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Abstract-Budget optimization is an important issue faced 
by advertisers in search auctions, and has significant impact 
on the design of various advertising strategies. Given a limited 
budget on a search market during a certain period, an advertiser 
has to distribute her budget to a series of sequential temporal 
slots (i.e., days, weeks, or months), during which advertisers 
must avoid the budget being used up quickly, so as to keep the 
budget for potential clicks with better performance in the future. 
Considering the optimal budgets over these temporal slots as 
fuzzy variables, we establish a two-stage fuzzy budget allocation 
model, and use particle swarm optimization (PSO) algorithm to 
solve it in case when these optimal budgets are characterized by 
discrete fuzzy variables. We also conduct experiments to validate 
our model and algorithm. The experimental results show that 
our model can outperform other five budget allocation strategies 
in terms of reducing the revenue loss of the advertiser. 
Keywords: budget optimization; budget allocation; sponsored 
search auctions; two-stage fuzzy programming; PSO 

I. INTRODUCTION 

Search auction is an important marketing channel for many 
Web advertisers. In search auctions, major search engines such 
as Google and Yahoo! provide advertising slots for advertisers 
to display their advertisements alongside the organic search 
results on search engine result pages (SERP). Advertisers 
participating in search auctions should first select a set of 
keywords that are relevant to their products or services, and 
then submit a bid for each keyword. Once a search user submits 
a query, an auction will be triggered among the advertisers who 
bid for keywords matching the query. Advertisers will not pay 
unless their advertisements are clicked. 

In search auctions, how to allocate the limited budget 
rationally is a significant issue faced by advertisers. Fruchter 
and Dou [5] used dynamic programming and derived analytical 
solutions for the optimal budget allocation decisions between 
a generic market and a specialized market. They found that 
in the long run, an advertiser must always spend more on the 
specialized market. The budget optimization problem can be 
formulated as an online (multiple-choice) knapsack problem 
[1], [2] to achieve a provably optimal competitive ratio for the 
advertisers. Several stochastic models were also established 
[3], [4], [6], [10] to help distribute a given amount of budget 
over a set of keywords so as to maximize the expected number 
of clicks. 

However, most of these works are focused on the budget 
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allocation on the level of each keyword, which is not suitable to 
real-world market practice. Generally speaking, there are three 
budget allocation scenarios at different phases in the entire life­
cycle of search auctions [11], [12], including the long-term 
allocation across markets prior to ad campaigns, the allocation 
over a series of intervals (e.g. daily budget constraints) for a 
specific ad campaign, and the real-time adjustment of budget in 
a given interval. Strategies of budget allocation and adjustment 
at these three scenarios construct a close-loop, composite 
allocation strategy for search auctions through constraints and 
feedbacks. This paper is aimed at finding an effective solution 
for budget allocation in the second scenario. 

This paper focuses on how to allocate the budget to a series 
of sequential temporal slots for a specific ad campaign on a 
search market. The optimal budget over each temporal slot is 
influenced by many factors, e.g., search demands from search 
users and click-through-rate of advertisements, which are not 
easy to know in advance. Considering the optimal budgets 
over these temporal slots as fuzzy variables [9], we establish 
a two-stage fuzzy budget allocation model based on the two­
stage fuzzy programming approach as proposed in [8], where 
advertisers give an initial budget at the first stage, and then 
adjust the budget according to the distribution of these optimal 
budgets at the second stage. Particle swarm optimization (PSO) 
algorithm is used in our paper to find the optimal solution in 
case when the optimal budgets are characterized by discrete 
fuzzy variables. We also make experiments to validate our 
budget allocation model and algorithm. The experimental re­
sults show that our model performs better in terms of reducing 
the revenue loss of the advertisers, comparing with other five 
budget allocation strategies. 

The main contributions of this paper can be summarized 
as follows. 
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(i) We established a two-stage fuzzy budget allocation 
model for search auctions, with the optimal budgets 
characterized by fuzzy variables. 

(ii) We presented the solution procedure of the proposed 
model with PSO algorithm in case when the optimal 
budgets are characterized as discrete fuzzy variables. 

(iii) We conducted experiments to validate our proposed 
model and its solution algorithm. 

The rest of this paper is organized as follows. In Section 



II, we first state our problem, and then establish a two­
stage fuzzy programming model. In Section III, we propose 
a solution method to the proposed model. In Section IV, 
we conduct experiments to evaluate the effectiveness of our 
budget allocation model and corresponding solution algorithm. 
Section V concludes this paper. 

