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ABSTRACT

The shape initialization is a crucial step for face alignment. In the lit-
erature, many approaches use the ground truth points to compute the
bounding box. However, it is not always possible to detect an accu-
rate bounding box in real applications due to various adverse factors.
In this work, an effective initialization approach for face alignment
is proposed. Firstly a modified Deformable Part Models (DPM) is
used to estimate the face pose and the bounding box to obtain an ini-
tial shape. Then by detecting the two pupils, the roll rotation of the
face is measured to correct the initial shape. To further increase the
robustness and accuracy of face alignment, multiple initial shapes
for each face are generated, then each one is refined by a cascade
regression-based approach and we can get multiple shape estima-
tions. Finally a better final shape is obtained by fusing the multiple
estimations via the structured SVM learning. Experiments on chal-
lenging datasets and comparison with the state-of-the-art methods
validate our proposed method in unconstrained environment.

Index Terms— shape initialization, face alignment, DPM, mul-
tiple initial shapes, structured SVM

1. INTRODUCTION

Face alignment is an essential step for many face based applications,
such as face tracking and face animation. Thus a fully automatic,
highly effective face alignment method is always desirable. Up to
now, many approaches [1, 2, 3, 4, 5, 6, 7, 8] have been proposed to
address this issue. However, accurate and robust face alignment is
still a challenging task in unconstrained environments, due to large
variations on facial appearance and occlusions.

For most face alignment methods, an initial shape is determined
at first, and then progressively refined. In the literature, many meth-
ods assume that the used face detector can provide a reliable initial-
ization, then what is needed is to merely refine this initialization.
However this assumption is usually difficult to meet in practice due
to large variations on facial appearance, illumination and partial oc-
clusions which dramatically reduce the performance of the face de-
tector. And the performance of many face alignment approaches
degrades substantially in unconstrained environment.

In this paper, we propose several techniques to reliably construc-
t an accurate initial shape for face alignment. In the literature, the
mean shape is usually used for the initial shape construction from
the bounding box. However, since faces usually have different yaw
poses and roll rotations, using just a simple mean shape as the initial
shape is not sufficient to acquire an accurate result. To obtain a more
accurate shape initialization for face alignment, here we firstly use
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a modified Deformable Part Models (DPM) trained on a set of face
images to estimate the bounding box and the yaw pose of the face.
Then we set a specific initial shape for the face based on the esti-
mated pose. After this, the positions of the two pupils are detected
and used for estimating the roll rotation, by which the initial shape
is rotated to make it more accurate.

After the above face shape initialization, the final shape is esti-
mated under the cascade shape regression framework. At this stage,
the method in [8] is adopted to extract local binary features repre-
senting the texture information around the estimated landmarks, and
simple linear regressors are used for the shape bias estimation in
each iteration.

Note that in some cases, the bounding box of a face and the po-
sitions of the two pupils cannot always be accurately detected, in
particular, in the challenging unconstrained environment. To tack-
le such problem, we generate multiple hypotheses by shifting and
re-scaling the initial shape, then estimate facial landmarks for each
hypothesis, instead of using only one initial shape. Considering the
existence of possible complementary information among these mul-
tiple estimations, the structured SVM is used to learn a better final
shape from them.

2. RELATED WORK

Although many different methods have been proposed for face align-
ment, they appear sharing similar essential principles. Most previous
works can be divided into two categories: model based approaches
and regression based approaches.

Model based approaches mainly focus on training a shape mod-
el and applying it to fit a new face. The representative works include
Active Shape Models (ASM) [9] and Active Appearance Model-
s (AAM) [10], which both constrain the shape based on PCA. In
recent years, many improvements over AAM and ASM have been
proposed [2, 11, 12, 13] and these approaches are better for gen-
eralization and robustness. In [3], instead of modeling the holistic
appearance as ASM, Constrained Local Models (CLM) learns a set
of local detectors to capture the appearance in patches around facial
landmarks and constrains them using a shape model. In [14], Saragih
et al generalized the CLM by using a more sophisticated local model
and the mean-shift was used for the matching.

Regression based approaches reflect the nature of the face align-
ment problem. Many approaches try to learn a regression function
to directly map the image appearance to the shape. These methods
often use boosted regression and random fern regressors. In recen-
t years, some regression based methods have achieved significant
progress. [7] used linear regression on SIFT features to predict the
shape increment. [15] tested several local descriptors and found that
HOG features performed the best. [4] used boosted ferns and pixel-



different features to regress the shape increment. [8] generalized the
ESR algorithm [4] by using the local regression and obtained more
accurate result. Instead of using cascade simple regressors, [16] con-
structed a deep neural network to directly learn the regression func-
tion between the original image and the positions of landmarks.

