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Abstract—This paper introduces a vehicle detection method 

based on multi-scale active basis model in traffic surveillance 

systems. Due to the effects of perspective, vehicles which are close 

to the camera are larger and more detailed than the far ones on 

individual video frames. Using camera calibration, we get the 

multi-scale information of vehicles, and then we learn the multi-

scale active basis model from the target training sample set by 

using the shared sketch algorithm. The multi-scale ABM can 

detect vehicles in various poses, shapes, and sizes in a whole video 

frame. The experiment results show that this proposed method 

can fit the changes of vehicle size in images.  

Keywords—ABM; multiscale; camera calibration; vehicle 

detection 

I.  INTRODUCTION  

According to a report from Ward’s Auto released in Aug. 
15, 2011, the global number of vehicles surpassed 1 billion-
unit mark in 2010, jumping from almost one thousand million 

the year before[1]. With the increasing number of vehicles，
problems on traffic congestion and traffic safety pose great 
challenges on traffic management systems in most large and 
medium-sized cities. And at the same time, a great scale of 
traffic data set is emerged in the complex traffic systems[2], 
becoming the basis to model a traffic scene and analyze the 
traffic behavior. So how to get the on-road traffic data exactly 
is crucial in traffic information collection systems and the 
data-driven intelligent transportation systems (ITS). 

Compared with traditional traffic information collection 
technology, such as geography induction  coils, millimiter-
wave radars,  laser  detector  and so on, vision based devices 
have broadly  been  employed  in  traffic  monitoring  of  ITS  
and  has many  advantages[3]: information to be  understood 
easily, a wide range of information to be installed, operated, 
and maintained; a  relatively  higher price-to-performance 
ratio to be obtained. However, as a matter of fact, several 
factors make on-road vehicle detection using vision based 
devices very challenging[ 4 ][ 5 ]. Firstly, complex outdoor 
environment increases the difficulty in designing the vehicle 
detection and identification systems, such as light variations in 
different time of the day and changes in the weather. Then, 
changes in a vehicle’s appearance is also a trouble in vehicle 
detection, that vehicles come into view with different speeds 

and may vary in shape, size, color, and pose. Also, there isn’t 
a satisfactory solution to vehicle detection problems such as 
vehicle occlusion and moving shadow. 

Various vehicle detection approaches have been reported 
in the traffic monitoring systems. A lot of researchers do 
vehicle detection using relative motion information. Optical-
flow and background subtraction are the main methods to do 
motion-based localization in a continuous image sequence 
[6][7]. Unfortunately, when a car turns into stationary from 
moving or is parked for some time, these approaches are 
ineffective. Instead of the motion-based methods, many 
researchers have reported their progress in feather-base 
methods. They make use of vehicles’ characteristic 
information such as color, texture, shadow, vehicle lights, 
corners and edges to do the detection and recognization.In[8], 
vehicle features (vehicle colors and local features) were 
extracted, and a dynamic Bayesian network was constructed to 
classify vehicles from  aerial surveillance images. Wu et al.[9] 
use active basis model (ABM) which consists of a small 
number of Gabor wavelet elements at selected locations and 
orientations to cope with object detection problems. And 
currently, Li et al.[10]  realized a vehicle detection method 
based on graphic structure on the basis of ABM.  

A shared sketch algorithm in ABM was proposed by Wu et 
al. in [9]. The basic idea is to apply a gray-value local energy 
to find a common template together with its deformed versions 
from the training images. However, this algorithm is used only 
when objects appear with the same pose and at the same 
location under the same scale in the training images. But due 
to the effects of perspective, vehicles will represent a variety 
of scales in different locations, i.e. those which are close to the 
camera are larger and more detailed than the far ones on 
individual video frames. As a result, it will be hard to 
accurately detect a situation where objects will appear at 
different scales and unknown locations in an image.  

To overcome the problem, we add the multi-scale 
information into the learned ABM from the target training 
sample set. In this paper, as a contribution, we take advantage 
of the camera calibration technology to learn the multi-scale 
active basis model by using the shared sketch algorithm. 
Because of the special characters of the traffic surveillance 
images, we use the camera model in [17] and [18] to do the 
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camera calibration task. The framework in [9] is adopted to do 
the learning, detection, and classification. Then, the template 
matching algorithm is used to recognize vehicles in different 
locations and at different scales. We have done a series of 
experiments to verify the performance of our method, and 
experimental results prove that our method can effectively 
detect vehicles in a variety of scales at different locations.  

