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Abstract-In search advertisements, advertisers have to seek 
for an effective allocation strategy to distribute the limited budget 
over a series of sequential temporal slots (e.g., days). However, 
advertisers usually have no sufficient knowledge to determine 
the optimal budget for each temporal slot, because there exist 
much uncertainty in search advertising markets. In this paper, 
we present a stochastic model for budget distribution over a 
series of sequential temporal slots under a finite time horizon, 
assuming that the best budget is a random variable. We study 
some properties and feasible solutions for our model, taking the 
best budget being characterized by either normal distribution 
or uniform distribution, respectively. Furthermore, we also make 
some experiments to evaluate our model and identify strategies 
with the real-world data collected from practical advertising 
campaigns. Experimental results show that a) our strategies 
outperform the baseline strategy that is commonly used in 
practice; b) the optimal budget is more likely to be normally 
distributed than uniformly distributed. 
Keywords: search advertisement; budget distribution; optimal 
budget; stochastic programming; budget constraint 

I. INTRODUCTION 

Recently, search advertisements have become more and 
more popular due to such advantages as lower costs and quick 
promotion effectiveness. Major search engines (e.g., Google) 
have successfully found and monetized the long tails of both 
advertisers and publishers. For example, the long tail advertis
ers contribute at least half revenue for Google [1]. Most of the 
long-tail advertisers are small companies and individuals that 
have limited resources (e.g., advertising budgets). Therefore, 
it is necessary for these advertisers to figure out an effective 
way to manipulate limited budgets in order to maximize their 
revenues in search markets. 

Most of current works on search advertising strategies sim
ply took the budget as constraints when determining bids over 
keywords of interest [2], [4], [5]. We argue that these works 
fall into the category of bidding strategies. With consideration 
of the entire lifecycle of search advertising, budget decisions 
in search advertisements exist at three levels [6], [7], [8]: 
allocation across search markets, temporal distribution over 
a series of slots (e.g. day) and adjustment of the remaining 
budget (e.g., the daily budget). This work is aimed at dealing 
with the budget allocation problem over a series of sequential 
slots (e.g., days). First, there are much uncertainty in the 
mapping from the budget into the advertising performance 
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[3]. Second, advertisers have to adapt daily budgets to an 
optimal level according to some key factors such as cost-per
click (CPC) and click-through-rate (C TR). Third, the search 
marketing environment is essentially dynamic and thus it is 
difficult to precisely predict the optimal budget. If the allocated 
budget is less than the optimal budget, the advertiser will lose 
some potential clicks (customers), and if the allocated budget 
is set too high, the advertiser will waste her money on clicks 
without valuable actions. 

In this work, we formulate the budget distribution over a 
series of sequential temporal slots as a stochastic programming 
problem. Note that this work takes one day as the tempo
ral granularity, but can also be applied to similar decision 
scenarios with different temporal granularity levels. First, we 
consider the optimal budget as a random variable, because 
it can to some degree reflect the environmental randomness 
of budget-related decisions at the campaign level. The prob
ability distribution of the optimal budget can be extracted 
from promotion logs of historical campaigns. Second, we 
present a stochastic model for budget distribution over a series 
of temporal slots (e.g., days), given the total budget in a 
search market is given. Third, we discuss some properties and 
possible solutions of our model, by considering the optimal 
budget as a uniform random variable and a normal random 
variable, respectively: (a) when the optimal budget is uniformly 
distributed, the proposed model is convex, and an analytic 
solution is presented; (b) when it is normally distributed, the 
proposed model is also convex. However, an analytic solution 
can not be obtained because it contains the standard normal 
distribution function 1>. For computational purposes, we pro
vide an numerical solution that could compute 1>. Furthermore, 
we make some experiments to evaluate our budget model 
and the identified strategies. Experimental results show that 
the strategy driven by normal distributions outperforms the 
other two in terms of total effective clicks, following by the 
uniform distribution strategy, and then the baseline strategy 
that is commonly used in practice. This might be explained by 
the fact that the optimal budget is more likely to be normally 
distributed than uniformly distributed. 

