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Using hashing algorithms to learn binary codes representation of data for fast approximate nearest
neighbor (ANN) search has attracted more and more attention. Most existing hashing methods employ
various hash functions to encode data. The resulting binary codes can be obtained by concatenating bits
produced by those hash functions. These methods usually have two main steps: projection and
thresholding. One problem with these methods is that every dimension of the projected data is
regarded as of same importance and encoded by one bit, which may result in ineffective codes. In this
paper, we introduce an adaptive bit allocation hashing (ABAH) method to encode data for ANN search.
The basic idea is, according to the dispersions of all the dimensions after projection we use different
numbers of bits to encode them. In our method, more bits will be adaptively allocated to encode
dimensions with larger dispersion while fewer bits for dimensions with smaller dispersion. This novel
bit allocation scheme makes our hashing method effectively preserve the neighborhood structure in the
original data space. Extensive experiments show that the proposed ABAH significantly outperforms
other state-of-the-art methods for ANN search task.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nearest neighbor (NN) search has been widely used in compu-
ter vision applications, like multimedia retrieval, classification,
annotation and other related application areas. The basic task of
NN search is to find the samples that are most similar to a given
query within a large database. Exhaustively comparing the query
with each sample in the database is infeasible because the linear
complexity is not scalable in practical situations such as large scale
content-based image retrieval (CBIR). How to perform a fast NN
search at large scale datasets has become an urgent research issue.
Traditional linear search for NN requires scanning all the data
(mostly vectors) in a dataset and the time complexity is O(nd),
where n is the size of the dataset and d is the dimension of vectors.
Hence, it is computationally prohibitive to adopt linear search for
massive datasets which might contain millions or even billions of
vectors, especially when the vectors are high-dimensional, like the
128-dimensional SIFT descriptor [1]. Another problem of NN
search in large scale datasets is the excessive, unacceptable storage
consumption if traditional data formats are used.

In many applications like image retrieval, however, it is
sufficient to return approximate nearest neighbor (ANN). The
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key idea of ANN is to find the NN with high probability instead
of probability one. Several ANN search techniques have been
developed including tree-based methods and hashing-based
methods. Since the tree-based methods [2]| have turned out to
be not more efficient than exhaustive search for high dimensions,
hashing-based ANN techniques [3-10] which aim to embed the
data into Hamming space have attracted more and more attention.
Specifically speaking, each vector is encoded as a binary code in
the Hamming space and for preserving the neighborhood struc-
ture in the original data space, similar points in the original data
space should be mapped to similar points in the Hamming space.
Searching for similar neighbors is accomplished simply by finding
the vectors that have codes within a small Hamming distance of
the query's code. One of the advantages of the hashing methods is
that the Hamming distance between two codes can be efficiently
computed by the XOR operator followed by bit-count. Moreover,
the storage will be largely reduced for storing the binary codes.

To generate a c-bit binary code, the hashing methods usually
need c hash functions, and each hash function produces one bit of
the binary code in two steps, projection and thresholding. The
resulting binary code can be got by concatenating bits produced by
those hash functions. More specifically,
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Hj(x) is the i-th hash function, u; is the i-th projection function
corresponding to Hi(x), t; is the corresponding threshold, and x is
the original data. In the projection step, the projection functions
are used to compute the projected real value uy(x). In the thresh-
olding step, the i-th hash bit of ¥ will be one if u;(x) > t;. Otherwise,
it will be zero. Here, the threshold, t;, is typically set to zero if the
data have zero mean. The final binary code is (H;(x), Hx(X),...,
H(x)), if we use c bits to encode the vectors.

However, the dispersions of all the dimensions after the
projection are not identical and using one bit to encode each
dimension will lead to insufficiency. For example, principal com-
ponent analysis (PCA) is a popular projection method to project
the original data into several dimensions of real values. And each
of these projected dimensions can be quantized into one bit (zero
or one) by thresholding, like PCAH [27]. But, the dispersions of
different projected dimensions are different after PCA. Using the
same number of bits for different projected dimensions is unrea-
sonable because larger-dispersion dimensions will carry more
information.

As illustrated in Fig. 1, the projection values of the data on
direction w; have a larger dispersion and are dominant for
Euclidean distance computation. To tackle the problem of the
anisotropy of the projected data, in this paper, an adaptive bit
allocation hashing (ABAH) approach is proposed to adaptively
allocate different numbers of bits to encode every dimension for
the ANN search. In our method, more bits to encode dimensions
with larger dispersion while fewer bits will be allocated for
dimensions with smaller dispersion for preserving the neighbor-
hood structure. The main contributions of this work are outlined
as follows:

e We prove that the variance of the p-th dimension is equivalent
to E((xip—x;p)*) and a good way to measure dispersion under the
assumption that data are independent and identically distrib-
uted (i.i.d.). x;, is the p-th dimension of the i-th data and x;, is
the p-th dimension of the j-th data. Details can be seen in
Section 3.1.2.

e A simple, intuitive, but effective and efficient, hashing method
which we call adaptive bit allocation hashing (ABAH) is
proposed. In this method, more bits are used adaptively to
encode such dimensions with larger dispersion while fewer
bits are used to encode the dimensions with smaller dispersion.

e Based on the naive ABAH scheme, we propose an improved
version of ABAH. Extensive experiments have verified the
superiority of our method.

