
Adaptive Tracking Control of Leader-Following Multi-Agent
Systems

Hanquan Lin, Qinglai Wei and Derong Liu

Abstract— In this paper, a distributed tracking controller
with an adaptive law for adjusting coupling weights between
neighboring agents is designed for leader-following multi-agent
systems under fixed and switching topologies. In contrast to
most existing literature where agents are integrators or double
integrators, the dynamics of each agent is a general linear
system in this paper. To handle this problem, the controller
is based on Riccati inequalities. In traditional distributed static
controllers, the coupling weight depends on the communication
graph. However, coupling weights associated with the feedback
gain matrix in our method are updated by state errors between
neighboring agents. We further present the stability analysis of
leader-following multi-agent systems under switching topology.
Most traditional literature requires the graph to be connected
anytime, while the communication graph is only assumed to be
jointly connected in this paper. The design technique is based
on Riccati inequalities and algebraic graph theory. Finally,
simulations are given to show the validity of our method.

I. INTRODUCTION

D ISTRIBUTED coordination control of multi-agent net-

works is a growing interest in the field of industri-

al control and automation. The consensus problem is the

most fundamental problem in this area, which designs a

distributed control protocol such that all the agents in the

network asymptotically reach an agreement by interacting

with their local neighbors as the time goes on. Although each

agent has limited resources, the interconnected system as a

whole can perform complex tasks in a coordinated fashion.

Therefore, comparing to conventional control systems, multi-

agent systems have many advantages such as reducing cost,

improving system efficiency, flexibility and reliability. The

applications of consensus problems cover a wide range

such as spacecraft formation flying, sensor networks and

cooperative surveillance. The control of multi-agent systems

is a very active area of research. The consensus problem

for single-integrator agents is addressed by [1]. Distributed

control has been studied for the networks with and without

communication delays and convergence is analyzed for di-

rected graphs with fixed or switching topology, as well as

for undirected graph. [2] considered a network of vehicles

moving in a two dimensional plane and proposed a novel

distributed static output feedback methodology to maintain
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a desired formation. Moreover the condition for consensus

is relaxed by [3], where the consensus can be achieved if

the union of the directed interaction graphs across some time

intervals has a spanning tree frequently enough as the system

evolves. Some other relevant research topics have also been

addressed, such as consensus multiple agents under switching

topologies [1], [4], agreement over random networks [5],

coordination and consensus of networked agents with noisy

measurements [6], networks with time-delays [7], [8].

In this paper, the cooperative control task under consid-

eration is the leader-following coordination among a group

of agents, where the leader is a special agent whose motion

is independent of all the other agents and is followed by

all the other agents. The leader-following approach has been

widely used in many applications such as formation control

in robotic systems and unmanned aerial vehicle formation,

studied by [9], [10], [11], [12], [13], [14]. Consensus of

multi-agent systems with general linear dynamic are studied

by [4], [15], [16], [17], [18], [19], [20]. In particular, different

static and dynamic consensus protocols are designed by [15],

[16], [17], requiring the knowledge of the communication

graph known by each agent to determine the bound of

the coupling weights. However, the entire communication

graph is global information. In other words, these consensus

protocols cannot be computed and implemented by each

agent in a fully distributed fashion, for example, we just

need to use the local information of its own and neighbors.

In this paper, we consider the leader-following consensus

problem in general linear system rather than integrators or

double integrators in most existing literature. To handle the

problem, we use Riccati inequalities method to design the

control gain matrix for each agent. A contribution of this

paper is proposing an adaptive tracking protocol for leader-

following multi-agent systems. Motivated by [21], we design

an adaptive tracking controller for leader-following multi-

agent systems. In contrast to traditional distributed static

controller, the coupling weights of adaptive controller can

be adjusted by state errors between neighboring agents. It

is worth to pointing out that we don’t require to decide

the explicit values of coupling weights beforehand, so the

method is more flexible in practice.

Achieving the consensus for multi-agent systems under

the fixed topology is relatively easy. However, when the in-

teraction topologies are time-varying, this problem becomes

much more difficult. The main contribution of this paper

is that we discuss leader-following multi-agent consensus

problem for general linear case under switching topology.