The rest of this paper is organized as follows. In Section 
I I, we present a stochastic budget distribution model over 
a series of temporal slots. In Section I I I, we discuss some 
properties and solutions to our budget model. In Section IV, 
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we report some experimental results to evaluate our budget 
model. Section V discusses some limitations and managerial 
insights of our work, and Section V I  concludes this paper. 

I I. A STOCHASTIC BUDGET DISTRIBUTION MODEL 

We consider the following scenario in search advertise
ments: given the total budget B in a search market, an 
advertiser has to distribute the budget into a series of n 

temporal slots in order to maximize her revenue. For each 
temporal slot, there exists an optimal budget. If the allocated 
budget is less than the optimal budget, the allocated budget will 
be used up with effective C TR Cj. Otherwise, if the allocated 
budget is more than the optimal budget, then the exceeded part 
of the allocated budget will also be used up, but with a lower 
effective C TR c�. 

Let dj represent the optimal budget of the jth temporal slot 
(e.g., day). Though the advertiser can not know the precise 

optimal budget since there exists much uncertainty in search 
advertisements, she can extract some information (e.g., the 
lower bound f2 and the upper bound b) of the optimal budget 
from promotion logs of historical campaigns. Since the optimal 
budget reflects the environmental randomness of budget-related 
decisions at the campaign level, we can denote the optimal 
budget dj as a random variable on [f2, b] with probability 
distribution f (dj). 

Thus, in this paper, we discuss the case that the total budget 
B is insufficient, i.e., nf2 < B < nb, and the allocated budget 

satisfies f2 � bj � b. Since the total budget is B, which can 
not be exceeded by the budget of n temporal slots, that is 
'L7=1 bj � B. 

Let C(bj,dj) be the revenue of the jth temporal slot 
with budget bj under the case that the optimal budget is 
dj, then 'L7=1 C(bj,dj) is the total revenue of the n tem

poral slots. Since dj is a random variable, C(bj, dj) and 
'L7=1 C(bj, dj) are also random variables. Thus, the purpose 
of the advertiser is to maximize her total expected revenue, i.e., 
E['L7=1 C(bj,dj)]. Since dj, j = 1,2, ... ,n, are independent 

random variables, we have 

Below we discuss how to compute the total expected 
revenue, which are characterized by total expected effective 
clicks. 

Let Pj be clicks per unit cost of the jth temporal slot, then 

pjbj represents the clicks obtained in the jth temporal slot. 
Let Cj be the effective C TR of the budget below the optimal 

budget in the jth temporal slot, and c� the effective C TR of 
the budget above the optimal budget in the jth temporal slot, 
j = 1,2, ... , n. Since the number of potential users is limited 
and the optimal budget is corresponding to the potential users, 
if the advertiser allocates more budget than the optimal budget, 
the effective C TR will become smaller, i.e., Cj > c�. 

If bj < dj, then the effective clicks obtained by bj is 

pjbjcj, otherwise if bj ;::: dj, then the effective clicks obtained 
by bj can be divided into two parts, the first part dj with 

effective C TR Cj, and another part bj - dj with effective C TR 

c�. Thus the effective clicks will be pjcjdj + pjc�(bj - dj). 
Since dj is a random variable on [f2, b] with probability 
distribution f( dj), then based on the concept of expected value 
of random variable, for each j, we have 

E[C(bj, dj)] = J;j (pjcjdj + pjc�(bj - dj))f(dj)ddj 
+ J: pjcjbjf(dj)ddj. 

J 
( 1) 

Thus, with the probability distribution f (dj) on [f2, b], we can 
formulate the following stochastic budget distribution model 
for a given campaign 

max 

s.t. 

n [ b. , 

j;;l Jlz.' (pjcjdj + pjcj(bj - dj))f(dj)ddj 

+ J� pjcjbjf(dj)ddj] 
n 

'L bj � B j=l 
f2 � bj � b. 