This paper is an extended version of the work initially pub-
lished in ICME 2013 [37]. Novel contributions over [37] include the
improvement of ABAH and the application to image classification.

X

Fig. 1. Illustration of different dimensions' effect on Euclidean distance. Obviously,
after projection, the values on direction w; have a larger dispersion and are
dominant for Euclidean distance computation.

The rest of the paper is organized as follows. In Section 2, we
introduce the related work. We describe our method in detail in
Section 3. An improved version of our naive method is proposed in
Section 4. Experimental results are presented in Section 5. The
paper is concluded in Section 6.

2. Related work

There has been extensive research on approximate nearest
neighbor (ANN) search since its great importance in many appli-
cations. Some tree-based methods such as modified KD-tree [11],
spill tree [12] and vantage-point tree can be used for ANN search
in a low-dimensional space. These methods usually partition the
data space recursively to implement a similarity search. However,
the tree-based methods can degenerate to a linear scan in the
worst case where the number of the dimensions can be hundreds
or even thousands. Hashing-based techniques are promising ANN
search methods in terms of speed or storage and widely used in a
large variety of applications.

In recent years, a lot of hashing algorithms have been devel-
oped. The pioneering work locality-sensitive hashing (LSH) [4]
algorithm typically guarantees the probability for any two samples
to fall into the same bucket. One popular method in LSH is to
generate random projections from a particular probabilistic dis-
tribution [13]. However, since the random projections are data-
independent, LSH may lead to quite inefficient codes in practice.
Shift invariant kernel hashing (SIKH) [15] adopts projection func-
tions in a way similar to LSH, but in SIKH, hash values are
generated by a shifted cosine function. Restricted Boltzmann
Machines (RBMs) [16] use multi-layer network to learn bits.
Boosting Similarity Sensitive Coding (BoostSSC) [17] uses AdaBoost
to classify a pair of input data as similar or nonsimilar. Spectral
hashing (SH) [14], based on spectral graph partitioning, calculates
the bits by thresholding a subset of eigenvectors of the Laplacian
of the similarity graph and it has demonstrated significant
improvements over LSH, RBMs and BoostSSC. As an extension of
SH, hypergraph hashing [18] uses hyperplane to model the high-
order relationships between social images. Active hashing [19]
tries to select the most informative labels to learn hash functions.
In order to effectively balance the precision and recall, comple-
mentary hashing [20] adopts multiple complementary hash tables
which are learnt sequentially in a boosting manner. Semi-
supervised hashing (SSH) [21] uses both labeled data and unla-
beled data to learn hash functions. SPICA [22] finds independent
projections by jointly optimizing both accuracy and time. Binary
reconstruction embedding (BRE) [23] minimizes the reconstruc-
tion error between the distances in the original feature space and
the Hamming distances of the corresponding binary codes to learn
the hash functions. Minimal loss hashing (MLH) [24] formulates
the hashing problem as a structured prediction problem that is
based on the latent structural SVM framework. Self-Taught Hash-
ing (STH) [9] which is an extension of SH, learns the hash functions
via SVM for the unseen data points. LDAH [25] adopts Linear
Discriminant Analysis (LDA) to learn the projection matrix and
chooses the threshold by optimizing a loss function. Iterative
quantization (ITQ) [38] introduces a procrustean approach that
minimizes quantization loss to learn the projection matrix. In
order to compute c-bit hash codes, PCAH [27] projects data to the ¢
principal components, and then uses average values to binarize
the coefficients. Most hashing methods regard every dimension of
vectors as of same importance and allocate one bit to represent
each dimension. Different from this, Anchor Graph Hashing (AGH)
[28] uses a two-layer hash function to quantize every dimension.
But in AGH, every dimension is still encoded by the same number
of bits.
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Most hashing-based methods first project the data and then use
one bit to binarize them. However, the dispersions of the dimen-
sions of the data after projection are not identical and using the
same number of bits to binarize them is inappropriate. H. Jégou [26]
deals with this problem in a simple way. In [26], a random
orthogonal matrix which is got by QR factorizing a random matrix
of Gaussian values is used to project the data to balance the
dispersions of different dimensions. A new work isotropic hashing
(IsoH) [29] also notices that different dimensions of the data after
projection such as principal component analysis (PCA) have differ-
ent dispersions and it is improper to use the same number of bits
for different projected dimensions. In [29], IsoH learns an orthogo-
nal matrix Q to re-project the PCA-projected data to guarantee the
same dispersions of the different dimensions of the projected data.

In this paper, we tackle this problem in a novel perspective.
According to the dispersion of each dimension, we adaptively
allocate different numbers of bits to encode them. Our method can
preserve the neighborhood structure of the original data. The
details of our method will be stated in the next section.

A comparison of some methods on projection and thresholding
is shown in Table 1.

