
Adaptive bit allocation product quantization

Qin-Zhen Guo a,n, Zhi Zeng a, Shuwu Zhang a, Guixuan Zhang a, Yuan Zhang b

a Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China
b Samsung Electronics, 12a TaiYangGong Middle Road, 100028 Beijing, China

a r t i c l e i n f o

Article history:
Received 9 April 2015
Received in revised form
11 July 2015
Accepted 11 July 2015
Communicated by Shaoting Zhang
Available online 8 August 2015

Keywords:
Vector quantization
Product quantization
Adaptive bit allocation
Approximate nearest neighbor search
Image retrieval

a b s t r a c t

Product quantization (PQ) is a popular vector quantization method for approximate nearest neighbor
search. The key idea of PQ is to decompose the original data space into the Cartesian product of some
low-dimensional subspaces and then every subspace is quantized separately with the same number of
codewords. However, the performance of PQ depends largely on the distribution of the original data. If
the energies of subspaces are extremely unbalanced, PQ will achieve bad results. In this paper, we
propose an adaptive bit allocation product quantization (BAPQ) method to deal with the problem of
unbalanced energies of subspaces in PQ. In BAPQ, we adaptively allocate different numbers of codewords
(or bits) to subspaces to quantize data for minimizing the total quantization distortion. The essence of
our method is to find the optimal bit allocation scheme. To this end, we formulate an objective function
about minimizing quantization distortion with respect to bit allocation scheme and adopt a greedy
algorithm to find the near-optimal solution. BAPQ can achieve lower quantization distortion than PQ and
optimized product quantization (OPQ). Besides, both bias and variance of difference between the true
distance and the BAPQ's estimated distance are reduced from those of PQ and OPQ. Extensive
experiments have verified the superiority of BAPQ over state-of-the-art approaches.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Approximate nearest neighbor (ANN) search has been widely
used to avoid excessive computational and memory cost of nearest
neighbor (NN) search in many computer vision problems, like
image retrieval [1], image classification [2], 3D reconstruction [3]
and other related application areas. The key idea of ANN is to find
the nearest neighbors with high probability. Nowadays, several
ANN approaches have been developed including tree-based meth-
ods, hashing-based methods and vector quantization.

The tree-based methods [4,14] usually recursively partition the
data space to implement an efficient search for low-dimensional
data. However, for high-dimensional data, in the worst case the
tree-based methods can degenerate to exhaustive search.

The hashing-based methods [5,6,15–20,23,24] which map the
data into Hamming space have been popular approaches to ANN
search. The similarity between two vectors is measured by the
Hamming distance of their hashing codes. Hashing-based methods
have two advantages. One is that the needed storage is largely
reduced. The other is that the Hamming distance between two
codes can be computed efficiently by XOR operator followed by bit

count. But due to the thick boundary of Hamming space, these
methods usually cannot achieve ideal results [7].

Vector quantization (VQ) [8] is an effective and efficient
method for ANN search. These methods quantize the data by
codewords in order to reduce the cardinality of the data space.
Among the VQ methods, product quantization (PQ) [9] is designed
to decompose the original data space into the Cartesian product of
several low-dimensional subspaces and each subspace is quan-
tized separately. The distance between two vectors can be com-
puted by the sum of the distances between their subvectors in the
same subspace.

However, PQ considers every subspace having the same energy
and uses the same number of codewords to quantize every subspace,
which is unreasonable since the energies of subspaces may be not
identical, especially when the data is principal component analysis
(PCA) projected. The subspaces formed by dimensions with larger
variance carry more energy. If we use the same number of code-
words as that in subspaces with more energy to quantize data in
subspaces with less energy, it will be redundant. And the quantiza-
tion distortion will be expanded if we use the same number of
codewords as that in subspaces with less energy to quantize the data
in subspaces with more energy.

Motivated by the above considerations, in this paper, we propose
an adaptive bit allocation product quantization (BAPQ) approach for
ANN search. The key idea of BAPQ is that we adaptively allocate
different numbers of codewords (or bits) to subspaces to minimize

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.07.062
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ86 18810461353.
E-mail addresses: qinzhen.guo@ia.ac.cn (Q.-Z. Guo), zhi.zeng@ia.ac.cn (Z. Zeng),

shuwu.zhang@ia.ac.cn (S. Zhang), guixuan.zhang@ia.ac.cn (G. Zhang),
zhang.yuan09@gmail.com (Y. Zhang).

Neurocomputing 171 (2016) 866–877

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.07.062
http://dx.doi.org/10.1016/j.neucom.2015.07.062
http://dx.doi.org/10.1016/j.neucom.2015.07.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.062&domain=pdf
mailto:qinzhen.guo@ia.ac.cn
mailto:zhi.zeng@ia.ac.cn
mailto:shuwu.zhang@ia.ac.cn
mailto:guixuan.zhang@ia.ac.cn
mailto:zhang.yuan09@gmail.com
http://dx.doi.org/10.1016/j.neucom.2015.07.062


the quantization distortion. (Since the number of bits needed to
index the codewords is positively related to the number of code-
words, in the following, we use both terms to indicate the number
of codewords, which is also called the size of codebooks.) In BAPQ,
subspaces with more energy will be allocated with more bits while
subspaces with less energy will be allocated with fewer bits. BAPQ
can achieve lower quantization distortion than PQ and its improved
version [10] and give more accurate distance estimation. Extensive
experiments have demonstrated the superiority of our method. The
rest of the paper is organized as follows. In Section 2, we briefly
review the related work to product quantization. In Section 3, we
describe the details of our BAPQ method. Experimental results are
presented in Section 4. The paper is concluded in Section 5.

2. Related work

2.1. Vector quantization

Given a set of n vectors {x1, x2, …, xn}, xiAℝd, the purpose of
vector quantization (VQ) is to reduce the cardinality of data,
especially when the data is real-valued. In VQ, the original data
is represented by the reconstruction values. The reconstruction
values ci are called codewords, which form the codebook C ¼
fc1;…; ckg where k is the size of the codebook. The codewords in C
can be index by l¼ log2 k bits. In the following discussion of the
paper, we assume that the total bit length l is fixed. That means the
size of the codebook C is fixed to k¼2l.