II. PROBLEM FORMULATION 

In this section, we first state our problems, and then present 
the two-stage fuzzy budget allocation model over a series of 
promotional slots. The notations used in this paper are listed 
in Table I. 

TABLE l. LIST OF NOTATIONS 

Notation Definition 
n total temporal slots in the whole period 
B total budget on the search market during a 

certain period 
Ci clicks per unit cost of the ith temporal slot, 

i = 1,2, . . .  ,n 

Xi the allocated budget for the ith temporal slot, 
i = 1,2, . . .  ,n 

di the fuzzy optimal budget for the ith temporal slot, 
i = 1,2, . . .  ,n 

Pi the effective CTR of the ith temporal slot 
below the optimal budget, i = 1,2, . . .  ,n 

Pi the effective CTR of the ith temporal slot 
above the optimal budget, i = 1,2, . . .  , n 

It the exceeded budget of the ith temporal slot, 
i = 1,2, . . .  ,n 

Ii the lacking budget of the ith temporal slot, 
i = 1,2, . . .  ,n 

A. Problem Statement 

Suppose the total budget of an advertiser in a search market 
during a certain period (i.e., a week/month/year) is given, the 
advertiser need to distribute the budget to a series of sequential 
temporal slots (i.e., several days/weeks/months), to maximize 
her total revenue or minimize her total loss. 

Since the potential search demand in each temporal slot 
is not uniformly distributed, the effective clicks cannot grow 
with the same speed. Generally, the effective CTR may be 
higher in some time intervals of the temporal slot, and lower 
in other time intervals. Thus, there exists a critical value for 
the allocated budget. When the allocated budget is lower than 
the critical value, the clicks will have a higher effective CTR, 
while, when the allocated budget is higher than the critical 
value, the clicks will have a lower effective CTR for the part 
of budget exceeding the critical value. 

In this paper, the critical value is regarded as the optimal 
budget. Besides the concept of the optimal budget, there are 
two relevant concepts called the exceeded budget and the 
lacking budget, represented by I+ and I-, respectively. We 
define the three terms as follows: 

• The optimal budget: The optimal budget is the budget 
which can perfectly satisfy the cost for the time 
intervals with high effective CTR. In other words, if 
the advertiser has enough total budget, then her best 

choice is to set the budget of each temporal slot equal 
to the optimal budget. 

• The exceeded budget: If the allocated budget Xi for 
the ith temporal slot is higher than the optimal budget 
di, then the difference between the allocated budget 
and the optimal budget is referred to as the exceeded 
budget, represented by rt = Xi -di. We assume this 
part of budget will be used up and the effective CTR 
is P� < Pi, where Pi is the effective CTR for the part 
of budget below the optimal budget. This assumption 
is reasonable because of the fact that the allocated 
budget is far more than the optimal budget will never 
happen due to the advertiser's financial conditions. 

• The lacking budget: If the allocated budget Xi for 
the ith temporal slot is lower than the optimal budget 
di, then the shortage of budget between the allocated 
budget and the optimal budget is referred to as the 
lacking budget, represented by Ii- = di -Xi. The loss 
of effective clicks for the advertiser will rise with this 
part of budget increasing. 

According to the above definitions, it is easy to obtain that 
at least one of them is equal to zero for the ith temporal slot. 
That is, if Xi > di, then It = Xi -di > 0 and Ii- = 0; if 
Xi < di, then Ii- = di -Xi > 0 and I+ = 0; if Xi = di, then 
It = Ii- = O. Thus, we can denote If and Ii- as follows 

It = [Xi -di] V 0, Ii- = [di -Xi] V 0, 

where the symbol "V" is defined as 

{ X if x?: 0 X V 0 = 
0: otherwise. 

From the above descriptions, it is obvious that the optimal 
budget of each temporal slot is of great significance for the 
advertiser in budget allocation problems. However, the optimal 
budget over each temporal slot is influenced by many factors, 
e.g., search demands from search users and CTR of advertise­
ments, which are not easy to know in advance. However, some 
information of the optimal budget can be obtained according to 
the promotional logs and the advertiser's experience, such as 
the possibility distribution. Thus, in the following section, we 
will characterize the optimal budgets by fuzzy variables, and 
establish a two-stage fuzzy budget allocation model to solve 
this problem. 