3. Adaptive bit allocation hashing

First of all, let us introduce some notations. We have a training
set of n data {x, X2, ..., X}, Xi € RY, that form the rows of the data
matrix X e R™¢. A binary code corresponding to each data point x;
is defined by Hapan(x;)={0,1}, where c is the total code length.
Since our method adaptively allocates different numbers of bits to
encode different dimensions, the subcode of the p-th dimension is
represented by s, and the code length of s, is cp.

3.1. ABAH scheme

In this subsection, we introduce the details of our algorithm. Firstly,
we use a projection to preprocess the original data to find the principal
components. Secondly, in order to determine which dimension is more
important after projection, every dimension's dispersion is calculated.
Then according to the dispersion of each dimension, different numbers
of bits are allocated to encode the corresponding dimension.

3.1.1. Projection
We adopt PCA to project the original data for two reasons. One

can better describe the original data. The other is that the
eigenvalues used in PCA algorithm serve as a measurement of
dispersion (see Section 3.1.2) and can be easily used to compute
every component's code length (see Section 3.1.3).

It is important to note that all the data discussed below are
PCA-projected data and we just use PCA to rotate the data and not
to reduce dimensionality in our method.

3.1.2. Dispersion measurement

Given X;=(Xi1, Xi2, ..., Xia) and X;=(X;1, X2, ..., Xjq), which are two
randomly chosen d-dimensional data, the Euclidean distance
between x; and x;, D(x;, x;)=sqrt((xia—Xj1)*+(X-Xp2)+... +
(xid—xjd)z) is mainly determined by those dimensions that have a
larger value of (x;,—x;,)* for 1 <p <d. Hence, if the data on some
dimensions have a larger E((xip—xjp)z), which is related to the
dispersion of the p-th dimension, those dimensions will be more
important for computing the Euclidean distance. When embed-
ding the data into Hamming space, in order to maintain the
neighborhood structure, important dimensions in the Euclidean
space should also be important in the Hamming space. If we use
the same numbers of bits to encode every dimension, the
information loss of dimensions with larger dispersion caused by
thresholding will increase. And it will be superfluous for dimen-
sions with less dispersion.

As proved below, the variance of the p-the dimension is
equivalent to E((x;y—X;p)?) under the assumption that the data are
independent and identically distributed (i.i.d.). For the p-th col-
umn of X,

E((Xip —Xjp)°) = E(Xp, + X3, — 2X;pXjp)
= 2Ex;, — 2ExipX;p ()
Assume the training data are i.i.d., and then we have
E((Xip —Xjp)*) = 2Ex;, — 2ExipX;p
= 2Ex;, — 2Ex;pEx;p
= 2Ex}, —2u,° 3
The variance of the p-th column of X is
vary(X) = E((xip— 1))
= E(Xg, +1p” — 2Xiphtp)

= EXp,+py° — 2upExip

is that the dimensions of vectors after PCA projection are irrele- —Ex2 —p? 4)
vant and the first dimensions are the principal components which L
Table 1
Comparison of different methods on projection and thresholding.
Methods Projection Thresholding Objective function
LSH [13] Xxp Sign(XP) P is a random matrix
PCAH [27] XxP Sign(XP+T) [AP]=PCA(X)
HE [26] XxP Sign(XP+T) [P, R]=qr(M)
SIKH [15] XP Sign(cos(XP+T)) P~Py
MLH [24] XP Sign(XP) arg min L(H(x;), H(x;), s;j)
IsoH [29] XP Sign(XP) arg min ||T—Z||r
LDAH [25] Xp Sign(XP+T) arg min atr{P=,P"} — tr{PZyP"}
P
ITQ [38] XP Sign(XP) arg min||B—VP||?
B.P
STH [9] XP Sign(XP) arg minp/p;+5¥¢
bi
SPICA [22] Xxp Sign(XP+T) arg maxy|lgo — ¥ X(G@x)|I1?
pi 7
BRE [23] o = 1(Whpgk(Xpg. X)) sign(Xg _ 1 (Wpqk(Xpg. X)) arg min Y (d(x; —x) —d ~ (x;—x;))*

X is a matrix whose one row is a data (or vector). P is the projection matrix and p; is the i-th column of P. P can be obtained by solving the objective function. T is the

threshold. The details of different methods can be seen in corresponding references.
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From the derivation, we can see that the variance is equivalent
to E((Xip=Xjp)?). #pis the mean of the p-th column of X. So we use
variance to measure dispersion.

Besides, the variance of each dimension is easy to be obtained
since we use PCA projection to project the data, and the eigenvalue
associated with a dimension indicates the variance of this dimen-
sion. So we use variance to measure dispersion. If one dimension
has a larger variance, more bits will be allocated to encode this
dimension, otherwise fewer bits will be allocated.