3. ACCURATE SHAPE INITIALIZATION

3.1. Shape Initialization Based on DPM

Generally, most face alignment methods assume the face detector
can provide a reliable bounding box, then set the initial shapes from
it. However in practice, it is not always possible to find an accurate
bounding box in unconstrained environment. As a result, the perfor-
mance of many face alignment methods will degrade dramatically
due to the sensitivity of their results to the shape initialization. Thus
it is always desirable to provide a good initial shape. The DPM was
first introduced in [17] to address the object detection problem and
achieved enormous success. To solve the initialization problem, we
use a modified DPM model in this work to detect the bounding box
and the pose of a face to construct an accurate initial shape.

During the bounding box detection by the DPM, we use both the
position and the scale information of every part filter to predict the
bounding box. In the real world, many faces have a yaw pose. As
shown in Figure 2(b), when the face is not a frontal one, significant
differences may exist between the ground truth and the initial shape
which is usually the mean value of the whole face dataset. To deal
with this problem, we propose to use the DPM to detect the face
pose, and provide a more accurate initial shape via the estimated
pose.

(a) (b) (c) (d) (e) (f)

Fig. 1. (a) to (f) are the mean shapes derived from six groups of
face images with different pose. Each of them is used to initialize
one image for the face alignment based on the pose detected by the
DPM.

In this paper, we use a DPM model to estimate the yaw pose
and the bounding box of a face at the same time. For a face dataset
containing the pose information of each face, we divide the train-
ing images into six groups according to their poses. Based on these
training face images, we use the DPM algorithm to learn a mixture
model which contains six components, and each one of them cor-
responds to a certain pose. When applying this model to process a
face, it can determine which component is most fit to this face, which
represents the pose of the face. Different from many other methods
that use all samples in the face dataset to calculate the mean shape
which is used to construct the initial shape, we use faces in different
groups to calculate six different mean shapes respectively in order
to provide a more accurate initial shape. Figure 1 shows such six
mean shapes. According to the pose estimated by the DPM, we set
an initial shape with the corresponding pose for a face. As shown
in Figure 2(c), after applying the DPM, we can get a more reliable
initial shape.

3.2. Initial Shape Refinement Based on Pupils

In face alignment, if the face has a roll rotation, it will be difficult to
set an accurate initial shape. However, the rotation of a face could be
estimated based on some image information, such as the positions of
two pupils. Thus the key to face roll rotation estimation is the pupil
detection. Fortunately, compared with other non-salient landmarks,
a few salient landmarks, such as eye centres and mouth corners, can
be reliably characterized by their image appearances. In this work,
we propose to detect the positions of two pupils of a face firstly, and
then calculate the face rotation angle according to the coordinates
of the detected pupils. As described above, we get the yaw pose of
the face using the DPM model, and then set an initial shape with the
corresponding pose. Here we rotate this initial shape obtained in the
proceeding section based on the rotation angle to further refine the
initial shape. As shown in Figure 2, when using the DPM and the
positions of two pupils, the initial shape is set step by step, and more
and more accurate.

(a) (b) (c) (d)

Fig. 2. Results of the initialization. (a) the initial shape based on the
Viola-Jones face detector. (b) the shape refined using the bounding
box provided by the DPM. (c) a better shape based on the detected
face pose. (d) the best shape by further refining the initial shape
based on the roll rotation angle.

4. CASCADE REGRESSION

Face alignment can be naturally cast as a regression problem. It
takes an image I as the input and outputs a shape S parameterized
by the coordinates of a set of facial landmarks. As shown in Eq. 1,
in the training process we want to learn a regression function f to
minimize the mean square error.

f = argmin
f

N∑

i=1

‖f(S0
i , Ii)− Si‖2 (1)

where f returns a new shape based on the initial shape S0
i for each

image Ii.
To simplify the problem, f is always divided into a series of

simpler regression functions {f1, f2, · · · , fT }, which satisfy the fol-
lowing relationship :

f = fT ◦ fT−1 ◦ · · · ◦ f1, (2)

where fl ◦ fl−1 mean the input of fl is the output of fl−1.
In the shape regression, it is crucial to select an appropriate fea-

ture set to represent the appearance. In [8], Ren et al learned a set of
highly discriminative local binary features for each facial landmark
based on a locality principle and achieved impressive performance.
In this paper, we use the approach proposed in [8] to get the shape
estimation from the initial shape.

In [8], Ren et al progressively refine the S by predicting the
shape increment ΔS in each cascade step.

ΔSt
i = W tΦt(St−1

i , Ii) (3)



Fig. 3. The random forest is used as the local mapping function to
extract local binary features. Every binary feature indicates whether
the input image contains some kind of local patterns.

where Ii is the input image, St−1
i is the predicted shape in the pre-

vious stage, Φt is a feature mapping function, and W t is a linear
regression matrix.