The communication graph is required to be connected in



most existing literature. However based on our method,

the communication graph is only assumed to be jointly

connected. Moreover, the whole interaction topologies are

not required to be known. The stability of the closed-loop

system is analyzed and simulations are given to illustrate

the method is efficient that the consensus can be reached

for leader-following multi-agent systems under time-varying

topologies.

The rest of this paper is organized as follows. The

problem formulation and some preliminaries about graph

theory are discussed in Section II. The leader-following

consensus problem under the fixed interconnection topology

is discussed in Section III. The results obtained in Section

III are generalized to the case of switching topology in

Section IV. The simulation example is given in Section V.

The conclusion is presented in Section VI.

II. PROBLEM AND PRELIMINARIES

A. Preliminaries

First we introduce some notations. Let Rn×n be the set

of n × n real matrices. IN represents the identity matrix

of dimension N . For a symmetric matrix P , the matrix

inequality P > 0(P ≥ 0) means that P is positive definite

(positive semi-definite). A⊗B denotes the Kronecker product

of matrices A and B.

In the literature, the multi-agent system is always repre-

sented as a graph. Let G = (V, E) be a undirected graph of

order N , where V = {1, 2, . . . , N} is a finite set and a finite

set of arcs E ⊆ V × V is the set of edges of the graph. An

arc of G is denoted by (i, j), which starts from i and ends on

j and represents the information flow from agent j to agent

i. A path in G is a sequence i0, i1, . . . , iq of distinct vertices

such that (ij−1, ij) is an arc for j = 1, . . . , q. If there exists

a path from vertex i to vertex j, we say that vertex j is

reachable from vertex i. Furthermore, if there exists a path

from every vertex to vertex j, then vertex j is a globally

reachable vertex of G. The graph is undirected which means

that the edges (i, j) and (j, i) in E are considered to be

the same. Two nodes i and j are neighbors to each other

if (i, j) ∈ E . The set of the neighbors of node i is denoted

by Ni = {j ∈ V : (j, i) ∈ E , j �= i}. A graph is connected

if there exists a path between each pair of the nodes. A

component of the graph G is a connected subgraph that is

maximal. A nonnegative matrix A = [aij ] ∈ RN×N is

called an adjacency matrix of graph G if the element aij
associated with the edge (i, j) is positive, i.e., aij = 1 if

(i, j) ∈ E . Moreover, we assume that aii = 0 for all i ∈ V .

Note that the adjacency matrix A is a symmetric matrix

for an undirected graph. A diagonal matrix D ∈ RN×N

is called the degree matrix whose ith diagonal element is

defined as
∑N

j=1 aij . Then the Laplacian matrix of the graph

G is defined as L = D − A .

When the graph G is used to describe the interconnection

topology of a multi-agent system consisting of one leader

and N followers, the leader can be represented by vertex

0 and information is exchanged between the leader and the

agents which are in the neighbors of the leader. We define

a diagonal matrix D = diag{d1, d2, . . . , dN} ∈ RN×N to

be a leader adjacency matrix, i.e., di = 1 if ith follower is

connected to the leader across the communication link (i, 0),
otherwise di = 0. Let G be the graph defined on the vertices

{0, 1, 2, . . . , N}.

We define a new matrix H = L + D ∈ RN×N , and the

following lemma plays an important role in the sequel.

Lemma 1: The following statements are equivalent: 1)

1) Vertex 0 is a globally reachable vertex for all vertices

i ∈ V .

2) The matrix H is symmetric positive define.

Remark 1: If the vertex 0 is a global reachable vertex

for all vertices i ∈ V , the undirected graph G is connected.

According to the Lemma proposed by [4], H is symmetric

positive define.

To analyze the time-varying topologies G of the leader-

following multi-agent system, we give the following general

assumptions:

1) There exists a switching signal σ : [t0,∞) → P ,

which is piecewise constant. P is a finite set of all

possible interconnection topologies of the multi-agent

system and t0 is the initial time. We denote all the

possible graphs defined on the vertices {0, 1, 2, . . . , N}
by

{Gp : p ∈ P}
, and use {Gp : p ∈ P} to denote

subgraphs defined on vertices {1, 2, . . . , N}.