3.1.3. Calculating code lengths
To maintain the neighborhood structure, we use more bits to
encode those dimensions that have larger variance. In other words,
if the variance of the p-th column of the PCA projected data is larger,
more bits will be adaptively used to encode the p-th dimension.
Simply and intuitively, given total code length c, the p-th
dimension's code length ¢, will be

cpz{o dip +0.5

5)
214

Ap is the variance of the p-th dimension of the PCA projected
data for 1 < p <d and [x] means floor(x). One problem with Eq. (5)
is that if some 4, are very close to each other and they are not large
enough, e.g., A <0.5(1/c)2§1:l,11-, this will result in those ¢,=0
andx?¢_ ¢; # c. To handle this problem, we use a variant strategy as
Eq. (6). If c,=0 according to Eq. (6), and Z‘[’j]ct #C, we set ¢,=1.
Since PCA will find the principal components with degressive
variance, the subcode of the p-th dimension is longer than that of
the (p+1)-th dimension for 1 <p <(d—1).

{c-zﬁ 4.+0-5} p=1

i—phi

(6)

Cp=
€= 05| p22
i=p™

3.1.4. Encoding every dimension

If two vectors are close to each other, the Hamming distance
between their binary codes should be small. We achieve this goal
by making every dimension's subcode close to each other for
similar data. Details are illustrated as follows.

For a training vector X;=(X;1, X;2, ..., Xiq), Cp bits are allocated to
encode the p-th dimension. Firstly, we divide the range of the p-th
dimension into ¢,+ 1 parts by ¢, thresholds. The ¢, thresholds are
chosen in a simple way

() =X 4G/ (Cp+ 1)) - (™ =) )

where t]‘.’is the j-th threshold of the p-th dimension, for 1 <j<c,
and xp""andx;** indicate the minimum value and maximum value
of the p-th column of the training matrix X. Ift! | <x;, <t?, for
2<j<cp we encode x; with subcode s, which consists of
(cp—j+1) zeros followed by (j—1) ones. Ifx;, > t’gp, sp will consist
of ¢, ones. Ifx;, <t!, s, will consist of ¢, zeros. In this way, the
Hamming distance between two subcodes corresponding to two
values that are close to each other will be small. And the final
binary code Hapan(X;) of x; can be obtained by concatenating all the
subcodes, i.e., Hapap(X;)=(S1, S2,..., S¢), subject to 21[7 _1Cp=C.

We term this simple algorithm ABAH_UN. ABAH_UN has one
limitation that the thresholds are chosen uniformly from the range
of each dimension. This may divide two values close to each other
into two different regions. We have experimented with the
k-means method to find every dimension's ‘thresholds.” Specifi-
cally speaking, for the p-th dimension we use one-dimensional k-
means algorithm to find (c,+1) centroids r¢ (f=1,..., ¢p+1) with
ascending order. Values belonging to the f-th cluster will be

encoded by subcode s, which consists of (c,—f+1) zeros followed
by (f—1) ones. The k-means algorithm can give a better partition
and the centroids are better representation of every part than
ABAH_UN. It achieves better results and we name it ABAH_KM.

3.2. Summary of ABAH procedure

Given a training set {x;} and a desired code length c, the whole
simple learning procedure of ABAH can be summarized as follows:

e Finding the principal components of the original data by PCA.

e Calculating the code length of every dimension in the way
described in Section 3.1.3.

e (Calculating every dimension's thresholds in the way described
in Section 3.1.4.

For the data (query and database) to be encoded, we use the
trained code lengths and the thresholds to encode the data one
dimension by one dimension and then concatenate on the subcodes
to obtain the final binary code in the way described in Section 3.1.4.

3.3. Discussion

Now let us discuss the time complexity of ABAH. The time
complexity of PCA is O(nd?) since d«n in the projection phase, and
that of code lengths calculating step is O(d) (see Section 3.1.3).
Once we get the code length of every dimension, the subcodes
can be calculated and stored in a table before converting data to
binary codes. Using thresholds to encode every dimension by
subcodes can be achieved very fast by looking up the table. For
ABAH_UN, to find the thresholds, in the worst case, the time
consuming is O(nc). Since our methods can generate codes longer
than data dimension, if c is larger than data dimension d, the time
consumption of computing thresholds will be O(nd+c). For
ABAH_KM, the time complexity of finding the thresholds is O
(nct) where t is the iterations. But since PCA will find the
principal components and more bits will be allocated to those
components, in reality, the thresholds computing time is far less
than O(nc) for ABAH_UN. Hence, the main time complexity of
ABAH is from the PCA phase.

4. Improved adaptive bit allocation hashing

The naive ABAH method (both ABAH_UN and ABAH_KM) have
two problems. One problem with the naive ABAH is that when
encoding every dimension, the last dimensions are not used. In
other words, these dimensions' code lengths are zero. That is to
say, we use those dimensions to calculate code lengths, but we do
not encode those dimensions, which may incur insufficiency.
Besides, when using PCA, only selecting projected dimensions
with large eigenvalues has been demonstrated to be sufficient

Algorithm 1. Choosing dimensions

1. Input: a training set X, the bit number ¢
2. Output: the number of used dimensions p
3. Initialize: p=d, [A, W]=PCA(X, d), a d-dim array a whose
i-th element is A(i,i).A is a d x d matrix, whose diagonal
values are eigenvalues.
4. Repeat
Use the first p elements of a to calculate code lengths, as
stated in Section 3.1.3.
Update: set p as the number of dimensions whose code
lengths are not zero. p=i, s. t. ¢;>0, ¢;; 1=0.
5. Until convergence.
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enough to preserve the neighborhood structure of the data. In order
to solve this problem, we iteratively discard the dimensions whose
code length is zero. Then we use the remaining dimensions to
recalculate code lengths. The iteration termination requirement is
that the code length of the last dimension of the used dimensions is
one (see Algorithm 1). Thus, we can maximally use the dimensions
and all the used dimensions can be encoded by at least one bit.