The quantization distortion of VQ is

E¼
Xn
i ¼ 1

‖xi−cðxiÞ‖2 ð1Þ

‖x−y‖ denotes the Euclidean distance between x and y. cðxiÞ is
the codeword of xi.

In order to minimize the quantization distortion, there are two
properties known as the Lloyd optimality conditions to be satis-
fied. First, a vector x must be quantized to its nearest codeword.
That is,

cðxÞ ¼ argmin
cj

‖x−cj‖ ð2Þ

Thus the whole data space will be partitioned by C into k
Voronoi cells. The second condition is that, a codeword must be
the expectation of the vectors lying in the same Voronoi cell. In
practice, we use Lloyd's algorithm, known as k-means, to find a
near-optimal codebook by iteratively assigning the vectors to
codewords and re-estimating the codewords from the assigned
vectors.

2.2. Product quantization

In vector quantization, if we use l¼64 bits to encode the data,
the size of the codebook k will be 264. It is impossible to use k-
means to find the codebook in terms of both time complexity and

memory usage. Product quantization (PQ) [9] is proposed to
handle this issue. The basic idea of PQ is that the original data is
decomposed into m subspaces of dimension q¼d/m.

x1;…; xq
zfflfflfflfflffl}|fflfflfflfflffl{x1

;…; xd�qþ1;…xd
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{xm ð3Þ

xi is the ith subvector formed by from the (inq�qþ1)th dimension
to the (inq)th dimension of x.

In each subspace, PQ uses k-means to find 2l/m codewords
which are indexed by l/m bits to form the codebook of each
subspace. The codebook of the ith subspace is Ci ¼ fci1;…; ci

k'
g,

where k0 ¼2l/m is the size of codebooks in subspaces. The codebook
of the whole data space C will be the Cartesian product of all the
subspaces i.e. C ¼ C1 � C2 �⋯� Cm. In each subspace, the sub-
vector of x is quantized by the codebook in corresponding sub-
space,

ciðxiÞ ¼ argmin
cij

‖xi�cij‖ ð4Þ

whereciðxiÞis the codeword of xi in the ith subspace. Then the
whole vector x¼ ðx1;…; xmÞ can be quantized to ðc1ðx1Þ;…; cmðxmÞÞ
and encoded by the concatenation of the index of the codeword
that quantizes x in each subspace, i.e. IðxÞ ¼ ðIðc1ðx1ÞÞ;…; IðcmðxmÞÞÞ,
which is a mnlog2 k0(¼ l) bits binary code. IðcijÞ is the index of
codeword cij in the ith subspace. The memory usage of the whole
codebook and the assignment complexity are largely reduced from
that of k-means (see Table 1).

For computing the distance between the vector x in database
and the query y, there are two types of distance for PQ: symmetric
distance computation (SDC) and Asymmetric distance computa-
tion (ADC), which are defined as follows:

dSDC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i ¼ 1

‖ciðxiÞ�ciðyiÞ‖2
vuut ð5Þ

dADC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i ¼ 1

‖ciðxiÞ�yi‖2

vuut ð6Þ

For SDC, both x and y are quantized while for ADC only the
vectors in database are quantized. Actually, dSDC and dADC can be
computed fast by looking up table if we precompute dðciðxiÞ; ciðyiÞÞ
and dðciðxiÞ; yiÞ in each subspace prior to the search. Besides, when
computing the distances, we do not need to read the original
database into the memory. We only need to read the codebook of
each subspace and the index into the memory, which largely
reduces the storage.

2.3. Optimized product quantization

In PQ, the problem of optimal space decomposition is not
handled and the performance of PQ depends largely on the
distribution of data. If the energies of subspaces are extremely
unbalanced, PQ will achieve bad results. Optimized product
quantization (OPQ) [10] addresses the problem of optimal space
decomposition in PQ and minimizes quantization distortion with
respect to the space decomposition and the codebooks.

minR;C1 ;…;Cm

Xn
i ¼ 1

‖xi−cðxiÞ‖2

s:t: c∈C ¼ c Rc∈C1 �⋯� Cm; RTR¼ I
��� on ð7Þ

where R is an orthogonal matrix and I is an identity matrix.
In OPQ, the authors optimize the projection matrix and code-

books by minimizing the quantization distortion with two solu-
tions: a non-parametric solution and a parametric solution. The
details of the two methods can be found in [10]. For the parametric

Table 1
Memory usage of the codebook and assignment complexity for different quantiza-
tion methods.

Memory usage Assignment complexity

k-means kd kd
PQ/OPQ k0d k0d
TC Pd

i ¼ 1;bi 40
2bi Pd

i ¼ 1;bi 40
2bi

BAPQ Pm
i ¼ 1;li 40

2li U d
m

Pm
i ¼ 1;li 40

2li U d
m

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 867



solution, the authors propose a simple Eigenvalue Allocation
method. In Eigenvalue Allocation, original vectors firstly are
projected by PCA and the eigenvalues λi are sorted with descend-
ing order λ1Z⋯Zλd. Then the largest eigenvalues are sequen-
tially picked up and allocated to the subspace which does not
reach the max-size of d/m and has the minimum product of the
eigenvalues in it. Re-ordering the eigenvectors according to the
orders of the corresponding eigenvalues will result in the projec-
tion matrix R. After obtaining R, we can perform k-means in each
subspace of the transformed space to get the codebook and then
do the same following procedure of PQ. The energies of subspaces
in OPQ are more balanced than that in PQ and OPQ achieves the
state-of-the-art performance.