I I I. PROPERTIES AND SOLUTIONS 

(2) 

In this section, we study the properties and solutions of 
model (2) when the optimal budget is commonly-used random 
variables. We first study the properties when the optimal budget 
can be characterized by uniform random variable, and present 
an analytic solution. Then we study the case for normally 
distributed optimal budget, and discuss a numerical solution. 

A. Uniformly Distributed Optimal Budget 

When the random optimal budget for each temporal slot is 
uniformly distributed, we have the following theorem. 

Theorem 1: If the random optimal budget for the jth 
temporal slot satisfies dj rv U(f2, b), j = 1,2,···, n, then 
model (2) can be represented as 

max t [_PjCj-PjC'i (b2 + b 2) + PjCjb
-PjC'ilz.b ] 

j=l 2(b-lz.) J - b-lz. J 
n 

s.t. 'L bj � B j=l 
f2 � bj � b, 

and it is a convex programming. 

(3) 

Proof Since dj rv U(b, b), j = 1,2, ... , n, the probability 
distribution of dj is 

if f2 < x < b 
otherwise. 

Then 
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E[C(bj,dj)] = J;j (pjcjdj + pjc�(bj - dj))b�lz. ddj 
+ J� pjcjbj b�lz. ddj 

= pjCj-PjC� (b2 _ b 2) + p
jc�bj(bj-b) 

2(b-lz.) J - b-lz. 

+pjcjbj(b-bj) 
b-lz. 

PjCj-Pjc: (b2 b 2) PjCjb-PjC';lz.b 2(b-lz.) J 
+ 

-J 
+ b-lz. J. 



Thus model (2) can be written as 

max t [_PjCj-PjC; (b2 + b2) + PjCjb-PjC;Qb. ] 
j=1 2(b-Q) J - b-Q ) 

n 

s.t. 2:: bj :s: B j=1 
12 :s: bj :s: b. 

In the following, we prove that model (3) is a convex 
programming. 

Because constraints of model (3) are linear, we only need 
to prove the objective function of prograrmning (3) is convex. 

Let 

(b) = � (_ PjCj - PjC� 
(b2 + b2) + pjcjb - PjC�Q 

b.) . g � 2(b - 12) ) - b _ 12 J 

Differentiate g(b) with bj, 

_ _ Pjc] -PjC� b. pjcjb-pjc�!2 
- b-Q ) 

+ 
b-Q 

= !'i (c·(b - b ) + c '
. (b - b)). b-Q ) ) ) ) -

Since 12 < bj < b, then b - bj > 0, bj - 12 > 0 and b - 12 > O. 
Thus og/obj > O. This proves that g(b) is a convex function. 

Therefore, model (3) is a convex programming. The proof 
is completed. • 

Based on Theorem I and properties of convex program
lning, if bj is the local optimal solution of model (3), then it 
is also its global optimal solution. Thus, we have the following 
theorem. 

Theorem 2: If the random optimal daily budget for the jth 
temporal slot satisfies dj rv U(Q, b), j = 1,2,· . .  , n, then the 
optimal solutions of model (3) without consideration of the 
constraint Q :s: bj :s: b is 

where 

A = (t pjcjb - pjCfQ _ B)/Ct b - Q ,), 
j=1 PjCj - PjCj j=1 PjCj - PjCj 

and the corresponding optimal value is 

� [_ PjCj - PjC� 
(b*2 + b2) + pjcY)b - PjC�Q 

b*] � 2(b - Q) ) - b _ Q ) (5) 

Theorem 3: If for all bj defined by formula (4) satisfy the 

constraints 12 :s: bj :s: b, j = 1,2, ... , n, then bi, b'2, ... ,b� are 
also the optimal solutions of model (3), and the corresponding 
optimal value is given by (5). Otherwise, (5) is the upper bound 
of the optimal value of model (3). 