The other problem is that the proposed method in Eq. 6 is not an
optimal solution. If the first p-1 components use less than c bits, the
p-th component which may not be large enough to use one bit will
be assigned one. Besides, if the last few dimensions' variances are
almost equal, which are very common after PCA projection, more
bits may be allocated to the dimension with smaller variance (see
Fig. 2(a)). For example, assuming there are four bits left (correspond-
ing to (C—Zf;llc[)in Eq. (6)), and three dimensions with variance
1.000, 0.840, and 0.830, respectively, to be encoded, according to Eq.
(6), the subcode lengths are 1, 2, and 1, which will result in allocating
more bits to the dimension with smaller variance.

We use a simple approach to deal with this problem. After
calculating the code lengths using Eq. (6), we sort the code lengths
with descending order. And then, the sorted code lengths are
allocated to corresponding dimensions. This can guarantee that
dimensions with bigger variance will not be allocated fewer bits
than dimensions with smaller variance.

For these two improvements, we evaluate them separately and
find that the second improvement which slightly improves the results
is trivial. But the first improvement can largely boost the results. We
abbreviate the improved ABAH_KM as ABAH_IM (improved by
Algorithm 1 and sorting the code lengths). The subcode lengths'
comparison of ABAH_KM and ABAH_IM can be seen in Fig. 2. Please
note that the first 76 dimensions' subcode lengths of ABAH_KM are
got by training all the dimensions of the training data, i.e., 128-dim.
But the first 55 dimensions' subcode lengths of ABAH_IM are obtained
only by training the first 55 dimensions of the training data. Besides,
though the ninth dimension has a larger dispersion (or variance) than
the tenth dimension, the naive ABAH allocates four bits for the ninth
dimension, while it allocates five bits for the tenth dimension (see
Fig. 2(a)), which will lead to ineffectiveness.

4.1. Connection to source coding

In source coding area, there is an optimal bit allocation for
encoding Gaussian distributed data [41] and other distributed data
[42,43]. However, our hashing method and source coding have
different objectives. In source coding, on one hand, the objective is
to minimize the quantization distortion between the original data
and the reconstructed data (quantizer outputs) with some con-
straints (resolution or entropy). On the other hand, in source

a
100
80
w 60+
ﬁ
40 -~
20
0 WMWWW

1 11 21 31 41 51 61 71

dimension number (the p-th dimension)

coding, the binary codes are just used to index the quantizer
outputs (codebook) for transmitting through the channel, and the
index does not reflect the similarity or dissimilarity of the indexed
data (quantizer outputs). In our hashing method, our objective is
to convert the original data into binary codes (index) while the
index can keep the similarity or dissimilarity of the indexed data.
We evaluate the bit allocation scheme in [41] with our hashing
method and the results are presented in Section 5.5. Though the
bit allocation scheme in our method may not be optimal, the gains
made in search performance provide excellent justification for this
loss in optimality. We do extensive experiments to compare with
the state-of-the-art and the comparison results provide experi-
mental justification of our method.

5. Experiments
5.1. Datasets

For ANN search task, we perform experiments with the
following two datasets:

e ANN-GIST-1M [30]: A set of 960 dimensional, one million GIST
descriptors.

e ANN-SIFT-1M [30]: A set of 128 dimensional, one million SIFT
descriptors.

For ANN-GIST-1M and ANN-SIFT-1M, we randomly choose 1 K
vectors as queries, 100 K of the rest as training set, and the
remaining as database. The ground truth is defined by the 1000
nearest neighbors computed by the exhaustive, linear scan based
on the Euclidean distance. The retrieved points are computed by
ranking their Hamming distance to the query. The performance is
measured by mean average precision (mAP) and recall, which are
defined as follows:

the number of retrieved relevant points

Recall = the number of all relevant points ®)
Precision — the number of retrieved relevant points )
" the number of all retrieved points
1 21 m .
mAP=— % — ¥ Precision(R;) (10)

QI mi ;=4

where Q is a query set, 1Ql is the cardinality of Q, m; is the number
of points relevant to q; (q; € Q), Ry is the set of the first j retrieval
results. Precision(R;) means the proportion of the retrieved rele-
vant points in Ry.

b
100 -
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#bits

40 -

20

0 ll'""”!”H11Hl'lfl‘rfI"I'T'I"IHnrrrrrrrrmmrrrrm
1 11 21 31 41 51

dimension number (the p-th dimension)