This rest of this paper is naturally organized as follows: 
Section II introduces some basic theories of the camera 
calibration, multi-scale information and active basis model 
(ABM). Section III presents the implementation of our method 

in detail. Section Ⅳ demonstrates and analyzes the results in 

experiments. Finally,  Section Ⅴconcludes the paper.  

II. BACKGROUND 

Before introducing our method, some basic knowledge and 

background in this paper should be known in advance.  

A. Camera Calibration 

Camera imaging can be viewed as a perspective projection 
process. The relationship between the 3D geometrical position 
of a point in real-world coordinates and its corresponding 
point in the image is established by the camera model. And the 
camera parameters refer to the parameters of the geometric 
model, including intrinsic and extrinsic parameters. According 
to the extrinsic parameters, the correspondence relationship 
between the world coordinate system and the camera 
coordinate system can be obtained; adding the intrinsic 
parameters, the relationship between a 3D point and its image 
projection can also be obtained; so the 2D images can be 
mapped to the 3D world coordinate by exploiting camera 
parameters. 

Camera calibration which is the first step in 3D computer 
vision in order to extract metric information from 2D images 
can produce a map from image pixel position to real-world 
coordinates. Many researchers have developed many well-
known calibration methods. Usually, there are two types of 
techniques to calibrate a camera: model-based and priori-
knowledge based. Model-based camera calibration technique 
is difficult to apply geometric methods in traffic scene [11] 
[12] because of the reference marks with known physical 
dimension are not readily available in most cases. In contrast, 
priori-knowledge based calibration methods make use of the 
prior information of parameters (lane width, typical vehicle 
width and vanishing points et al) avoiding the dependence of 
availability of suitable reference marks in images. 

The pin-hole model is the simplest and most commonly 
used model to calibrate a camera which makes use of a 
homography matrix H to represent the relationship between 
the pixel coordinates and world coordinates, shown in (1): 
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where s is an arbitrary scale factor, (X, Y, Z) is 3D point, and 
(u, v) is its image projection. H is a     projection matrix 
and contains the intrinsic parameters and extrinsic parameters 
of a camera, and can be defined as: 
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where k is the intrinsic parameters matrix while R and T are 
the extrinsic parameters matrix representing movements of 
rotation and translation, respectively, with (   ,   ) the 
coordinates of the principal point,   ,    the focal length of the 
pixels. 

Zhang’s Camera Calibration Toolbox for Matlab [11][12] 
[13]is widely used to get the camera parameters, but it isn’t 
quite suitable for the traffic monitoring scene because of a 
lack of so many corners in a flat road. In this paper, the lane 
markings are to do the calibration, and you can look for the 

Section Ⅲ B for detail information. 

B. Multiscale Information 

According to the information above, we can get the idea 
that the representations of vehicles differ in different scales in 
a 2D image, as a result of the perspective projection effect. For 
the images acquired by the video camera, multi-scale analysis 
of the images is similar to observing an object from different 
distances[14]: we can only see the outline of the distant one 
(large-scale) while we can get more details about the close one 
(small-scale), i.e. the representations of the closely located 
vehicle occupies a relatively large number of pixels, while 
some distant vehicles’ representations are much smaller on the 
image plane. Information in different scales has different 
advantages and disadvantages. When in small-scale, there is a 
plenty of edge information in details, and it is easy to locate 
the edge, but the sensitivity to noise can’t be ignored; when in 
large-scale, edges for objects detection are more stable, and 
own immunity to noise, but the positioning accuracy is poor. 

By the camera calibration technology, the intrinsic 

parameters and the extrinsic parameters of a camera can be 

obtained. Thus, we can calculate continuous scales change of 

the learned model in different location of the input image by 

comparing the changes in the arbitrary scale factor between 

the real 3D points and their 2D correspondence points, and the 

way to calculate the changes ration in length is explained in 

Section Ⅲ B. As a result, there is a choice about multi-scale 

deformable templates base on different scales information. 

C. Active Basis Model 

With the following two characteristics: (1) Only requiring 
a small amount of training samples which are approximately 
aligned and consistent posture; (2) For different samples, the 
wavelets of ABM can make adaptive changes within a certain 
range for a better match to the local edge of the target, the 
Active Basis Model (ABM) is an excellent target expression 
model. 

