ei

Di(Di − 1)/2

in which Ei is the number of edges among the node’s direct
neighbors.

Shortest path length Shortest path length Lp quantifies
the global efficiency of the network and is calculated by

Lp =
1

N

∑
i∈G

Li,

where
Li =

1

N

∑
i∈G
i ̸=j

li,j ,

in which li,j is the minimum number of edges for connecting
the ith node to the jth node.

Global efficiency Global efficiency (Eglob) is a measure
of the global efficiency of parallel information transfer in the
network and is defined as

Eglob =
1

N(N − 1)

∑
i∈G
i ̸=j

1

li,j

Local efficiency Local efficiency (Eloc) is a measure of
the mean of local efficiency across all nodes in the network
and is as

Eloc =
1

N

∑
i∈G

Ei loc

where
Ei loc = Eglob(Gi)

and Gi is defined as the set of nodes that are the direct neigh-
bors of the node i.

2.5 Statistical Analysis
At the first, we calculated Cost, Cp, Lp, Eglob,

and Eloc of deterministic and probabilistic network-
s from different THd and THp for all subject-
s using our in-house network analysis toolkit Brat
(http://www.brainnetome.org/en/brat.html).

2.5.1 Networks Comparison Under the Same Cost in
sighted

By observing the range of Cost value calculated above
for deterministic and probabilistic networks. We chose a lit-
tle Cost values for our comparison. Then, we created the
binary mean deterministic network with the Cost value as
follow: (1) Averaging all the deterministic networks of sight-
ed subjects with that Cost, and (2) Binarizing the network
by keeping the edges more than half of the subjects had.
This procedure was replicated with a large Cost value. With
the same way, we created two binary mean probabilistic net-
works. Comparison was then done between the binary mean
deterministic and probabilistic network under both little and
large Cost value.

2.5.2 Effect of Group Comparison between blind and
sighted

Statistical comparisons of Cp, Eglob, Eloc, and Lp be-
tween blind and sighted groups were performed by using a
two-sample two-tailed t-test for THd over a range of 1 to 10
and for THp from 0.01 to 0.1 at an interval of 0.005.

3 Results

3.1 Validation of the Deterministic and Probabilistic
Networks

All sighted subjects were randomly divided into two
groups for 100 times, one group with 36 subjects and the
other 37 subjects. Independent two-sample two-tailed t-tests
showed that no differences existed under P < 0.05 between
the two groups in both deterministic and probabilistic net-
works. This means that comparison on Cp, Eglob, Eloc, and
Lp will not cause false positive results.

3.2 Networks comparison under the same Cost in
sighted

To assess the relationship of deterministic and probabilis-
tic networks, the Cost value of the two kinds of networks for
all THd from 1 to 10 and THp from 0.01 to 0.1 at an interval
of 0.005 were calculated (Table 1). The two networks have
nearly the same Cost when THd = 1 and THp = 0.01, when
THd = 2 and THp = 0.015, or when THd = 4 and THp =
0.02. What is more, high consistency between the values of
the four calculated properties of the deterministic network
and probabilistic network under the same Cost were found
(Fig. 3).

Additionally, binary mean deterministic and probabilistic
networks with Cost = 3 and Cost = 15 were shown in
Fig .2. Qualitatively, we observed that networks based on
streamline fiber tracking would preserve more long-range
connections, while networks based on probabilistic fiber
tracking were more prone to reserve more short-range edges.



Fig. 3: Network properties (Cp, Eglob, Eloc, and Lp) of deterministic (A) and probabilistic networks (B) for blind and sighted
groups. All these parameters are illustrated by the values (mean ± SD) of blind and sighted groups. Threshold values THd of
deterministic network are in the range [1, 10] with increments of 1 and threshold values THp of probabilistic network are in
the range [0.01, 0.1) with increments of 0.005. ⋆ demonstrated significant difference between blind and sighted groups with P
< 0.05, uncorrected. Blindblind groupSC, sighted group.

Table 1: Cost value of deterministic and probabilistic net-
works based on different THd and THp. Only part are
showed.

Deterministic Network Probabilistic Network
THd Cost THp Cost

1 19.3 0.01 19.4
2 18.3 0.015 18.1
3 17.5 0.02 16.9
4 16.9 0.025 15.1
5 16.4 0.03 13.6
9 14.8 0.09 6.6

10 14.5 0.095 6.3

3.3 Comparison of Deterministic and Probabilistic Net-
works on Four Network Properties

For deterministic networks, the value of Cp, Eglob, and
Eloc decreased and the value of Lp increased when the
threshold THd increased from 1 to 10 (Fig. 3A). Also, for
probabilistic networks, the value of Cp, Eglob, Eloc, and Lp

showed the same trend as those for deterministic network-
s when the threshold THp increased from 0.01 to 0.1 (Fig.
3B). This trend existed for both sighted and blind groups.

The differences between sighted and blind were studied
for all the THd and THp with P < 0.05. For determin-
istic networks, independent two-sample t-tests demonstrat-
ed that the blind group showed significant decreases in Cp

when THd = 1 or 2, significant decreases in Eglob and Eloc

when THd 6 10, significant increases in Lp when THd 6
10 compared with the sighted group; For probabilistic net-
works, independent two-sample t-tests demonstrated that the
blind group showed significant decreases in Cp when THp

6 0.04, significant decreases in Eglob when THp 6 0.025,
significant decreases in Eloc when THp 6 0.09 and signifi-
cant increases in Lp when THp 6 0.045 compared with the
sighted group.
4 Conclusions

In summary, this study explored the relationship of net-
works based on streamline fiber tracking method and net-

works based on probabilistic fiber tractography with a wide
range of threshold values. By comparing the two network-
s on four different network properties, we found that net-
works based on streamline fiber tracking demonstrated the
same effects as networks based on probabilistic fiber trac-
tography for finding the differences between sighted and
blind subjects. This finding suggested that we could adopt
the network based on streamline fiber tracking to do pre-
liminary network analysis considering that constructing net-
works based on probabilistic fiber tractography are time la-
bored. More importantly, the findings imply the feasible of

Fig. 2: Binary mean networks. (A) Binary mean determin-
istic network with Cost = 3. (B) Binary mean probabilistic
network with Cost = 3. (C) Binary mean deterministic net-
work with Cost = 15. (D) Binary mean probabilistic net-
work with Cost = 15 Each figure shows a 90 × 90 square
matrix, where the number in x and y axes correspond to the
regions listed in AAL atlas, and white points in the squares
dedicates the edges between pairs of brain regions.



analyzing networks based on both these two methods to i-
dentify consensus results.
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