2) The time-interval [t0,∞) is constituted by an infi-

nite sequence of bounded, non-overlapping, contiguous

time-intervals [tj , tj+1) for j = 0, 1, . . . with t0 = 0.

For each interval [tk, tk+1), there is a sequence of

nonoverlapping subintervals

[t0k, t
1
k), [t

1
k, t

2
k), . . . , [t

mk−1
k , tmk

k ), tk = t0k, tk+1 = tmk

k

satisfying tj+1
k − tjk ≥ τ , 0 ≤ j ≤ mk − 1 for some

integers mk ≥ 1 and a given constant τ ≥ 0, such that

during each of such subintervals, the interconnection

topology is fixed. Therefore, during each subinterval

[tjk, t
j+1
k ), the graph denoted by Gσ(t) is fixed and we

denote it by Gj
k.

B. Leader-following problem

In this paper, we consider the multi-agent systems consist-

ing an active leader and N following agents. The dynamics

of each agent is represented as

ẋi = Axi +Bui, (1)

where xi ∈ Rn is the state of ith agent and ui ∈ Rm is the

control input of the ith agent which can only use the local

information of its neighbors and itself. The leader indexed

as 0 is described as

ẋ0 = Ax0, (2)

where x0 represents the state of the leader. The control

input of the leader is zero. That is, the leader’s dynamic

is independent of others. We take the system matrices for

all the agents and leader to be identical because this case



has practical background such as group of birds. In order

to satisfy that the followers can track the leader with the

feedback control, the following assumption is proposed.

Assumption 1: The pair (A,B) is stabilizable.

In this paper, we consider design the distributed control for

the leader-following multi-agent system under fixed or time-

varying topology so that each follower can track the leader

using the local information. Therefore the leader-following

consensus is said that closed-loop system should satisfy

lim
t→∞ ‖xi(t)− x0(t)‖ = 0,

for any initial condition xi(0), i = 1, 2, . . . , N .

III. LEADER-FOLLOWING CONSENSUS UNDER FIXED

TOPOLOGY

In this section, we focus on designing distributed control

protocol for the leader-following multi-agent systems under

fixed topology so that the closed-loop system can be stabi-

lized. We discuss the static controller, whose coupling weight

is a priori given. Then we purpose an adaptive controller

for the leader-following multi-agent systems. In contrast

with static controller, the coupling weights of the adaptive

controller are updated according to neighboring agents.

The following assumption is assumed throughout this

section.

Assumption 2: The vertex 0 associated with the leader is

a global reachable vertex in the undirected graph G.

A. Tracking with distributed static controller

Based on the relative states between neighboring agents,

the distributed control protocol for leader-following multi-

agent systems described by (1) and (2) can be designed as

ui = cK

⎡
⎣ N∑
j=1

aij(xi − xj) + di(xi − x0)

⎤
⎦ , i = 1, 2, . . . , N

(3)

where c > 0 is the coupling weight among neighboring

agents and K ∈ Rm×n is a feedback gain matrix to be

determined. Let aij be (i, j)-th entry of the adjacency matrix

A associated with graph G and di be i-th diagonal entry

of the leader adjacency matrix D. Under the Assumption

1, there exists a solution P > 0 to the following Riccati

inequality

PA+ATP − 2PBBTP + βIn ≤ 0, (4)

where β > 0 is a tuning parameter. The matrix K in (3) is

designed as

K = −BTP. (5)

Theorem 1: Consider the multi-agent systems described

by (1) and (2). Let Assumption 1 and 2 hold. Let P > 0 and

K be the solutions of (4) and (5). Then under the distributed

control protocol (3) with c ≥ 1/λ1, where λ1 ≤ λ2 ≤ · · · ≤
λN are the eigenvalues of H , the leader-following consensus

problem can be solved.