2.4. Transform coding

Transform coding (TC) based vector quantization [21] is a novel
quantization method. In TC, to minimize the quantization distor-
tion, different numbers of bits are allocated to different dimen-
sions. Assuming that each dimension is identically distributed
after normalizing the variance and that the per-dimension quan-
tization distortion functions are identical, the optimal bit alloca-
tion is achieved when

bi � log 2σi ð8Þ

where bi is the bit number allocated to the ith dimension and σi is
the standard deviation of the ith dimension [22]. To reduce
statistical dependence among the dimensions, TC uses PCA to
transform the data before bit allocation. For TC, there are also two
types of distance computation: ADC and SDC. Details can be seen
in [21].

2.5. Adaptive bit allocation hashing

Adaptive bit allocation hashing (ABAH) [17] is a hashing
method for approximate nearest neighbor search. In [17], different
numbers of bits are adaptively allocated to dimensions.

bp ¼

lU vpP d

i¼ p
vi

þ0:5

6666664

7777775 p¼ 1

ðl� P p� 1
i¼ 1

biÞU vpP d

i¼ p
vi

þ0:5

6666664

7777775 pZ2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9Þ

where bp and vp are the bit number and variance of the pth
dimension respectively.

To preserve the neighborhood structure of the Euclidean space,
important dimensions in Euclidean space should be also important
in Hamming space and ABAH allocates more bits to important
dimensions to achieve that. In ABAH, the purpose of bit allocation
is, in Hamming space, to preserve the importance of dimensions in
Euclidean space rather than minimize the quantization distortion.
Our BAPQ method is a vector quantization method following PQ
(see Section 3). In BAPQ, the original space is decomposed into the
Cartesian product of several low-dimensional subspaces and each
subspace is quantized separately. To minimize the quantization
distortion, we use more codewords to quantize the subspaces with
more energy. The purpose of bit allocation of BAPQ is to minimize
the quantization distortion. Besides, the bit allocation in ABAH is
heuristic. While in BAPQ, we obtain the optimal (near-optimal) bit
allocation in term of minimizing the quantization distortion.

3. Proposed method

In both PQ and OPQ, the size of codebook in each subspace is the
same and each subspace is allocated with the same number of bits
(l/m bits for one subspace). However, since the energies of sub-
spaces of the data are not identical, allocating the same number of
bits to each subspace to perform PQ will lead to poor results.

In this paper, we propose an adaptive bit allocation product
quantization (BAPQ) method to allocate different numbers of bits to
subspaces to minimize the quantization distortion. We use PCA to pre-
process the data to find the principal components. (We just use PCA to
rotate the data rather than reduce dimensionality.) Please note that
the discussion of BAPQ below is based on PCA projected data.

The basic idea of our method is that firstly we decompose the
whole space into several subspaces. Then by minimizing the
quantization distortion of the training data, we obtain a near-
optimal bit allocation scheme to allocate different numbers of bits
to subspaces. According to the near-optimal bit allocation scheme,
we compute the codebook of each subspace by k-means. Finally,
we use the codebook of each subspace to quantize the data in
corresponding subspace separately.

3.1. Motivation

Quantization distortion has been identified to be closely related to
the search accuracy [10]. The purpose of our method is still to
minimize the quantization distortion in Eq. (1). As stated above, it is
unpractical to directly use k-means to find the 2l codewords, especially
for a large value of l. We follow the idea of PQ to use product
quantizers to obtain the codebook. That is, we decompose the whole
space into m subspaces and compute the codebook of each subspace
separately. The whole codebook C will be the Cartesian product of the
subspaces' codebooks i.e. C ¼ C1 � C2 �⋯� Cm, where Cj is the
codebook of the jth subspace, 1r jrm.

Then the whole quantization distortion in Eq. (1) will be

E¼
Xn
i ¼ 1

‖xi�cðxiÞ‖2

¼
Xn
i ¼ 1

Xm
j ¼ 1

ðxji�cjðxiÞÞ2

¼
Xm
j ¼ 1

Xn
i ¼ 1

ðxji�cjðxiÞÞ2 ð10Þ

Pi
i ¼ 1 ðxji�cjðxiÞÞ2 can be seen as the quantization distortion in the

jth subspace. And the total quantization distortion of the whole
data is the sum of the distortions of all the subspaces.

The quantization distortion of each subspace is related to the
size of the codebook of corresponding subspace. The larger the size
of the codebook is, the less the quantization distortion we can
obtain. Our method is to adaptively control the size of the codebook
of each subspace to minimize the total quantization distortion.

3.2. Adaptive bit allocation product quantization

For the jth subspace of the data, assume that lj bits are allocated to
this subspace. Then the quantization distortion of the jth subspace is

Ej ¼
Xn
i ¼ 1

ðxji�cjðxjiÞÞ2 ð11Þ

where cjðxjiÞ is the codeword in Cj that quantizes xji. The size of Cj is 2lj .
Please note that cjðxjiÞ in Eq. (11) is the codeword that quantizes xji in
the jth subspace while cjðxiÞ in Eq. (10) is the jth subvecor of the
codeword that quantizes xi in the whole space. However, since we use
the Cartesian product of codebooks of subspaces to construct the

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877868



codebook of the whole data, these two terms are the same in our
method.

Then, the total quantization distortion will be

E¼
Xm
j ¼ 1

Ej ð12Þ

and we can minimize the following objective function Eq. (13) to
get the optimal bit allocation scheme:

ðl1;…; lmÞ ¼ arg min
ðl1 ;…;lmÞ

Xm
j ¼ 1

Ej

s:t:
Xm
j ¼ 1

lj ¼ l ð13Þ

where l is the total bit length. Directly optimizing Eq. (13) is
intractable due to the implicit relation between the bit allocation
scheme ðl1;…; lmÞ and E. Using brute force to find the optimal

solution is also unpractical because the complexity is
mþ l�1
m�1

� �
.

In this paper, we employ a greedy algorithm to find the near-
optimal solution.