Proof By removing constant items, the optimal solution 
of model (3) also solves the following model 

max 

(6) 
s.t. 

Using the Lagrange method, model (6) can be transformed into 
the following unconstrained prograrmning 

- A (t bj - B) , 
)=1 

(7) 
where A is the Lagrange multiplier. 

We differentiate the objective function of model (7) with bj, 
j = 1,2,· " , n. If bj ( j  = 1,2" . .  ,n) is the optimal solution, 
then it satisfies 

thus 

and 

_ PjCj - PjC� 
b* + pjcjb - PjC�Q _ A = 0 

b- Q ) b- Q ' 

b* - cjb-c;Q _ b-b \ .  1 2 . - , , /\ , J = , ," ' ,  n. J Cj -Cj PjCj -pjCj 
(8) 

Because A(2::7=1 bj - B) = 0 and the total budget is 

lilnited, we have 2::7=1 bj - B = O. Thus, 

� cjb - c�Q � b - Q 
�--....:;,-- � , A = B. 
j=l Cj - cj j=l PjCj - PjCj 

From the above equation, we can obtain 

We substitute the optimal solutions bj into the objective 
function of problem (3), and the corresponding expected value 
is given as 

where bj is defined by formula (8). The proof is completed. 
• 

Theorem 3 presents a method to find the optimal solutions 
and optimal value of model (3), which is convenient in 
practice. If there exists at least one bj defined by formula 

(4) that does not satisfy the constraints Q :s: bj :s: b, then we 
can utilize traditional solution methods for nonlinear convex 
programming, such as the Karush- Kuhn- Tucker conditions, 
interior point method or external point method, to find out 
the approximate optimal solutions of model (3). 

B. Normally Distributed Optimal Budget 

In this section, we discuss the properties and solutions of 
model (2) when the random optimal budget of each temporal 
slot is normally distributed. 

Theorem 4: If the random optimal budget for the jth 
temporal slot satisfies dj rv N(fL,cr) on [fL - 2cr,fL + 2cr], 
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J.L> 0, a > 0, j = 1,2,· . .  , n, then model (2) becomes 

max t [-Pj(Cj _ c�)(�(exp(_(b��lf)2) 
)=1 

n 

- exp( -2)) - (J.L - bj)Cfl(bi:;M)) 

+Pj((Cj - c�)J.L + (Cj + c�)bj)Cfl(2) 

-Pj(Cj - c�)J.L - pjc�bj ] 
S.t. L bj :s; B 

j=l 
J.L - 2a :s; bj :s; J.L + 2a, 

and it is a convex programming. 

( 11) 

Proof Because dj rv U(J.L, a) on [J.L - 2a, J.L + 2a], j = 
1,2, . . .  ,n, the probability distribution of dj is 

{ _1_ exp( _ (di-M)2) f (dj) = v27i-"a 2a2 , 
0, 

if J.L - 2a :s; x :s; J.L + 2a 
otherwise. 

Then 

E[C(bj, dj)] 
_ 1 J:bj ( '( )) ((di-M)2) - v27i-"a M-2a pjcjdj + PjCj bj - dj exp - � ddj 

1 fM+2a b ((di -M)2 )dd + v27i-"a Jbj PjCj j exp - � j 

= _ --'"---p. (C. - c'.) (exp(-(bi -M)2) _ exp(-(M-2a-M)2)) v27i-")) ) 2a2 2a2 
+(Pj(Cj - C�)J.L + pjc�bj)(Cfl(bi:;M) _ Cfl( 1;'-2:-1;')) 

+pjcjbj(Cfl(M+2:-M) _ Cfl(bi:;M)) 

= -Pj(Cj _ c�)(�(exp(_(\��)2) - exp(-2)) 

-(J.L - bj)Cfl(bi:;M)) + Pj((Cj - C�)J.L + (Cj + c�)bj)Cfl(2) 
-Pj(Cj - C�)J.L - pjc�bj, 

where CflU is the standard normal probability distribution 
function. 