Proof: For the lack of space, the details are not given

in this paper. Select a Lyapunov function candidate, then the

theorem is proved as long as time derivative of the function

is negative.

B. Tracking with distributed adaptive controller

In Subsection A, the coupling weight c is dependent on

the minimal eigenvalue λ1 of H . However it is not easy

to compute λ1 when the multi-agent network is of large

scale. Moreover, λ1 is the global information of multi-agent

systems. In this section, we attempt to design an adaptive

controller without requiring explicit λ1. The coupling weight-

s of adaptive controller are updated according to neighboring

agents. The distributed adaptive controller is presented as

ui = ciK

⎡
⎣ N∑
j=1

aij(xi − xj) + di(xi − x0)

⎤
⎦

ċi = τi

⎡
⎣ N∑
j=1

aij(xi − xj) + di(xi − x0)

⎤
⎦
T

× Γ

⎡
⎣ N∑
j=1

aij(xi − xj) + di(xi − x0)

⎤
⎦ , i = 1, 2, . . . , N,

(6)

where ci is the time-varying coupling weight associated with

agent i, K ∈ Rm×n is the feedback gain matrix and aij is the

(i, j)-th entry of adjacency matrix A associated with graph

G. Let di be the i-th diagonal entry of leader adjacency matrix

D and τi be a positive scalar. Γ is a constant gain matrix.

Let εi = xi − x0. Using (6), the dynamics of state error

εi can be obtained as

ε̇i = Aεi+ciBK

⎡
⎣ N∑
j=1

aij(εi − εj) + diεi

⎤
⎦ , i = 1, 2, . . . , N.

(7)

Denote ε = (εT1 , ε
T
2 , . . . , ε

T
N )T. Then (7) can be rewritten in

a compact form

ε̇ = [(IN ⊗A) + CH ⊗BK] ε, (8)

where matrix C = diag(c1, c2, . . . , cN ), and H is defined in

Section II.

Let P > 0 and K be the solutions to (4) and (5). Γ can

be designed as

Γ = PBBTP. (9)

According to Assumption 2 and Lemma 1, we derive that the

symmetric matrix H is positive definite. Since Γ ≥ 0, the

coupling weight ci is nondecreasing. Obviously, the leader-

following consensus problem is solved by adaptive controller

(6) if the state error ε converges to zero.

Theorem 2: Consider the multi-agent systems represented

by (1) and (2). Let Assumption 1 and 2 hold. The distributed

tracking problem can be solved under the controller (6)

whose P > 0, K and Γ are the solutions to (4), (5) and

(9). Moreover, each coupling weight ci converges to some

finite steady-state.



Proof: Consider the Lyapunov function candidate

V2 = εT(H ⊗ P )ε+
N∑
i=1

1

τi
(ci − α)

2
.

Taking time derivative of (III-B along the trajectory of system

(8), we obtain that

V̇2 = 2εT(H ⊗ P ) [(IN ⊗A) + CH ⊗BK] ε

+

N∑
i=1

2

τi
(ci − α)ċi

= 2εT [(H ⊗ PA) +HCH ⊗ PBK] ε

+
N∑
i=1

2

τi
(ci − α)ċi. (10)

Using K = −BTP and (6), we have

2εT (HCH ⊗ PBK) ε+

N∑
i=1

2

τi
(ci − α)ċi

=− 2
N∑
i=1

ci

⎛
⎝ N∑

j=1

aij(εi − εj) + diεi

⎞
⎠

T

PBBTP

×
⎛
⎝ N∑

j=1

aij(εi − εj) + diεi

⎞
⎠+

N∑
i=1

2

τi
(ci − α)ċi

=− 2αεT(HH ⊗ PBBTP )ε. (11)

Substituting (11) into (10), V̇2 can be rewritten as

V̇2 = εT
[
H ⊗ (PA+ATP )

]
ε− εT

(
2αHH ⊗ PBBTP

)
ε.