B. Formulation of Two-stage Fuzzy Budget Allocation Model 

Suppose the total budget allocated to a search market 
during a certain period is B, and we need to allocate it 
to n sequential temporal slots. Let di be the fuzzy optimal 
budget for the ith temporal slot, and Ci be clicks per unit 
cost of the ith temporal slot, i = 1,2, ... , n. The objective 
of the advertiser is to minimize hislher loss, which includes 
the obtained ineffective clicks and the lost effective clicks. 
Thus, in the ith temporal slot, the loss can be computed in the 
following three cases: 
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Case 1: If It = Ii- = 0, then the allocated budget Xi is 
equal to the optimal budget, thus the loss is the 
ineffective clicks generated from Xi, i.e., cixi(l­
Pi). 



Case 2: If rt > 0, then the allocated budget Xi is higher 
than the optimal budget. In this case, the allocated 
budget can be divided into two parts: Xi - It 
with effective CTR Pi and It with effective 
CTR p�. Thus the loss includes two parts: the 
ineffective clicks generated from Xi - It, i.e., 
Ci(Xi - It)(l - Pi)' and the ineffective clicks 

+ . + 
' 

generated from Ii ' I.e., cJi (1 - Pi). Moreover, 
the exceeded budget It can also generate some 
effective clicks, i.e., cilt p�, which can cancel out 
part of the ineffective clicks. Therefore, the total 
loss can be computed as 

Ci(Xi - It) (1 - Pi) + cilt(l -p/) - cJtp/ 
= cixi(l - Pi) + cilt( Pi - 2p/), 

of which cJt ( Pi - 2p/) is generated due to the 
existence of It. 

Case 3: If Ii- < 0, then the allocated budget Xi is 
lower than the optimal budget. In this case, the 
effective CTR for Xi is Pi, then the ineffective 
clicks generated from Xi is cixi(l-Pi). Moreover, 
the lacking budget Ii- can lead to the loss of 
effective clicks (i.e., cili- Pi) in time intervals with 
high effective CTR. Thus, the total loss can be 
computed as cixi(l - Pi) + cili- Pi, of which 
cJi- Pi is generated due to the existence of Ii-. 

Since the optimal budget for each temporal slot cannot be 
known in advance, we should give a budget in the first stage, 
and then adjust the budget based on the realization of the fuzzy 
optimal budget in the second stage. As discussed above, the 
loss will rise with 1+ or 1- increasing. The loss generated by 
1+ and 1- are cilt ( Pi - 2p/) and cJi- Pi, respectively, which 
should be minimized in the second stage. With the notations 
in Table I, the two-stage fuzzy budget allocation model can be 
established as follows 

where 

and 

Q(x,d(y)) 

s.t. 

n 
min L cixi(l - Pi) + Q(x) i =l n 
s.t. L Xi :s: B i =l 

Xi 2: 0, i = 1,2, . . .  , n ,  

Q(x) = Ea[Q(x,db)] 

= min [i� cilt( Pi - 2p/) + i� Cili- Pi ] 
+ -

� 

Ii - [Xi - d ib)] V 0 

Ii- = [ dib) -Xi] V 0, i = 1,2,·· . , n ,  

(1) 

(2) 

(3) 
where Q(x) is called recourse function [8], and E is expected 
value of a fuzzy variable [9]. 

III. A SOLUTION ALGORITHM 

In this section, we first discuss the computational method 
of the recourse function (3) when the optimal budget of each 
temporal slot is characterized by a discrete fuzzy variable, and 
then propose a solution algorithm for our model. 

A. Computing the Recourse Function (2) 

Let the optimal budget d = ( d1, d2 ,·· . , dn) for the n 

temporal slots be a discrete fuzzy vector with the following 
possibility distributions 

A l Al AI AI . . . .  
d = (d1, d2, ... , dn) wIth posslblhty J.L1 > 0, 

A 2 A2 A2 A2 . . . .  
d = (d1, d2, ... , dn) wIth posslblhty J.L 2 > 0, 

A N AN AN AN . . . .  
d = ( d1 , d2 , ... , dn ) With posslblhty J.LN > 0, 

and rrfax J.Lj = 1. Then according to Liu [8], the recourse 
J=l 

function (2) can be computed in the following way. 