In the stage of learning local binary features, [8] divided the fea-
ture mapping function Φt to a set of local feature mapping functions
i.e., Φt = [φt

1, φ
t
2, · · · , φt

L] for each landmark, and a standard re-
gression random forest was used to learn each local mapping func-
tion φt

l . Figure 3 illustrates the process of extracting local binary
features. In [8], having learnt local binary features, they concatenat-
ed binary features into a global feature mapping function Φt, then
learnt the global linear projection W t by minimizing the following
objective function:

min
W t

N∑

i=1

‖ΔŜt
i −W tΦt(Ii, S

t−1
i )‖22 + λ‖W t‖22 (4)

5. COMBINING MULTIPLE SHAPES

The effectiveness of cascade regression based face alignment
method is largely based on a reliable initialization. However the
DPM based initialization and refinement method described in sec-
tion 3 cannot always find an accurate bounding box due to various
factors such as large variations on facial appearance, illumination
and partial occlusions. To further enhance the reliability of initial-
ization, a multi-hypothesis scheme is used in this work. We generate
multiple hypotheses {S0

i1, S
0
i2, · · · , S0

iM} by shifting and re-scaling
the initial shape in the initialization stage and get multiple esti-
mations of landmarks respectively through the cascade regression.
Inspired by [15], a learning based fusion strategy from multiple
estimations is adopted in our work for the finally estimation.

Shape estimations {Ŝi1, Ŝi2, · · · , ŜiM} can be estimated based
on multiple initial shapes {S0

i1, S
0
i2, · · · , S0

iM} for an image Ii.
However, we find even the best one out of these multiple estimations
cannot meet the requirement in many applications. In fact, some
complementary information does exist among different estimation-
s we acquired. For example, some estimations may have better
performance for landmarks in the cheek while other estimations in
the eyes and the nose. By appropriately combining these multiple
estimations, a better final estimation could be achieved. Considering
dozens of landmarks are present in each shape estimation, in theory,
each facial landmark of the final estimation can be chosen from all
possible corresponding ones in the multiple estimations, then the
best combination should be taken as the final one. To reduce the
computational load and to enforce a local shape constraint, in this
work, landmarks located in a local region such as eyes or the mouth
are always selected from the same shape estimation.

After acquiring many potential outputs by combining different
parts of multiple estimations, we should determine which one is the

best. As described in [15], we define a mapping W and expect the
best estimation to have the largest output among all estimations:

Ŝi = argmax
l=1,··· ,M

{〈WT · Φ(Ŝi1, Ii)〉, · · · , 〈WT · Φ(ŜiM , Ii)〉} (5)

where Ŝi is the final output. regarding to the features Φ in Eq. 5, we
use the same local binary features described in section 4.

Obviously this is a standard structured SVM problem, so we use
the structured SVM algorithm [18, 19] to learn a mapping to auto-
matically combine multiple estimations. As for the specific problem
in this paper, we define the loss function between the estimated shape

Ŝi and the ground-truth shape Si as : Δ(Si, Ŝi) = ‖Si − Ŝi‖22. As
the dependency of the loss on W is very complex, we use a MAT-
LAB wrapper of structured SVM [20] to solve this problem.

6. EXPERIMENT

In this section, we report our experiments on three widely used
benchmark datasets. They present different challenges, such as
different number of images, different variations in head pose, occlu-
sions and illumination.

LFPW was first introduced in [21] and collected from the we-
b. Its face images have large variations in pose, illumination and
expressions, so it’s a good benchmark to test the face alignment per-
formance in unconstrained conditions. However due to some invalid
URLs, we only use the 811 of the 1100 training images and 224 of
the 300 testing images provided by [22]. In our experiments, we
conduct evaluations on 68 and 49 points settings.

Helen was created in [23] and contains 2330 high resolution web
images. Among these images, there are 2000 images for training
and 330 images for testing. Compared with LFPW, Helen is more
challenging because they contain more images with large variations.
Here, we perform evaluations on 68 and 49 points settings.

300-W [24] is an extremely challenging dataset due to the large
variation in pose, expression, background and image quality. It con-
tains several existing datasets, such as LFPW, AFW, Helen and a
challenging 135-image IBUG set. In our experiments, the training
images consist of AFW dataset and the training sets of LFPW and
Helen datasets. In addition, we perform testing on two parts: one is
IBUG which contains 135 images, the other is the union of IBUG
dataset, the test images set of LFPW and Helen dataset.

Evaluation In our experiments, when testing the performance
of our method, we follow the standard [4, 8] to evaluate the shape
estimation error for each sample using the standard landmarks mean
error normalised by the inter-pupil distance.