(12)

Let H = UTΛU , where U is an orthogonal matrix. Denote

δ = (U ⊗ In) ε. Then (12) becomes

V̇2 = δT
[
Λ⊗ (ATP + PA)

]
δ − δT

(
2αΛ2 ⊗ PBBTP

)
δ

=
N∑
i=1

λiδ
T
i (A

TP + PA− 2αλiPBBTP )δi. (13)

As long as αλi ≥ 1, i = 1, 2, . . . , N hold, by applying (4),

(13) becomes

V̇2 ≤ −
N∑
i=1

λiβδ
T
i δi. (14)

Thus, for any δ �= 0, V2 < 0, which implies that for any

ε �= 0, V2 < 0. Therefore, V2(t) is bounded and so are ci.
Note Λ ≥ 0, so it is obvious that ci are nondecreasing. Then

ci converge to some finite steady-state constants respectively.

That is, system (8) is globally stable and all the agents can

follow the leader.

Remark 2: It is worth to mentioning that since ci are

nondecreasing, the steady-state constant α can be sufficiently

large to satisfy αλi ≥ 1, i = 1, 2, . . . , N .

IV. LEADER-FOLLOWING CONSENSUS UNDER

SWITCHING TOPOLOGY

In this section, we discuss the consensus of leader-

following multi-agent systems under switching topology. To

ensure leader-following consensus under switching topology,

there is another constraint on the dynamics of agents. We

suppose that

Assumption 3: The internal dynamics matrix A has no

positive real part eigenvalues.

In switching topology case, the controller of agent i is

designed as

ui = K

⎡
⎣ N∑
j=1

cijaij(t)(xi − xj) + cidi(t)(xi − x0)

⎤
⎦ ,

ċij = ηijaij(t)(xi − xj)
T
Γ(xi − xj),

ċi = ηidi(t)(xi − x0)
T
Γ(xi − x0), i = 1, 2, . . . , N,

(15)

where K ∈ Rm×n is the feedback gain matrix and aij is

the (i, j)-th entry of the adjacency matrix A associated with

graph G. di is the connection weight between agent i and the

leader, and Γ is a constant gain matrix. cij is the time-varying

coupling weight between agent i and agent j, and ci the

time-varying coupling weight between agent i and the leader,

i = 1, 2, . . . , N . Let ηij = ηji, ηi be positive constants

and cij(0) = cji(0). Comparing to the controller of fixed

topology, it is important to note that the neighbors of each

agent aij(t) and di(t) describing the neighbors of the leader

vary with time. We use Lσ(t) and Dσ(t) to describe the time-

dependent of graph topology, where σ is a switching signal

defined in Section II. To present the stability, we consider

an infinite sequence of nonempty, bounded and contiguous

time interval [tk, tk+1) defined as in Section II. Over each

time interval [tk, tk+1), some or all of Gj
k are permitted to

be disconnected. We only require the graph to be jointly

connected which is defined as follows.

Definition 1: The union of a collection graph is a graph

whose vertex and edge sets are the unions of the vertex and

edge sets of the graphs in the collection. we say that such a

collection is jointly connected if the union of its members is a

connected graph. The graphs are said to be jointly connected

across the time interval [t, t+ T ], T > 0 if the union of the

graphs Gσ(s) : s ∈ [t, t+ T ] is jointly connected.

To ensure leader-following consensus under switching

topology, we propose another assumption.

Assumption 4: The graphs are jointly connected across

each interval [tk, tk+1), k = 0, 1, . . ..

Let P > 0 be the solution of the following inequalities

PA+ATP − 2PBBTP < 0,

PA+ATP ≤ 0. (16)

Then the feedback gain matrix K can be designed as

K = −BTP. (17)



The constant gain matrix Γ can be designed as

Γ = PBBTP. (18)

Theorem 3: Consider the multi-agent systems represented

by (1) and (2). Let Assumption 1 and 3 hold, and switching

signal σ satisfies Assumption 4. The distributed tracking

problem can be solved under the controller (15) whose

P > 0, K and Γ are the solutions to (16), (17) and (18).

Moreover, each coupling weight cij and ci converge to some

finite steady-state.