The ABM is a deformable model that learns the shapes of 
object categories by a shared sketch algorithm. In particular, 
the active basis refers to the locations and the orientations of 
the basis Gabor wavelet elements. According to the sparse 
coding theory [15], the image I can be represented by a linear  

62



Camera 
calibration

ABM

Multi-scale 
ABM

Complete 
vehicles 

Video frame
 

Fig.1. Block-diagram view of the proposed algorithm 

 

combination of several Gabor wavelet elements which belong 
to an over-complete dictionary           (   )           
                , as follows: 

   ∑        
                                          (3) 

Where n is the number of the selected elements,               
 

is the Gabor wavelet element to segment the edge in the 
domain D of image patch I,    corresponds to the coefficient 
of wavelet element, and   is the unexplained residual image. 

According to the theory of Wu et al, the Gabor wavelet 
element    can be transformed by dilation, rotation, and 
changing the aspect ratio to learn a deformable template. A 
sum-max maps computational architecture is used to match 
and recognize the deformable template from an image.   

Before object detection, an ABM needs to be learned from 
a small set of training images. During the learning process, 
several Gabor wavelet elements are extracted to represent the 
vehicle object by the use of the shared sketch learning 
algorithm. For the detailed description of the shared sketch 
learning algorithm, you can look for [9] as reference. 

III. METHOD 

Our method includes three parts: (1) constructing an ABM 

to represent the on-road vehicle object category; (2) obtaining 

camera parameters by camera calibration algorithm; (3) 

generating multi-scale ABM for edge detection and candidates 

localization. Fig.1 shows the block-diagram illustrating a high 

level overview of the proposed method in this paper. In the 

following, we will introduce every part in sequence.  

A. Learning ABM  

At the beginning to learn the ABM, we prepare our 

training set. The images in training set are collected from real 

traffic scenes, which consist of 20 positive samples with front-

view vehicles and negative samples. In this paper, we haven’t 

considered buses model for its large deformation comparing to 

other vehicle types. The parameters and location of Gabor 

wavelets which make up an ABM can be learned by the shared 

sketch learning algorithm. We get an deformable model 

         ,i=1,…,N. from the training images, where    is 

the     Gabor  wavelet element , and    is the corresponding 

parameters. The core idea of the shared sketch learning 

algorithm is to select all the wavelets which share their 

locations and orientations in the sets. In this paper, the ABM 

consists of 30 Gabor wavelets.  

 

 
 (a)  

 
(b) 

Fig.2. Coordinate systems to calibrate a camera. (a) is the camera model (b) 

is the road geometry in the image with the vanishing point from parallel 
markings. 

B. Obtaining Camera Parameters by Camera Calibration 

Algorithm in Traffic Image 

Considering the character in traffic scene, camera 

calibration technology usually utilizes lane markings, vehicle 

outlines, traffic flow and other objects on the road to 

accomplish the calibration system by manual approach [16]. It 

is easy to see the characters of these markings for calibration 

are parallel or perpendicular. In this paper, we refer the 

calibration model in [17] and [18], the parallel lane-marking 

lines to compute the parameters.  

As we know, a pair of parallel lines will pass through the 

same vanishing point in an image because of the perspective 

projection effect. According to the work in [17] and [18], three 

coordinates will be used for calibration: world coordinate 

system, the camera coordinate and the camera shift coordinate, 

which denotes as O-XwYwZw, O-XYZ and O-UVW, 

respectively . Their geometry relationship can be seen in Fig.2, 

and  (a) is the camera model, where L1and L2 are two parallel 

lane markings, w is the lane width between the parallel lanes,  

     the tilted angle that the camera installed above the ground 

plane, and θ is the pan angle between Yw axis and the lane 

markings. And (b) is the road geometry in the image with the 

vanishing point from parallel markings, where P1 and P2 are 

intersections of lines L1 and L2 with the Xw axis, and 

VP(     ) is the vanishing point which is the real infinite far 

point’s projection on the image plane. And the rectangle in 

Fig.2(b) represents the image plane. So, in this model, the 

camera parameters need to be calibrated can be written like 

the following with an acceptable error rate: 
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(a)                                                (b) 

Fig.3. The extracted background and lane markings. (a) the extracted 
background using GMM and(b) its calibration of parallel markings. 