We initiate (l1,…,lm)¼(0,…,0). Our objective is to assign l bits to m
subspaces. For one of the l bits, firstly we tentatively assign this bit to
the first subspace, i.e. (l1þ1,…,lm)¼(1,…,0). We use k-means to obtain
the codebook of each subspace and compute the quantization distor-
tion of each subspace by Eq. (11) and the total quantization distortion
E1 by Eq. (12). Then we tentatively assign this bit to the second
subspace, i.e. (l1,l2þ1,…,lm)¼(0,1,…,0) and compute the total quanti-
zation distortion E2. After testing all the m subspaces, we get m total
quantization distortion, E1,…,Em. Finally, we assign this bit to the
subspace with the minimum total quantization distortion. We will
obtain the near-optimal bit allocation after we process all the l bits.
Algorithm 1 presents the procedure of our greedy algorithm. Actually,
we do not need to compute all the m subspaces' quantization
distortion in Eq. (12) when assigning one bit to subspaces. In Step
7 of Algorithm 1, we can save Ej for fast computation in the following
loops. In practice, if the bit length of one subspace is big, the size of the
subcodesbooks in this subspace will be large. We can limit the
maximum bits of each subspace to avoid this problem.

As a byproduct, the codebooks of subspaces also can be obtained
in Algorithm 1. After obtaining the codebooks of subspaces, we
quantize the subvector of xi with the codebook of corresponding
subspace by Eq. (4). Then xi ¼ ðx1i ;…; xmi Þ can be quantized to
xi ¼ ðc1ðx1i Þ;…; cmðxmi ÞÞ.

For the query process, there are also two types of distance
estimators same as Eqs. (5) and (6) in PQ. To compute the approximate
Euclidean distance, our method only need m additions, which is the
same as PQ. In practice, we do not need m additions. The reason is
that, for subspaces whose bit length is zero (since we use PCA to pre-
process the data, there will be many subspaces allocated with zero
bit), those subspaces will be quantized by the mean of corresponding
subspaces and thus all the vectors in database will have the same
value in those subspaces. No matter for SDC or ADC, subspaces with
zero bit do not affect the ranking. So we do not need to compute all
the m subspaces. We only need to compute subspaces whose bit
length is bigger than zero. And, even, we do not need to store the
codebooks of those subspaces and also do not need to compute the
distance look up tables for those subspaces prior to search.

Algorithm 1. Adaptive bit allocation

1. Input: a training set {xi}, total bit length l.
2. Output: the optimal bit allocation scheme (l1,…,lm) and
codebooks Cj for 1r jrm.

3. Initialize: (l1,…,lm)¼(0,…,0).

4. For i¼1 to l do
5. For j¼1 to m do
6. lj¼ ljþ1;
7. According to the present bit allocation scheme (l1,

…,lm), calculate the codebook Cj
new by k-means and distortion

Ej of the jth subspace by Eq. (11); then calculate total
quantization distortion Ej by Eq. (12).

8. lj¼ lj�1;
9. End for

10. Find the minimum Ej for 1r jrm, i.e. p¼min
j

fEjg;

11. lp¼ lpþ1, Cp ¼ Cp
new .

12. End for.

3.3. Discussion

The PQ-based methods are faced with the unbalanced energies
of subspaces. The original PQ approach uses the random dimension
combination to balance the energies of subspaces. OPQ minimizes
the lower bound of product quantizer to find an orthogonal matrix
to rotate the data. BAPQ deals with the problem in another angle.
We fully use the unbalance of subspaces and adaptively allocate
different numbers of bits to them. In BAPQ, subspaces with more
energy will be allocated with more bits. Theoretically, it is hard to
compare the quantization distortion of BAPQ to that of PQ/OPQ.
Experimentally, our method can achieve lower quantization distor-
tion than PQ and OPQ, which can be seen in Table 5.

Compared with PQ and OPQ, the memory cost of our BAPQ can
be far less and the assignment complexity can be much lower.
Since the data is rotated by PCA in BAPQ, the energy will be
aggregated in the principal components, which can make us group
less dimensions to form one subspace than PQ and allocate
different numbers of bits to subspaces. The memory cost compar-
isons among PQ, OPQ, TC and BAPQ are presented in Table 1.

Fig. 1 illustrates the empirical probability distribution function of
the difference between the true distance and the asymmetric
distance estimated by PCA-PQ, RPQ, PQ, OPQ, TC and our BAPQ.
We randomly sample 10,000 pairs of vectors from the GIST1M960
dataset. Table 2 shows both the bias and variance of all the compared
methods. Since our method can adaptively allocate different numbers
of bits to subspaces to minimize the quantization distortion, both the
bias and variance of BAPQ are lower than those of PQ.

4. Experiments

In this section we compare our method with the state-of-the-
art approaches for approximate nearest neighbor search task and
image retrieval task.

4.1. Datasets

We compare our method with the state-of-the-art on the
following public datasets.

� GIST1M960 [9]: A set of one million 960 dimensional GIST
descriptors.

� GIST1M512: A set of one million 512 dimensional GIST descrip-
tors which are extracted from FLICKR1M [11].

� SIFT1M [9]: A set of one million 128 dimensional SIFT
descriptors.

� UKB [25]: The University of Kentucky Benchmark (UKB) con-
tains 10,200 images of 2550 objects, 4 pictures correspond to
each object, taken from different angles. The size of all the
images is 640�480.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 869



We follow the protocol in [17]. For all the experiments on
GIST1M960, GIST1M512 and SIFT1M, we use 1000 queries that do
not have any overlap with the dataset. The ground truth is defined by
the 1000 nearest neighbors computed by the exhaustive, linear scan
based on the Euclidean distance. The setting of 1000 nearest neighbors
defined as ground truth is also used in [12] though PQ and OPQ use
the 100 nearest neighbors as ground truth. However, actually, no
matter 100 or 1000 nearest neighbors defined as ground truth, the
comparisons among the compared methods are almost unchanged
(see Section 4.5), which is also pointed out in [10]. The performance is
measured by recall and mean Average Precision (mAP). For UKB, we
represent each image with a 512 dimensional GIST descriptor. Each
image is used in turn as query to search through the whole set. The
accuracy is measured in terms of the number of relevant images
retrieved in the top 4, i.e. 4�precision@4. For learning purpose on
UKB, we use an independent image set (10,000 images randomly
chosen from FLICKR1M) to learn the parameters.