Fig. 2. Subcode lengths of ABAH_KM and ABAH_IM on ANN-SIFT-1M while the total bit number c=256. (a) subcode lengths of ABAH_KM and (b) subcode lengths

of ABAH_IM.
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Finally, we employ our methods for practical application for
image retrieval on the image set MIRFLICKR-1M [31] and UKB [32]
and image classification on CIFAR-10 [33].

e MIRFLICKR-1M: An image set, with various kinds of contents,
containing one million images downloaded from the Flickr
website. And the sizes of images in this set are not identical.

e UKB: The University of Kentucky Benchmark (UKB) contains
10,200 images of 2550 objects, 4 pictures correspond to each
object, taken from different angles. The size of all the images is
640 x 480.

e CIFAR-10: As a subset of the well-known 80 M tiny image
collection [34], CIFAR-10 consists of 60,000 32 x 32 color
images which are manually labeled as ten classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck)
with 6000 samples for each class.

We represent each image in all image sets with a 512-
dimensional GIST descriptor [35]. For MIRFLICKR-1M, the image
set is randomly divided into three parts: learning (100 K), database
(899 K), and query (1 K). The ground truth is defined by exact NN
search and we also use mAP and recall to measure the perfor-
mance. For image set UKB, each image is used in turn as query to
search through the 10,200 images. The accuracy is measured in
terms of the number of relevant images retrieved in the top 4,
i.e., 4 x precision@4. For learning purpose on UKB, we use an
independent image set (the MIRFLICKR-1M training set) to learn
the parameters (code lengths and thresholds of each dimension).
As for CIFAR-10, we use the default training set consisting of
50,000 images and test set with 10,000 images. The performance
is measured by classification precision (precision, for simplicity).
One important thing we should know is that the retrieval and
classification results not only depend on the hashing method, but
are also affected by the image representation to a great extent. We
evaluate ABAH on these datasets just for comparing with other
hashing methods.

For all the experiments, we use a machine consisting of i7-2600
CPU and 16 GB main memory. Note that we implement linear scan
in the query phase where we compute the Hamming distance
between the query's code and all the codes in the database. For
fast approximate NN search in Hamming space, we can use a
simple approach to achieve sub-linear search by using the hash-
table method in [4]. Also, we can use the delicate inverted file
method described in [39] to achieve sub-linear search. However,
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since the Hamming distance computation is extremely fast (see
Table 5), we still employ linear scan in the experiments.

5.2. Compared methods

e LSH: LSH employs simple random projections [13].

e SH: Spectral Hashing [14].

e PCAH: PCAH [27] uses the average value of each dimension to
binarize this dimension with one bit after PCA projection.

e HE: Use a random orthogonal matrix to project the data [26].

e [soH: Use a learned orthogonal matrix to project the PCA-
projected data to guarantee the same variance of every dimen-
sion [29].

e [TQ: Adopt a projection matrix to minimize quantization loss
[38].

e ABAH_UN: The thresholds
uniformly.

e ABAH_KM: An improved version of our ABAH with the thresh-
olds obtained by k-means algorithm as stated in Section 3.1.4.

e ABAH_IM: The improved ABAH_KM as stated in Section 4.

in this method are obtained

5.3. Results

Fig. 3 shows the mAP of returning the first 1000 nearest
neighbors of all the tested methods on ANN-GIST-1M and ANN-
SIFT-1M. Since SH, PCAH, HE, IsoH, and ITQ cannot generate codes
longer than data dimension while ABAH can, we do not plot the
results when codes are longer than 128 bits for SH, PCAH, HE, IsoH,
ITQ on dataset ANN-SIFT-1M in Fig. 3(b). ABAH_IM performs better
most of the time across the tested bit lengths ranging from 64 to
512 bits on both dataset especially when longer bits are used.
Similar to that reported in [36], PCAH performs worse when using
more bits to encode the data on ANN-GIST-1M. ITQ performs well
when fewer bits are used to encode the data on ANN-GIST-1M.
However, it achieves poor results on ANN-SIFT-1M. The random
orthogonal projection method, HE, achieves good results, even
better than the isotropic-guaranteed method IsoH, but not better
than our ABAH_IM approach.

As we can see, ABAH_KM achieves constantly better results
than ABAH_UN on the two datasets from 16 bits to 512 bits,
especially when using more bits to encode the data. This is
because the cluster centers got by k-means algorithm are better
representations of the data and can give a better partition.
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Fig. 3. Comparison of ABAH to state-of-the-art methods in terms of 1000-NN mAP: (a) experiment on ANN-GIST-1M dataset and (b) experiment on ANN-SIFT-1M dataset.
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However, since the bit allocation algorithm in ABAH_KM is not
optimal, it performs worse than ABAH_IM.

One phenomenon worthy of our attention is that a 16-bit code
cannot represent one vector uniquely because 16-bit codes at most
have 65,536 different representations, while we have far more
vectors in the dataset which has 899 K vectors. Our ABAH methods
also get significantly better results in this case on ANN-GIST-1M.