 

   [ | ]   [  | ]                         (4) 

If a prior knowledge is given, namely, the width w 

between two parallel lane-markings, the coordinates p1 and p2, 

the length of a lane marking parallel d and its projection   , 

we can calculate the parameters f,   and   based on the 

following four equations: 
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where  (      )    (     )  are the endpoint of the known 

parallel, respectively. And (      )  is the coordinate of 

vanishing point. 

In this paper, the prior knowledge can be got by manual 

measuring. So here, w=3.35m, d=20m, and calculate the 

parameters of our camera. 

Fig.3 gives an example of the detected land markings in a 

video image by background-subtraction using GMM. (a) 

shows the extracted background using GMM, and (b) is the 

example of its calibration of parallel markings. 

Using the calibration results, we can easily get the relative 

changes between the world coordinate system and the camera 

shift coordinate, i.e. the length-changing ratio in the direction 

of Y axis. So we can change the size of our ABM to fit the 

vehicle’s location in the video frame. 

C. Edge Detection and Candidates Localization by Multi-

scale ABM 

In many research works, edge-based vehicle detection 

method is widely used, because it is often more effective than 

other background removal or threshold approaches for the 

reason that the edge information remains significant even in 

variations of ambient lighting. In this paper, we utilize Gabor 

wavelets to do the edge detection and candidates localization. 





(a) 

  

(b) 



(c) 

Fig.4. An example of the experiment result. (a) is the input image; (b) is 

the multi-scale ABM. result ; (c) is the detect result with bounding box. 

 

For an image   , the matching condition between the model 

T and image     can be calculated as following: 

 (  | )     (
 (  | )

 (  )
)                                                      

 ∑ [   (|〈       〉|
 
)      (  )]

 
           (6) 

where          , i=1,…,N, N is the number of Gabor  

wavelet elements of T, h(.) is Sigmoid transform. 

We separate every single object detected in the ROI 
according to their locations obtained from the multi-scale 
Gabor filter. In the implementation, we don’t need to change 
the size of the input images, but only change the scale of our 
ABM template according to the measurement of the image 
vehicle location. Finally, if the matching criteria are satisfied, 
we know that the candidate is a complete vehicle. 
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IV. EXPERIMENT RESULTS 

In our experiment, the experiments have been done only in 

front-view vehicles which only include small size without 

considering heavy ones like buses or SUVs. To obtain length-

changing ratio in the direction of Y axis, we use camera 

calibration technology to get the camera parameters 

f,   and   ,firstly.  In this paper, the prior knowledge is 

w=3.35m, d=20m, and we also calculate the coordinates of 

P1,P2,and VP. And the parameters is              , 

         and          using the mean and stand 

deviation correction. 

The size of images used in our experiment is      
     pixels, and we did not care about the changeable pose of 

each vehicle , such as the turning vehicles or the changing-

lines ones, so here the vehicles are almost in the same pose 

aligned with parallel markings. And the ROI is set from 400 to 

1900 pixels along the y-axis direction. 

After calibration the camera, we get the length-changing 

ratio in the direction of Y axis by transforming the 3D points 

to 2D points. Then we can calculate the size changes of the 

vehicles. In the implementation, we don’t need to change the 

size of the input images, but only change the scale of our 

ABM template according to the measurement of the image 

vehicle location. Fig.4 gives an example of the vehicles 

detected result using our multi-scale ABM. (a) is the input 

image; (b) is the detected result by multi-scale ABM; and (c) 

shows the last detection result labeled with bounding box. It 

illustrates that the multi-scale ABM can fit the changes of 

vehicle size in images. 
 

V. CONCLUSION 

In this paper, we propose an on-road vehicle detection 

method based on the multi-scale ABM. By taking advantage 

of the camera calibration technology, we learn the multi-scale 

active basis model by using the shared sketch algorithm. The 

improved ABM can detect vehicles which are different from 

poses, shapes, sizes, scales and locations. The experimental 

results illustrate our method can deal with multiple vehicles in 

an individual video frame to make up the lack of scales 

information in ABM. In our experiment, the experiments have 

been done only in front-view vehicles, and we didn’t consider 

the occlusion and heavy traffic scene, as a result we will 

expand the detection of rear-view and side-view vehicles, and 

try to deal with the different pose and occlusion problem in the 

future. 
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