6.1. Comparison with State-of-the-art Methods

We compare our method with several state-of-the-art ones. During
the training stage, we use AFW dataset and training sets of LFPW
and Helen to construct the training set. In the testing stage, we apply
our method in IBUG dataset and testing sets of LFPW and Helen
respectively. In our experiments, we use the code of the LBF [8]
method released by its author to extract features which represent the
appearance information around landmarks. During the training of
our model, we set parameters as follows: T = 7, N = 700, D = 5,
where T is the number of iterations, N is the number of trees in each
stage, and D is the depth of each tree. In the training stage, we aug-
ment the training data by shifting and re-scaling the acquired initial
shape to counter large variations. In our work, we create 15 differ-
ent initial shapes and finally obtain 15 shape estimations. Then we



LFPW Dataset

Method
68 49

-pts -pts

Zhu et al [25] 8.29 7.78
DRMF [26] 6.57 -

RCPR [6] 6.56 5.48
SDM [7] 5.67 4.47
GN-DPM [27] 5.92 4.43

CFSS [28] 4.87 3.78
CFSS Pratical [28] 4.90 3.80

LBF+box [8] 5.18 4.22
Ours 4.96 4.05

Helen Dataset

Method
68 49

-pts -pts

Zhu et al [25] 8.16 7.43
DRMF [26] 6.70 -

RCPR [6] 5.93 4.64
SDM [7] 5.50 4.25
GN-DPM [27] 5.69 4.06

CFSS [28] 4.63 3.47
CFSS Pratical [28] 4.72 3.50

LBF+box [8] 5.59 4.51
Ours 5.24 4.14

300-W Dataset(All 68 points)

Method
IBUG

Fullset
Subset

Zhu et al [25] 18.33 10.20
DRMF [26] 19.79 9.22
ESR [4] 17.00 7.58
RCPR [6] 17.26 8.35
SDM [7] 15.40 7.50

LBF [8] 11.98 6.32
LBF fast [8] 15.50 7.37
CFSS [28] 9.98 5.76
CFSS Pratical [28] 10.92 5.09

LBF+box [8] 15.65 7.42
Ours 12.11 6.49

Table 1. Comparison with state-of-the-art methods in averaged errors. For most of the methods, the results are taken directly from the
literature or obtained based on the authors’ released codes. These comparative approaches use the ground truth points to compute the
bounding box except for “LBF+box”, where the initial shape is constructed based on the bounding box detected by the Viola-Jones face
detection methods. For our method, we use the DPM algorithm and the positions of two pupils to refine the initial shape.

Fig. 4. Example results from the testing dataset. Red points are the
ground-truth and green points are the output of our method.

use them to train the mapping of the structured SVM. In the testing
stage, we follow the operation of the training to generate 15 shape
estimations and combine them to get the best result.

We summarize the comparative results in Table 1. For initial-
ization, those comparative approaches use the ground truth points to
compute the bounding box. Compared with them, we use the DPM
to detect the face position and use the head pose as well as the po-
sition of two pupils to refine the initial shape. Note that for some of
the images(22 out of the total 689), our method failed to find faces,
and for such images the ground truth bounding boxes are also used
as other methods for the face initialization. As shown in Table 1,
our method can achieve a comparable result compared with other
methods on these datasets even if our face initialization does not use
ground truth. It means that our DPM based initialization and multi-
hypothesis fusion method can enhance the accuracy and robustness
of face alignment method. In Figure 4, we show some example im-
ages and the face alignment results by our method.

Note in Table 1, “LBF+box” refers to the LBF face alignmen-
t method in [8] with the shape initialization by the bounding box
detected by the Viola-Jones method. As the alignment step of our
method also use LBF, we compare our method with “LBF+box” on
all the three datasets. As shown in Table 1, our method consistently
performs better on all the three datasets. In particular, our error re-

duction is more significant, about 3.54 for the IBUG dataset, which
indicates that our method can cope with more complicated situation.

6.2. Discussion

In section 6.1, we demonstrate that using the head pose and positions
of two pupils to refine the initial shape and integrating the multiple
shape estimations can lead to a better result compared with merely
using the bounding box. However, the face detection is still a chal-
lenging problem in unconstrained environment. In some cases, the
DPM cannot find the appropriate position of the face and our method
cannot achieve a good result either. Figure 5 shows some examples
where our method cannot get good face alignment results.

Fig. 5. Some failed examples by our method: Red points are the
ground-truth and green points are the output of our method.

7. CONCLUSION

In this paper, we present an effective method for shape initialization
to improve the accuracy and robustness of face alignment. In our
method, the DPM is used to estimate the pose and the bounding box
of the face, and the positions of two pupils are measured to calculate
the rotation angle of the face. To further increase the accuracy and
robustness, multiple initial shapes are generated by shifting and re-
scaling the initial shape. In addition, the structured SVM is adopted
to learn a combining strategy to fuse multiple estimations. Experi-
ments on three benchmark datasets show that our proposed method
can achieve good alignment results. Besides our proposed initializa-
tion method can be used for other face alignment methods.
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