In Fig. 4, experimental results on dataset ANN-GIST-1M and
ANN-SIFT-1M in terms of Recall@1000 are presented. By the same
token as Fig. 3(b), we do not plot the results of 256-bit and 512-bit
for SH, PCAH, HE, IsoH, and ITQ in Fig. 4(b). Both 1000-NN mAP
and Recall@1000 on the two dataset almost have the same trend.
We can see that our ABAH_IM method achieves the best results on
ANN-GIST-1M. As shown in Fig. 4, with longer codes for ABAH,
better results are obtained. One can strike a balance between
accuracy and efficiency by choosing appropriate number of bits.

For image retrieval, we test our methods on image set
MIRFLICKR-1M and UKB. The experiment results on MIRFLICKR-
1M are presented in Fig. 5. The ABAH_IM hashing method per-
forms well, especially when the bits are longer. ITQ achieves
almost the same results as ABAH_IM with shorter codes. PCAH
performs worst, because the hash hyperplanes of PCAH cannot
capture the neighborhood structure information. Different from
PCAH, IsoH that guarantees dimensions have isotropic variance
performs better than PCAH when bits are longer than 64 bits.
Since LSH adopts random hash functions which are independent
of the training data, its result is also inferior. SH that relies upon its
uniform data assumption also gets poor performance.

Image retrieval results on UKB can be seen in Fig. 6. Our
ABAH_KM hashing approach outperforms other compared meth-
ods from 32 bits to 512 bits. PCAH achieves surprisingly good
results with shorter codes in this image set. However, our
ABAH_IM method does not achieve the best result. There are
two reasons. One is that the ABAH_IM hashing method can better
capture the neighborhood structure in terms of Euclidean distance,
but the ground truth of UKB image set are semantic labels. The
results indicate that data close to each other in Euclidean space
may not be semantically related. The other is that the i.i.d.
assumption may not hold on this dataset. NN Baseline is computed
by the exhaustive, linear scan based on the Euclidean distance.

Finally, we test our methods for image classification task on
image set CIFAR-10. The images are represented by 512-dim GIST
descriptors. We use the default training set of 50,000 images to
train the parameters of SH, PCAH, HE, ITQ, IsoH and our ABAH
methods. Given a test sample, we efficiently return the first K
nearest neighbors in Hamming space. Then we apply a K-nn
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classifier to classify the test sample. The experiment results are
presented in Tables 2-4 for K=1, 10, and 20, respectively, in terms
of classification precision. We also expand the experiment for K
varying from 1 to 65 with 512 bits encoding the image descriptors
(see Fig. 7). We can find that our ABAH methods are comparable, if
not superior, to the state-of-the-art methods, such as ITQ. NN
baseline is also computed by exhaustive search.

5.4. Runtime comparison

Table 5 gives the time comparisons between exact NN search
and ABAH_IM. The results are obtained with our unoptimized
C+ + code. We use one query to linear scan the dataset whose size
is 899,000 to find the nearest neighbor. For ABAH_IM, the time
includes converting data to binary codes and exhaustive search in
Hamming space.

5.5. Additional analysis

For comparison, we also use the following two methods to
obtain the thresholds of each dimension. One is ABAH_SAX where
we use the method described in [40] to model the data with single
Gaussian distribution to get the thresholds that keep a constant
mass in each cell. The other is ABAH_GMM. Based on the prob-
ability density function (pdf) of each dimension, in ABAH_GMM,
we use Gaussian mixture model (GMM) to learn the centroids of
each dimension.

Tables 6 and 7 show the experiment results on ANN-SIFT-1M
for ABAH_IM, ABAH_SAX and ABAH_GMM. Note that these three
methods are also improved by Algorithm 1 and sorting the code
lengths as described in Section 4. ABAH_IM constantly achieves
the best results. ABAH_SAX gets poor results. The possible reason
is that each dimension of the data is not single Gaussian distribu-
tion, and using Gaussian lookup table to get the thresholds that
keep a constant mass in each cell may not appropriately partition
the data. ABAH_GMM where we model the data of each dimension
with one-dimensional GMM achieves almost the same results as
ABAH_IM. Actually, ABAH_IM is a simplified non-probabilistic
version of ABAH_GMM. However, due to higher complexity of
ABAH_GMM, we still use ABAH_IM to compare with other hashing
methods. Besides, we also compare ABAH_IM and ABAH_GMM on
ANN-GIST-1M dataset. Because of the relation between k-means
and GMM, they still achieve almost the same results. Due to
limited space, we do not present the results.

To evaluate the bit allocation scheme in [41] with our hashing
method, we use the bit allocation scheme in [41] to allocate bits to
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Fig. 4. Comparison of ABAH to state-of-the-art methods in terms of Recall@1000: (a) experiment on ANN-GIST-1M dataset and (b) experiment on ANN-SIFT-1M dataset.
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Fig. 6. Comparison of ABAH to state-of-the-art methods on UKB dataset.

Table 2
Comparison of hashing methods on CIFAR-10 in terms of precision for K=1.