Thus model (2) becomes 

max t [-Pj(Cj _ c�)(�(exp(_(b���)2) 
)=1 

n 

- exp( -2)) - (J.L - bj)Cfl(bi:;M)) 

+Pj((Cj - c�)J.L + (Cj + c�)bj)Cfl(2) 

-Pj(Cj - c�)J.L - pjc�bj ] 
mboxs.t. L bj :s; B 

j=l 
J.L - 2a :s; bj :s; J.L + 2a. 

In the following, we prove that model ( 11) is a convex 
programming. 

Because the constraints of model ( 11) are linear, we only 
need to prove that the objective function of progrmmning ( 11) 
is convex. 

Let 

g(b) = t [-Pj(Cj - c�)( �(exp( -(\��)2) - exp( -2)) 
)=1 

-(J.L - bj)Cfl(bj:;M)) 

+Pj((Cj - C�)J.L + (Cj + c�)bj)Cfl(2) 

-Pj(Cj - C�)J.L - pjc�bj ] . 

Differentiate g(b) with bj, 
09 ( ')( 1 (b ) ((b-M)2) obj = -Pj Cj - Cj - v27i-"a j - J.L exp - � 

+Cfl(bi:;M) - �a (J.L - bj) exp( -(bi2��)2)) 
+Pj(Cj + c�)Cfl(2) - PjC� 

= -Pj(Cj - c�)Cfl(bi:;M) + Pj(Cj + c�)Cfl(2) - PjC�, 

and 

( , ) 1 ((b -M)2) = _ po c-- c· --exp - � . 
) J ) v27i-"a 2a 

Because Cj > c�, we have fJ g2 / fJb; < O. That is, g( x) is a 
convex function. 

Therefore, model ( 11) is a convex programming. The proof 
is completed. • 

According to Theorem 4, if bj is the local optimal solution 
of model ( 11), then it is also its global optimal solution. 

Since the objective function of model ( 11) contains stan
dard normal distribution function Cfl, it is difficult to get an 
analytic solution. In the following, we provide an numerical 
solution that can compute Cfl . 

From the definition of standard normal distribution func
tion, we have 

lh(X) 1 u2 
Cfl(h(x)) = .t':'>=exp(- -)du, 

o v 2 71" 2 
where h(x) is a function of x. The numerical solution algo
rithm for evaluating Cfl(h(x)) is given as follows. 

N +-- iteration times 
num +-- 0 
y+--O 
while num:::; N 

q +-- r rv N(O, 1) 
if q :::; hex) then 

y+--y+1 
num +-- num + 1 

return yiN 

IV. EXPERIMENTS 

In this section, we make some experiments with Web logs 
of a real ad campaign to illustrate the effectiveness of the 
proposed strategy, named uniform distribution strategy and 
strategy driven by normal distributions, which allocates the 
budget by assuming that the optimal budget is a uniform 
random variable and normal random variable, respectively. 
For simplicity, we represent the two strategies by StoStrat

egy_uniform and StoStrategy-normal, respectively. 

For comparison purposes, we implement one baseline 
strategy, called BASE-Average, which allocates the budget to 
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a series of temporal slots averagely. That is, it ignores the 
differences among these temporal slots. The reason for us 
to choose the BASE-Average strategy is that it is easy to 
implement, and thus usually adopted by advertisers. 

A. Experimental Data 

In this experiment, we used the data during a month (e.g., 
30 days), and the data such as clicks per unit cost and effective 
CTR are shown in Figure 1. The total budget is B = 3000. 
From the logs, we can know the optimal budget of every 
day is on interval [80, 150]. Thus, StoStrategy_uniform and 
StoStrategy-normal regarding the random optimal budget for 
the promotion period satisfy U(80, 150) and N(115, 17.52), 
respectively. 
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0.28 

iii 0.26 
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'2 
� 0.24 
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o 10 15 
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20 25 30 

0.6,-�--�----r;:=======:::::;-] 

0.5 

0.1 
.' 