4.2. Compared methods

To evaluate our method, we compare the following methods:

� PCA-PQ: For comparison, the original data is rotated by PCA.
� PQ: The dimensions of the original data are randomly ordered

[9].
� RPQ: The original data is preprocessed by PCA and then rotated

by a random orthogonal matrix [13].
� OPQ: The optimized product quantization with parametric

solution [10].
� TC: A method that allocates different numbers of bits to

dimensions [21].

� BAPQ: Our BAPQ method that allocates different numbers of
bits to subspaces.

Since the hashing based approximate nearest neighbor meth-
ods achieve inferior results to PQ based methods [10,12], we do
not redundantly compare hashing methods with PQ based meth-
ods. We randomly sample 100,000 vectors from the database to
train the parameters in the training stage for all the compared
methods. We apply 100 iterations in the k-means clustering for all
the methods. For PCA-PQ, PQ, RPQ, and OPQ, we assign 8 bits to
each subspace as suggested in [9] which will result in 256 centers
in each subspace and the number of subspaces m is l/8, where l is
the total bit length.

We use an exhaustive search strategy in the query stage. That is
we compute the Euclidean distances between the query and all the
vectors in the database and vectors having the smallest N
distances are returned as the results. In this paper, we do not
combine our method with any non-exhaustive method like
inverted files [9] since this is not the focus of this paper.

In our BAPQ method, we group q dimensions to form one
subspace and therefore the number of subspaces is m¼d/q. We
observe that q¼4 gives reasonable trade-off between effectiveness
and efficiency. Experimental results with different value of q are
given in Table 3. As we can see, the larger q is, the better the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Difference: estimator-d(x,y)

E
m

pi
ric

al
 p

ro
ba

bi
lit

y 
di

st
rib

ut
io

n 
fu

nc
tio

n

BAPQ
TC
OPQ
PQ
RPQ
PCA-PQ

Fig. 1. The figure shows the empirical distribution of difference between the true
distances and the estimated asymmetric distance from our BAPQ and other
compared methods.

Table 2
Comparison of bias and variance of the difference between the true distance and
the estimated asymmetric distance.

BAPQ TC OPQ PQ RPQ PCA-PQ

Bias �0.1024 �0.1102 �0.1052 �0.2080 �0.2195 �0.2285
Variance 0.0035 0.0160 0.0168 0.0198 0.0208 0.0442

Table 3
Comparison of BAPQ with different value of q using ADC on GIST1M960 in term of
1000-NN mAP.

Bits 16 32 64 128

q¼1 0.0409 0.1382 0.2887 0.4691
q¼2 0.0484 0.1666 0.3220 0.5144
q¼4 0.0619 0.1909 0.3602 0.5543

Table 4
Bit allocation of BAPQ on GIST1M960.

Bits Bit allocation

16 {8, 5 ,3, 0, …,0}
32 {11, 7, 6, 4, 4, 0, …,0}
64 {13, 9, 8, 7, 6, 5, 4, 4, 3, 3, 2, 0, …,0}

128 {15, 12, 11, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 0, …,0}

Table 5
Comparison of quantization distortion on GIST1M960.

Bits 16 32 64 128

PCA-PQ 1.1941 1.1841 1.1545 1.0849
RPQ 1.1936 1.1824 1.1504 1.0738
PQ 1.1933 1.1747 1.1392 1.0678
OPQ 1.1915 1.1464 0.9481 0.5571
OPQ_BA 1.1417 1.0380 0.8024 0.5355
TC 1.1558 0.9868 0.7854 0.6010
BAPQ 1.0873 0.9021 0.7153 0.5279

Table 6
Comparison in term of 1000-NN mAP on GIST1M960.

Bits 16 32 64 128

OPQ 0.0282 0.0687 0.1313 0.4039
OPQ_BA 0.0484 0.1126 0.2438 0.5418
BAPQ 0.0619 0.1909 0.3602 0.5543

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877870



performance is. When q¼d, BAPQ is equivalent to performing k-
means on the whole data. We also test q¼8 and find that it
achieves better results than q¼4. The mAP improvement of q¼8
over that of q¼4 is 30.3% for 16 bits and 14.8% for 32 bits when
using ADC. But the training time of q¼8 is much longer than that
of q¼4. Besides, the memory usage and assignment complexity of
q¼8 will be far more than that of q¼4. Taking both effectiveness
and efficiency into consideration, we set q¼4 in the experiments.

In Table 4, we present the bit allocation of BAPQ on GIST1M960.
As we can see, more bits are allocated to subspaces with more
energy while fewer bits are allocated to subspaces with less
energy.

4.3. Distortion and memory usage

As stated in [10], the quantization distortion is tightly related to
the ANN search accuracy. The quantization distortion comparison
is presented in Table 5. We can see that our BAPQ method achieves

Table 7
Comparison in term of Recall@1000 on GIST1M960.

Bits 16 32 64 128

OPQ 0.1238 0.2025 0.2997 0.5326
OPQ_BA 0.1678 0.2626 0.4004 0.6407
BAPQ 0.1988 0.3584 0.5051 0.6502

Table 8
Comparison of memory usage (floats) of the codebook on GIST1M960.

Bits 16 32 64 128

PQ/OPQ 245,760 245,760 245,760 245,760
TC 34 66 140 276
BAPQ 1184 9088 36,944 162,176

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 2. Comparison of BAPQ to state-of-the-art methods with ADC on GIST1M960 in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on GIST1M960 and
(b) recall@1000 on GIST1M960.