Without loss of generality, we assume that for a fixed 
x, the second-stage objective function satisfies the condition 

Al A 2 A N Q(x, d ) :s: Q(x, d ) :s: ... :s: Q(x, d ), then the recourse 
function (2) at x is computed by the formula 

N 

Q(x) = L WjQ(x ,d
j
) , (4) 

j=l 

where the corresponding weights Wj, j = 1,2, ... , N are given 
by the following formulas 

1 ( 
j j-1 ) 1 ( N N+1 ) 

Wj = 2 maxJ.Lk - maxJ.Lk + 2 maxJ.Lk - max J.Lk , 
k=l k=O k=j k=j+1 

j=1,2,···,N 
(J.Lo = 0, J.LN +1 = 0) and satisfy the following constraints 

N 

Wj 2: 0, L Wj = rri'aXJ.Lj = 1. 
J=l 

j=l 

B. PSG Algorithm 

(5) 

In this section, we will use particle swarm optnillzation 
(PSO) algorithm to solve the proposed two-stage budget al­
location model (1)-(3). Inspired by social behaviors of bird 
flocking or fish schooling, PSO is a population based stochastic 
optimization technique developed by Kennedy and Eberhart in 
1995 [7]. Compared with other evolutionary algorithms, PSO 
algorithm has much faster convergence speed and fewer param­
eters to adjust, which makes it particularly easy to implement. 
Recently, PSO algorithm has attracted much attention and been 
successfully applied in many fields. In PSO, the system is 
initialized with a population of random solutions and searches 
for optima by updating generations. The potential solutions, 
called particles, fly through the problem space by following the 
current optimum particles. In the search process, the velocity 
and position of the ith particle are updated by the following 
formulas 

Vi(t + 1) = wVi(t) + 0:111(Pi(t) - Xi(t)) 
+0:212(Pg(t) - Xi(t)) 

Xi(t + 1) = Xi(t) + Vi(t + 1), 

(6) 

(7) 

where i = 1,2, . . .  , pop_size; w is the inertia coefficient; 0:1 
and 0:2 are learning rates and 'I and '2 are two numbers 
randomly generated from [0,1]. 

The process of PSO for solving model (1)-(3) can be 
described as follows. 
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Step 1. Initialize pop_size particles with random positions 
and velocities, and evaluate the objective values for all parti­
cles. For each particle, the objective value is evaluated in the 
following way: 

Step 1.1. Compute the optimal value Qi of the 
second-stage prograrmning (3), i = 1,2, . . .  , n. 

Step 1.2. Rearrange Qi, i = 1,2,···, n such that 
Qi � Q2 � ... � Q�. 
Step 1.3. Compute the corresponding weights accord­
ing to the fonnula (5). 
Step 1.4. Compute the recourse function (2) accord­
ing to the fonnula (4) and then the objective value. 

Step 2. Set pbest of each particle and its objective value 
equal to its current position and objective value, and set gbest 
and its objective value equal to the position and objective value 
of the best initial particle; 

Step 3. Update the velocity and position of each particle 
according to the formulas (6) and (7), respectively, and then 
compute the objective values for all the particles; 

Step 4. For each particle, compare the current objective 
value with that of its pbest. If the current objective value is 
smaller than that of pbest, renew pbest and its objective value 
with the current position and objective value; 

Step 5. Find the best particle of the current particle swarm 
with the smallest objective value. If the objective value is 
smaller than that of gbest, then renew gbest and its objective 
value with the position and objective value of the current best 
particle. 

Step 6. Repeat Step 3 to Step 5 for a given number of 
cycles; 

Step 7. Report gbest and its objective value as the optimal 
solution and optimal value. 

IV. EXPERIMENTS 

In this section, we conduct experiments to validate the 
established two-stage fuzzy budget allocation model and its 
solution method. 

Suppose the budget on a search engine during one week 
(only run the advertisements on workday) is B = 300, and 
clicks per unit cost and effective CTR of the ith day are 
given in Figure 1 and 1, respectively. Furthermore, suppose 
the optimal budget of the five days is a discrete fuzzy vector 
with the following possibility distributions { (47,51,65,62,75), 

d _ (40,50,78,59,73), 
- (38,58,62,64,78), 

(50,54,68,68,60), 

with possibility 0.6 
with possibility 0.8 
with possibility 1 
with possibility 0.7. 

With the proposed method, if we set the learning rates (Xl = 

(X2 = 2, and the population size pop_size=lOO, then a run of 
PSO algorithm with 5000 generations returns the following 
optimal solution 

x* = (39.999,54,68,62.216,60), 
and the corresponding optimal value is 59.896. 