......... / '. ..... , '
-
"" .•. :' 
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°OL--�--�10---1�5 --�20--- 2�5--�30 
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Fig. L Pattern of clicks per unit cost and effective CTR 

B. Analysis of Experimental Results 

The optimal solutions for the three strategies are shown 
in Figure 2, and the corresponding total cumulative effective 
clicks are shown in Figure 3, where "cumulative effective 
clicks" on the jth day represents the total effective clicks from 
the 1st day to the jth day, j = 1, 2" ", 30. 

From Figure 2 and Figure 3, we can obtain the following 
results: 
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Fig. 2. Comparisons of the daily budget for the three strategies 
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Fig. 3. Comparisons of the total cumulative effective clicks for the three 
strategies 

(1) StoStrategy_normal and StoStrategy-uniform can ob
tain 229.17 and 212.80 effective clicks, respectively, and 
BASE-Average can obtain 210.49 effective clicks. 

(2) StoStrategy_normal strategy outperforms StoStrat
egy-uniform strategy (about 7.69%), in terms of the total 
effective clicks. The reason is that the StoStrategy _normal 
strategy can allocate more budget in the more profitable days 
that have high effective clicks per unit cost (both below and 
above the optimal budget), and allocate less budget in the days 
with low effective clicks per unit cost (both below and above 
the optimal budget), which made the budget more profitable. 

(3) Both our StoStrategy_normal strategy and StoStrat
egy_uniform strategy outperform BASE-Average about 8.86% 
and 1.10%, respectively, in terms of the total effective clicks. 
The reason is that both of our strategies take the differences 
of parameters of these days into consideration, while BASE
Average ignores the differences among these days in budget 
decisions. 
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V. DISCUSSION AND MANAGERIAL INSIGHTS 

This paper reports our preliminary research on stochastic 
budget distribution over a series of temporal slots, by consider
ing the randomness of the optimal budget as random variable. 
Two distributions (e.g., uniform and normal) are discussed in 
this work. Several limitations remain in our research. On the 
one hand, other forms of random variables might be more 
appropriate to describe the optimal budget. On the other hand, 
empirical research is necessary to find out some characteristics 
of random variables in budget distribution over a series of 
temporal slots in search advertisements. 

This paper provides critical managerial insights for dealing 
with the budget distribution problem over a series of temporal 
slots in search advertisements. On the one hand, when the 
advertiser get some information about the upper and lower 
bound of the optimal budget, she can try to distribute the 
budget following a certain probability distribution, rather than 
allocating the budget averagely. On the other hand, the optimal 
budget is more likely to be normally distributed than uniformly 
distributed, thus, if the advertiser takes the optimal budget as 
normal distributed random variable, she can get more revenues. 

V I. CONCLUSIONS AND FUTURE WORK 

In this paper, we formulate the budget distribution over a 
series of temporal slots in search advertisements as a stochastic 
programming problem. By considering the optimal budget 
for each temporal slot as a random variable to characterize 
uncertainty in search advertisements, we present a stochastic 
budget distribution model over a series of temporal slots. 
We also study some properties and solutions of the proposed 
model, considering the optimal budget as uniform random 
variables and normal random variables, respectively. With Web 
logs of real ad campaigns in search markets, we conduct 
some experiments to validate our model, and experimental 
results show that both of our strategies outperform the baseline 
strategy commonly used in practice and the optimal budget 

is more likely to be normally distributed than uniformly 
distributed. 

In the future work, we are planning to (a) study more 
complex cases with the randomness from two or more fac
tors; (b) conduct empirical research to observe the real-world 
distribution for the budget random variables; (c) study the 
optimization of solution algorithms in order to improve space 
and time efficiencies. 
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