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 3. Comparison of BAPQ to state-of-the-art methods with SDC on GIST1M960 in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on GIST1M960 and
(b) recall@1000 on GIST1M960.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 871



the least quantization distortion since our method adaptively
allocates different numbers of bits to subspaces to minimize the
quantization distortion. TC which allocates bits to each dimension
needs less memory than BAPQ which allocates bits to each sub-
space. However, the search precision of TC is inferior to that of
BAPQ due to the larger quantization distortion of TC.

7In BAPQ, Algorithm 1 is designed to find the optimal bit
allocation scheme by minimizing the quantization distortion. To
evaluate the validity of Algorithm 1, we perform Algorithm 1 on the
OPQ-processed data, which is rotated by the projection matrix of
OPQ. OPQ_BA is the method where we carry out Algorithm 1 on
data processed by OPQ to compute the bit allocation. Note that, in
OPQ_BA we use the same subspaces partition as OPQ, namely two
subspaces for 16 bits, four subspaces for 32 bits, eight subspaces for
64 bits and sixteen subspaces for 128 bits. The only difference
between OPQ and OPQ_BA is the bit allocation scheme. As we can
see in Table 5, the quantization distortion of OPQ_BA is further
reduced compared to that of OPQ, which indicates the validity of

Algorithm 1. But since BAPQ fully uses the unbalance of the data, it
achieves lowest quantization distortion among the compared
methods. Tables 6 and 7 present the performance comparison on
GIST1M960 in terms of mAP and recall respectively. OPQ_BA
obtains better results than OPQ due to lower quantization distor-
tion. BAPQ still achieves the best results.

The memory cost comparisons among PQ, OPQ, TC and BAPQ
are presented in Table 8. Our BAPQ method costs less memory but
achieves better results (see below) than PQ/OPQ. Note that, PCA-
PQ and RPQ have the same memory cost as PQ/OPQ.

4.4. Results and analysis

Fig. 2 shows the mAP and Recall on GIST1M960 when using
ADC. We return the vectors with the smallest 1000 distances as
the results and calculate 1000-NN mAP and recall@1000. Our
BAPQ method performs best across the tested bit lengths ranging
from 16 bits to 128 bits. Not surprisingly, PCA-PQ always achieves

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 4. Comparison of BAPQ to state-of-the-art methods with ADC on GIST1M512 in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on GIST1M512 and
(b) recall@1000 on GIST1M512.

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 5. Comparison of BAPQ to state-of-the-art methods with SDC on GIST1M512 in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on GIST1M512 and
(b) recall@1000 on GIST1M512.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877872



the worst results since the energies of subspaces are very unba-
lanced. The PQ and RPQ methods get better results than PCA-PQ,
which is because that the random projection or randomly ordering
dimensions balances the energies of subspaces to some extent.
OPQ which aims to minimize the quantization distortion with
respect to the subspace decomposition and the quantization
codebooks obtains better results than the random methods such
as PQ and RPQ. TC which allocates different numbers of bits to
dimensions can settle the problem of unbalanced energies of
dimensions to some extent and achieves better results than PQ
and RPQ. But OPQ and TC are not better than our BAPQ method
since BAPQ can adaptively allocate different numbers of bits to
subspaces and get lower quantization distortion than OPQ and TC.

Fig. 3 gives the performance of all the compared methods on
GIST1M960 using SDC in terms of 1000-NN mAP and recall@1000.
BAPQ still achieves the best results for all the bit length cases.
Since using ADC can give more precise distance estimation than
using SDC, the results by using ADC are better than results by

using SDC. From Figs. 2 and 3, we can see that the superiority of
our method does not depend on the distance computation choice
of SDC or ADC.

Results on GIST1M512 are presented in Fig. 4 for ADC and Fig. 5
for SDC in terms of 1000-NN mAP and recall@1000. Still, PCA-PQ
gets the worst results among the compared methods due to its
extremely unbalanced energies of subspaces. RPQ and PQ obtain the
similar results since they are all random projection methods.
(For PQ, the dimensions re-ordering can be represented by an
orthonormal matrix.) TC achieves worse results than BAPQ due to
its larger quantization distortion. Our BAPQ also achieves the
best results. The performance difference among PQ, RPQ, and OPQ
indicates that the performance of product quantization largely
depends on the energy distribution of subspaces. PQ which uses
randomly ordering dimensions performs better than the random
projection method RPQ since the randomly ordering dimen-
sions makes the subspaces independent to each other while the
random projection process in RPQ destroys the independence [10].

16 32 64 128
0

0.2

0.4

0.6

0.8

1

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

1

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

t

Fig. 6. Comparison of BAPQ to state-of-the-art methods with ADC on SIFT1M in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on SIFT1M and (b) recall@1000
on SIFT1M.

16 32 64 128
0

0.2

0.4

0.6

0.8

1

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

1

bits

R
ec

al
l@

10
00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 7. Comparison of BAPQ to state-of-the-art methods with SDC on SIFT1M in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on SIFT1M and (b) recall@1000
on SIFT1M.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 873



0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 8. Comparison of BAPQ to state-of-the-art methods on GIST1M960 in terms of recall at the N top ranked samples with 128 bits: (a) using ADC and (b) using SDC.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 9. Comparison of BAPQ to state-of-the-art methods on GIST1M512 in terms of recall at the N top ranked samples with 128 bits: (a) using ADC and (b) using SDC.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 10. Comparison of BAPQ to state-of-the-art methods on SIFT1M in terms of recall at the N top ranked samples with 128 bits: (a) using ADC and (b) using SDC.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877874



From Figs. 2 and 4, we can see that the relative improvement of our
BAPQ method over PQ and OPQ is greater for higher dimension
cases and for more bits cases.

Experimental results on SIFT1M are given in Fig. 6 for ADC and
Fig. 7 for SDC. Our BAPQ method still achieves the best results.
Compared with the results on GIST1M960 and GIST1M512, the
advantage of BAPQ on SIFT1M is not obvious. As we stated above,
BAPQ can obtain greater improvement for higher dimension cases.
The dimensionality of SIFT1M is 128, which is far less than that of
GIST1M960 and GIST1M512. In addition, with the same setup, all

the PQ-based methods and TC can obtain better results on lower
dimensional datasets than that on higher dimensional datasets.