Proof: Let εi = xi −x0, i = 1, 2, . . . , N . According to

(1) and (2), the dynamics of εi can be derived as

ε̇i = Aεi+BK

⎡
⎣ N∑
j=1

cijaij(t)(εi − εj) + cidi(t)εi

⎤
⎦ . (19)

Consider Lyapunov function candidate

V3 =
N∑
i=1

εTi Pεi +
N∑
i=1

N∑
j=1,j �=i

(cij − α)
2

2ηij
+

N∑
i=1

(ci − α)
2

ηi
,

(20)

where α > 0 is the positive constants to be determined. The

time derivative of (20) can be obtained as

V̇3 =

N∑
i=1

2εTi P ε̇i +

N∑
i=1

N∑
j=1,j �=i

(cij − α)

ηij
ċij

+

N∑
i=1

2(ci − α)

ηi
ċi. (21)

Observing (15), we can obtain that cij(t) = cji(t), ∀t ≥ 0.

Using (15) and (18), we get

N∑
i=1

N∑
j=1,j �=i

(cij − α)

ηij
ċij

=
N∑
i=1

N∑
j=1,j �=i

(cij − α)aij(t)(εi − εj)
T
PBBTP (εi − εj)

= 2
N∑
i=1

N∑
j=1,j �=i

(cij − α)aij(t)ε
T
i PBBTP (εi − εj). (22)

Substituting (22) and (15) into (21), (21) becomes

V̇3 = 2
N∑
i=1

εTi PAεi − 2α
N∑
i=1

N∑
j=1

aij(t)ε
T
i PBBTP (εi − εj)

− 2α
N∑
i=1

di(t)ε
T
i PBBTPεi

= 2
N∑
i=1

εTi PAεi − 2α
N∑
i=1

N∑
j=1

Hij(t)ε
T
i PBBTPεj ,

(23)

where Hij(t) denotes the (i, j)-th entry of the matrix

Hσ(t) = Lσ(t) +Dσ(t). Let ε = (εT1 , ε
T
2 , . . . , ε

T
N ). Then (23)

can be written in a compact form

V̇3 = εT
[
IN ⊗ (PA+ATP )− 2αH ⊗ PBBTP

]
ε. (24)

Let H = UTΛU , where U is an orthogonal matrix. By

denoting δ = (U ⊗ In) ε, (24) becomes

V̇3 = δT
[
IN ⊗ (PA+ATP )− 2αΛ⊗ PBBTP

]
δ

≤
∑

i∈l(σ(t))

δTi (PA+ATP − 2αλiPBBTP )δi

≤ −
∑

i∈l(σ(t))

δTi ρδi

≤ 0, (25)

where −ρ < 0 is the maximum eigenvalue of the matrix

PA+ATP −2PBBTP and αλi > 1. Because the coupling

weights cij and ci are nondecreasing, the steady-constant α
can be sufficiently large to make αλi > 1, ∀i ∈ l (σ(t)).
Therefore, V3 has the limit as time goes on. Next we prove

that ε(t) converges to 0. Consider the infinite sequences

V3(ti), i = 0, 1, . . .. Because V3 has the limit, V3 satisfy

the Cauchy’s convergence criteria. So we can obtain that for

any ε > 0, there exists a positive number M , such that for

∀k ≥ M
|V3(tk+1)− V3(tk)| < ε. (26)

Therefore, considering ε(t) we can get

ρ

⎡
⎢⎣∫ t1k

t0k

∑
i∈l(σ(t0k))

δTi (t)δi(t)dt+ · · ·

+

∫ t
mk
k

t
mk−1

k

∑
i∈l

(
σ(t

mk−1

k )
)
δTi (t)δi(t)dt

⎤
⎥⎦ ≤ ε

Thus, for ∀k > M , we have

ρ

⎡
⎢⎣∫ t0k+τ

t0k

∑
i∈l(σ(t0k))

δTi (t)δi(t)dt+ · · ·

+

∫ t
mk−1

k +τ

t
mk−1

k

∑
i∈l

(
σ(t

mk−1

k )
)
δTi (t)δi(t)dt

⎤
⎥⎦ ≤ ε,

which implies

lim
t→∞

∫ t+τ

t

∑
i∈l(σ(t))

δi(s)
Tδi(s)ds = 0.