0.58 

1.5 2.5 3 3.5 
Day 

4.5 

Fig. 1. Clicks per unit cost of the five days 

0.9,-----�---�--�--_____, 

0.8 

0.7 

0.6 
"' 
t; 
� 0.5 

� UJ 
0.4 

0.3 - below the optimal budget 

- - - above the optimal budget 

0.2 __ - - - - ___ • 

0.1 '---__ � ___ � __ �---'=_=_�_J 
1 3 

Day 

Fig. 2. Effective CTR of the five days 

To validate the effectiveness of our method, we make a 
comparison between the results obtained by our method and 
the following five baseline strategies: 

• BASE-Average: a strategy to allocate the budget to the 
five days averagely. 

• BASE-0.6: a strategy to allocate the budget according 
to the optimal budget with possibility 0.6. 

• BASE-0.8: a strategy to allocate the budget according 
to the optimal budget with possibility 0.8. 

• BASE-I: a strategy to allocate the budget according 
to the optimal budget with possibility 1. 

• BASE-O.7: a strategy to allocate the budget according 
to the optimal budget with possibility 0.7. 

The BASE-Average strategy is commonly used by advertisers 
in practice since it is easy to implement, and the other 
four baseline strategies are usually used when the possibility 
distributions of the optimal budget is known. 

The optimal solutions and the corresponding optimal values 
(e.g., the cumulative loss) of our strategy and the five baseline 
strategies are illustrated in Figure 3 and Figure 4, respectively. 
By cumulative loss on the jth day, we refer to the number 
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of loss accumulated from the 1st day to the jth day, j 
1,2" " ,5. 

80 

75 

70 

65 

60 

� 
55 

50 
- BASE-Average 

- BASE-0.6 

-BASE-0.8 
45 - BASE-1 

- BASE-0.7 

--+- Optimal 

35 
1 3 

Day 

Fig. 3. Comparisons of the daily budget among our strategy and the five 
baseline strategies 

] 

70 

BASE Average 
60 -BASE-D.6 

-BASE-D.S 
-BASE-1 
-BASE-D.7 

50 ----+- Optimal 

40 

30 

20 

0,L-----�------�3�----�------� 

Day 

Fig. 4. Comparisons of the loss among our strategy and the five baseline 
strategies 

From Figure 3-4, we can see that, 

(1) The optimal solution of our strategy is (39.999, 54, 
68, 62.216, 60), and the budget allocation strategy for the five 
baseline strategies are (60, 60, 60, 60, 60), (47, 51, 65, 62, 
75), (40, 50, 78, 59, 73), (38, 58, 62, 64, 78) and (50, 54, 68, 
68, 60), respectively. 

(2) The loss of our strategy is 59.896, and the loss for the 
five baselines strategies are 66.830, 60.590, 61.371, 60.995 and 
62.557, respectively. The loss of the five baseline strategies are 
all higher than our strategy, about 1l.577%, l.159%, 4.202%, 
l.835% and 4.427%, respectively. It refers that our strategy 
outperforms the five baseline strategies. 

(3) Comparing the five baseline strategies, we can see 
that, the loss of the BASE-Average strategy is higher than the 
other four baseline strategies, about 10.299%, 8.895%, 9.566% 
and 6.831 %, respectively. It illustrates that the BASE-Average 
strategy is the last choice if the advertiser knows the possibility 
distribution of the optimal budget. 

(4) Comparing the four baseline strategies considering the 
possibility distributions of the optimal budget, we can see that, 
the loss of the BASE-0.6 strategy is the lowest, followed by 
the BASE-l strategy, the BASE-0.8 strategy and the BASE-
0.7 strategy. It illustrates that the budget strategies obtained 
according to the possibility distributions of the optimal budget 
cannot be evaluated by its possibility. 

V. CONCLUSIONS 

This paper proposed a two-stage fuzzy budget allocation 
model for the budget allocation problem over a series of 
sequential temporal slots in search auctions, considering the 
optimal budget of each temporal slot as a fuzzy variable. 
We also proposed an algorithm and conducted computational 
experiments to illustrate the effectiveness of the proposed 
model. The experimental results show that our model performs 
better than the other five baseline budget allocation strategies, 
and when the possibility distribution of the optimal budget 
is known, consider it when making the budget allocation 
strategies can greatly decrease the advertiser's loss. 
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