Figs. 8–10 show the performance on GIST1M960, GIST1M512,
and SIFT1M respectively for both ADC and SDC with 128 bits
encoding the data. The performance is evaluated through recall vs.
N, namely, the proportion of the true nearest neighbors ranked in
the first N positions. We can see that BAPQ always achieves the
best results.

For image retrieval, we test our method on image set UKB.
Results on UKB can be seen in Fig. 11. Our BAPQ approach
outperforms other compared methods from 16 bits to 128 bits.
BAPQ and TC achieve better results than other methods, which
indicates that adaptively allocating different numbers of bits to
subspaces/dimensions may be a better choice for product quanti-
zation based methods. Baseline is computed by the exhaustive,
linear scan based on the Euclidean distance. One important thing
we should know is that the retrieval results not only depend on
the ANN search methods, but also are affected by the image
representation to a great extent.

4.5. Additional analysis

We also evaluate BAPQ on the raw data and randomly pro-
jected data. For the raw and randomly projected data, we form
subspaces in the way of BAPQ and allocate different numbers of
bits to subspaces by using Algorithm 1. The results are presented
in Table 9. BAPQ achieves the best results on PCA projected data.
The reason is that, when using PCA to rotate the data, the energy
will be gathered in the principal components. Thus, subspaces
formed by principal components will have more energy and will
be allocated with more bits by BAPQ. According to the way of
partitioning subspaces and our bit allocation scheme, many sub-
spaces' code length is zero, which can be seen as subspaces
selection. As to PCA projected data, we select the subspaces which
are formed by principal components and these subspaces have
dominant energy. However, for both the raw data and randomly
projected data, the subspaces we select are not formed by
principal components and many useful data in the unselected
subspaces will be discarded.

To check whether the success of BAPQ derives from the
redundancy of data, we test BAPQ on GIST1M128. We use PCA to
compress GIST1M960 to 128 dimensions and apply a random

16 32 64 128
0

0.4

0.8

1.2

1.6

2

bits

4×
pr

ec
is

io
n@

4

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ
NN Baseline

Fig. 11. Comparison of BAPQ to other methods on UKB dataset.

Table 9
Results on PCA projected, randomly projected and raw GIST1M960 in term of 1000-
NN mAP for BAPQ using ADC.

16 32 64 128

PCA 0.0619 0.1909 0.3602 0.5543
Random 0.0019 0.0085 0.0291 0.0800
Raw 0.0011 0.0041 0.0131 0.0294

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

10
00

-N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

Re
ca

ll@
10

00

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 12. Comparison of BAPQ to state-of-the-art methods with ADC on GIST1M128 in terms of 1000-NN mAP and recall@1000: (a) 1000-NN mAP on GIST1M128 and
(b) recall@1000 on GIST1M128.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 875



orthogonal matrix to rotate the PCA-projected data to get
GIST1M128. The results on GIST1M128 are presented in Fig. 12.
We can see that BAPQ always achieves the best results, which
indicates that the superiority of BAPQ derives from the method
itself rather than the redundancy of data.

We also evaluate all the compared methods by defining the 100
nearest neighbors as ground truth. The results on GIST1M960 are
presented in Figs. 13 and 14. We use both ADC and SDC to compute
the distances and 100-NN mAP and recall@100 to measure the

performance. Compared with Figs. 2 and 3, as we can see, the
comparisons among the methods are almost the same as the
comparisons where 1000 nearest neighbors are defined as ground
truth, which is also pointed out by OPQ [10].

Table 10 shows the time consuming of BAPQ at 64 bits encoding
on single core with our unoptimized Cþþ implementation at the
training, encoding and query stage. The encoding time consuming
for one million data is less than that of PQ and OPQ because of the
lower assignment complexity of BAPQ. The query time of ADC and
that of SDC are the same since they have the same complexity. The
query time consuming of BAPQ is similar to that of PQ. Besides, as
we can see, the training of BAPQ with Algorithm 1 is efficient.

5. Conclusion

In this paper, we propose an adaptive bit allocation product
quantization method (BAPQ) for approximate nearest neighbor

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

bits

10
0-

N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

bits

R
ec

al
l@

10
0

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 13. Comparison of BAPQ to state-of-the-art methods with ADC on GIST1M960 in terms of 100-NN mAP and recall@100: (a) 100-NN mAP on GIST1M960 and
(b) recall@100 on GIST1M960.

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

bits

10
0-

N
N

 m
A

P

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

bits

R
ec

al
l@

10
0

PCA-PQ
RPQ
PQ
OPQ
TC
BAPQ

Fig. 14. Comparison of BAPQ to state-of-the-art methods with SDC on GIST1M960 in terms of 100-NN mAP and recall@100: (a) 100-NN mAP on GIST1M960 and
(b) recall@100 on GIST1M960.

Table 10
Time consuming of BAPQ at 64 bits encoding.

Training Encoding Query

GIST1M960 54 min 5 s 50.077 s 234 ms
GIST1M512 48 min 14 s 49.234 s 156 ms
SIFT1M 18 min 38 s 10.64 s 47 ms

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877876



search. In BAPQ, we firstly project the original data by PCA to find
the principal components and group the principal components
into several subspaces. In order to minimize the quantization
distortion, we adaptively allocate different numbers of codewords
(or bits) to subspaces. The essence of BAPQ is the optimal bit
allocation scheme. Exhaustively finding the optimal bit allocation
scheme is intractable and a greedy algorithm is proposed to get
the near-optimal bit allocation scheme. Our method can achieve
lower quantization distortion and better performance than state-
of-the-art methods. To find the optimal bit allocation scheme of
BAPQ, we use a greedy algorithm which may lead to the local
optimal or suboptimal bit allocation solution. In the future, we will
seek for the algorithm that can give the optimal bit allocation
solution with acceptable time consuming.