Therefore,

lim
t→∞

∫ t+τ

t

⎡
⎣ ∑
i∈l(σ(t0k))

δTi (s)δi(s)+

· · · +
∑

i∈l(σ(t
mk−1

k ))

δTi (s)δi(s)

⎤
⎥⎦ ds = 0 (27)

According to Lemma 5 in [4] and Assumption 4, (27) can

be written as

lim
t→∞

∫ t+τ

t

[
N∑
i=1

riδ
T
i (s)δi(s)

]
ds = 0,



where r1, . . . , rN are positive numbers. Because V3 is

nonincreasing, ε(t) is bounded and so is ε̇(t). Therefore
N∑
i=1

riδ
T
i (s)δi(s) is uniformly continuous. According to Bar-

balat’s Lemma, we can obtain that lim
s→∞

N∑
i=1

riδ
T
i (s)δi(s) =

0. Therefore δi converges to 0, so does the εi, i =
1, 2, . . . , N .

Moreover, due to V̇3(t) ≤ 0, cij , ci are bounded, i =
1, 2, . . . , N, j = 1, . . . , N . Note that cij and ci are nonde-

creasing, so all of them converge to some steady constants.

V. SIMULATION STUDY

Consider the multi-agent system under switching topolo-

gies. Suppose there are four followers and a leader described

by

A =

⎡
⎣ −1.9978 −0.0325 1.8869

5.3221 −1.9177 −4.8528
−4.9833 1.8477 3.4155

⎤
⎦ ,

B =

⎡
⎣ 0.2853 0.1536

0.1634 0.1525
0.2720 0.1502

⎤
⎦ .

It is easy to check that (A,B) is stabilizable and the matrix

A has no positive real part eigenvalues. Let all the possi-

ble interaction graphs be {G1,G2,G3,G4,G5,G6} shown in

Figure 1. The interaction topologies are switched in order of

Fig. 1. Possible interaction topologies in the example

G1 → G2 → G3 → G4 → G5 → G6 → G1 → · · · , and each

graph is kept for 1/3 s. Because the graphs G1∪G2∪G3 and

G4∪G5∪G6 are connected, Assumption 4 is satisfied. Using

Matlab, we can obtain a solution to (16), (17) and (18) as

P =

⎡
⎣ 52.9921 −19.2742 −41.8210

−19.2742 10.8752 10.9239
−41.8210 10.9239 38.6169

⎤
⎦ ,

K =

[ −0.5939 0.7506 −0.3572
1.0813 −0.3387 −1.0424

]
,

Γ =

⎡
⎣ 1.5218 −0.8120 −0.9150

−0.8120 0.6782 0.0850
−0.9150 0.0850 1.2143

⎤
⎦ .

Under the control law (15), the states error trajectories

of ei = xi − x0, i = 1, 2, . . . , 4 are shown in Figure 2.

In addition the coupling weights trajectories of cij , i =
1, 2, . . . , 4, j = 1, 2, . . . , 4 and ci, i = 1, 2, . . . , 4 are shown

is Figure 3 and Figure 4 converging to some constants.

VI. CONCLUSION

In this paper, we consider leader-following multi-agent

consensus problem for general linear case. In contrast to

traditional distributed static controller which requires the

knowledge of entire communication graph, we propose an

adaptive protocol based on Riccati inequalities with an adap-

tive law for adjusting coupling weights between neighboring

agents. We discuss multi-agent consensus problems under

fixed topology and switching topology, respectively. The

consensus can be reached for multi-agent systems under

jointly connected graph in our method and the stability is

demonstrated using Lyapunov’s method. Finally, simulation

is given to show our adaptive controller is efficient.
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(a) The error trajectories of e1 in the example
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(b) The error trajectories of e2 in the example
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(c) The error trajectories of e3 in the example
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(d) The error trajectories of e4 in the example

Fig. 2. The error trajectories in the example
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Fig. 3. The coupling weights trajectories of cij in the example
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Fig. 4. The coupling weights trajectories of ci in the example
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