Acknowledgment

This work has been supported by the National Key Technology
R&D Program of China under Grant no. 2012BAH88F02.

References

[1] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of Conference
on Advances in Neural Information Processing Systems, 2008, pp. 1753–1760.

[2] O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image
classification, in: Proceedings of the IEEE International Conference on Com-
puter Vision and Pattern Recognition, 2008, pp. 1–8.

[3] C. Strecha, A. Bronstein, M. Bronstein, P. Fua, Ldahash: improved matching
with smaller descriptors, IEEE Trans. Pattern Anal. Mach. Intell. 34 (1) (2012)
66–78.

[4] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm for
approximate nearest neighbor searching fixed dimensions, J. ACM 45 (6)
(1998) 891–923.

[5] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via
hashing, in: Proceedings of International Conference on very Large Data Base,
1999, pp. 518–529.

[6] J. He, W. Liu, S.-F. Chang, Scalable similarity search with optimized kernel
hashing, in: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2010, pp. 1129–1138.

[7] T. Trzcinski, V. Lepetit, P. Fua, Thick boundaries in binary space and their
influence on nearest-neighbor search, Pattern Recognit. Lett. 33 (16) (2012)
2173–2180.

[8] R. Gray, Vector quantization, ASSP Mag. IEEE (1984).
[9] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor

search, IEEE Trans. Pattern Anal. Mach. Intell. 33 (1) (2011) 117–127.
[10] T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate

nearest neighbor search, in: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, 2013.

[11] M. J. Huiskes, M. S. Lew, The MIR Flickr retrieval evaluation, in: Proceedings of
ACM International Conference on Multimedia Information Retrieval, 2008,
pp. 39–43.

[12] J.-P. Heo, Z. Lin, S.-E. Yoon, Distance encoded product quantization, in:
Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition, 2014.

[13] H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a
compact image representation, in: Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, 2010, pp. 3304–3311.

[14] T. Liu, A. Moore, A. Gay, K. Yang, An investigation of practical approximate
nearest neighbor algorithm, in: Proceedings of Conference on Advances in
Neural Information Processing Systems, 2004, pp. 32–33.

[15] Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to
learning binary codes, in: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, 2011, pp. 817–824.

[16] A. B. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases for
recognition, in: Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition, 2008, pp. 1–8.

[17] Q.-Z. Guo, Z. Zeng, S. Zhang, Adaptive bit allocation hashing for approximate
nearest neighbor search, Neurocomputing 151 (2) (2013) 719–728.

[18] D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search, in:
Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2010, pp. 18–25.

[19] Y. Zhen, D.-Y. Yeung, A probabilistic model for multimodal hash function
learning, in: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012, pp. 940–948.

[20] P. Li, J. Cheng, H. Lu, Hashing with dual complementary projection learning for
fast image retrieval, Neurocomputing 120 (2013) 83–89.

[21] J. Brandt, Transform coding for fast approximate nearest neighbor search in
high dimensions, in: Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2010, pp. 1815–1822.

[22] A. Gersho, R. Gray, Vector Quantization and Signal Compression, Kluwer, 1991.
[23] C. Yao, J. Bu, C. Wu, G. Chen, Semi-supervised spectral hashing for fast

similarity search, Neurocomputing 101 (2013) 52–58.
[24] W. Liu, J. Wang, Y. Mu, S. Kumar, S.-F. Chang, Compact hyperplane hashing

with bilinear functions, in: Proceedings of International Conference on
Machine Learning, 2012.

[25] D. Nistér H. Stewénius, Scalable recognition with a vocabulary tree, in:
Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition, 2006, pp. 2161–2168.

Qin-Zhen Guo received the B.S. degree in Automation
from Hunan University in 2011. He is currently pursu-
ing the Ph.D. degree at the High-tech Innovation
Center, Institute of Automation, Chinese Academy of
Sciences, Beijing, China. His research interests include
image retrieval, machine learning, and pattern
recognition.

Zhi Zeng received the B.S. and M.S. degree in Computer
Science in 2003 and 2006 respectively, both from
Chongqing University, China, and the Ph.D. degree in
Pattern Recognition from the Institute of Automation,
Chinese Academy of Sciences, in 2009. He is currently a
Senior Engineer in the Institute of Automation, Chinese
Academy of Sciences. His research interests include
information retrieval, machine learning, multimedia,
and digital rights management.

Shuwu Zhang got his Ph.D. from Chinese Academy of
Sciences in 1997. Currently, he is a professor of Institute
of Automation, Chinese Academy of Sciences. His
research interests are focused on digital content analy-
sis, digital right management, and web-based cultural
content service technologies.

Guixuan Zhang received the B.S. degree in measure-
ment and control technology from University of Science
and Technology, Beijing, China, in 2012. He is currently
persuing the Ph.D. degree at the High-tech Innovation
Center, Institute of Automation, Chinese Academy of
Sciences, Beijing, China. His research interests include
image retrieval and computer vision.

Yuan Zhang received the B.S. degree in Automation
from Beijing University of Posts and Telecommunica-
tions in 2009 and the Ph.D. degree in Pattern Recogni-
tion from the Institute of Automation, Chinese
Academy of Sciences in 2014. He is currently an Algo-
rithm Engineer in Samsung Electronics. His research
interests include image retrieval, object detection,
machine learning, and pattern recognition.

Q.-Z. Guo et al. / Neurocomputing 171 (2016) 866–877 877

http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref5
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref5
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref7
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref7
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01069-3/sbref9

	Adaptive bit allocation product quantization
	Introduction
	Related work
	Vector quantization
	Product quantization
	Optimized product quantization
	Transform coding
	Adaptive bit allocation hashing

	Proposed method
	Motivation
	Adaptive bit allocation product quantization
	Discussion

	Experiments
	Datasets
	Compared methods
	Distortion and memory usage
	Results and analysis
	Additional analysis

	Conclusion
	Acknowledgment
	References