# Bits 16 32 64 128 256 512

LSH 0.1448 0.2001 0.2570 0.3226 0.3882 0.4347
SH 0.2392 0.2902 0.3350 0.3724 0.3850 0.3564
PCAH 0.2627 0.3171 0.3581 0.3449 0.3342 0.3335
HE 0.2008 0.2850 0.3587 0.4113 0.4460 0.4767
ITQ 0.2749 0.3513 0.3671 0.4307 0.4505 0.4992
IsoH 0.1713 0.2065 0.2695 0.3232 0.3850 0.4434
ABAH_UN 0.2070 0.2926 0.3231 0.3622 0.3913 0.4124
ABAH_KM 0.2482 0.3583 0.3742 0.4325 0.4471 0.4649
ABAH_IM 0.2259 0.3458 0.3833 0.4397 0.4645 0.4946

each dimension of the data and adopt k-means (SC_IM) and GMM
(SC_GMM), respectively, to learn the centriods of each dimension.
In SC_IM and SC_GMM, we use the one-dim encoding scheme of
our method to encode each dimension. The results are presented
in Tables 8, and 9. Since the bit allocation scheme of our method is
based on the consideration discussed in Section 3.1.2 while the bit
allocation scheme in [41] is based on the objective in source
coding, our method achieves better results than the source coding-
based methods at all tested bit lengths.

We also evaluate ABAH_IM on the raw data and random
projected data. For the raw and random data, we compute the
variance of each dimension and rank the dimensions by their

Table 3
Comparison of hashing methods on CIFAR-10 in terms of precision for K=10.

# Bits 16 32 64 128 256 512

LSH 0.1926 0.2467 03194 0.3802 0.4473 0.4818
SH 0.2961 0.3540 0.4085 0.4437 0.4458 0.3884
PCAH 0.3411 0.4011 0.4260 0.4039 0.3971 0.3786
HE 0.2591 0.3477 0.4156 0.4764 0.5187 0.5117
ITQ 0.3511 0.4162 0.4546 0.4918 0.5127 0.5193
IsoH 0.1920 0.2586 0.3211 0.3790 0.4426 0.4941
ABAH_UN 0.2671 0.3625 0.4055 0.4331 0.4728 0.4733
ABAH_KM 0.3175 04212 0.4588 0.5049 0.5140 0.5156
ABAH_IM 0.3003 0.4012 0.4625 0.4973 0.5208 0.5210

Table 4

Comparison of hashing methods on CIFAR-10 in terms of precision for K=20.

# Bits 16 32 64 128 256 512

LSH 0.2057 0.2647 0.3380 0.3916 0.4586 0.4846
SH 0.3141 0.3821 0.4266 0.4703 0.4649 0.4112
PCAH 0.3604 0.4247 0.4639 0.4319 0.4293 0.4185
HE 0.2784 0.3634 0.4295 0.4841 0.5118 0.5186
ITQ 0.3675 0.4327 0.4693 0.4934 0.5142 0.5245
IsoH 0.2108 0.2678 0.3427 0.3917 0.4559 0.4991
ABAH_UN 0.2901 0.3766 0.4210 0.4498 0.4830 0.4891
ABAH_KM 0.3433 0.4314 0.4852 0.5232 0.5208 0.5202
ABAH_IM 0.3150 0.4147 0.4778 0.5261 0.5291 0.5255

variance with descending order. Then we allocate bits to each
dimension with the same scheme of ABAH_IM. The results are
presented in Tables 10 and 11. Our ABAH_IM method achieves the
best results. The reason is that we cannot find the principle
component of the data on both the raw data and random projected
data as illustrated in Fig. 1. And it is hard to determine which
dimension is important for computing Euclidean distance and also
for computing Hamming distance. According to Eq. (6), many
dimensions' code length is zero, which can be seen as dimension
selection. As to PCA, we select some principal components.
However, as to raw data and random projected data, the dimen-
sions we select are not principal components which may be
discarded.

5.6. Discussion

Different dimensions of the projected data have different
variances and it is inappropriate to use the same number of bits
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Fig. 7. Comparison of ABAH to state-of-the-art methods on CIFAR-10 image set for
image classification task in terms of precision with 512 bits encoding the image
descriptors.

Table 5
Time comparisons (ms) of exact NN search in Euclidean space on ANN-SIFT-1M
and ANN-GIST-1M and ABAH_IM in Hamming space.

# Bits 16 32 64 128 256 512

ABAH_IM <1 <1 <1 <1 15 31
Original space (128-dimensional SIFT) 437
Original space (960-dimensional GIST) 2714

Table 6

Comparison of methods to obtain thresholds using ANN-SIFT-1M in terms of mAP.
# Bits 16 32 64 128 256 512
ABAH_IM 0.0254 0.0926 0.2129 0.3471 0.4630 0.5403
ABAH_SAX 0.0100 0.0341 0.0993 0.1250 0.1247 0.0658
ABAH_GMM 0.0201 0.0915 0.2100 0.3547 0.4724 0.5453

Table 7

Comparison of methods to obtain thresholds using ANN-SIFT-1M in terms
of Recall@1000.

# Bits 16 32 64 128 256 512

ABAH_ IM 0.1104 0.2434 0.3750 0.4835 0.5608 0.6116

ABAH_SAX 0.0550 0.1220 0.2427 0.2717 0.2664 0.1872

ABAH_GMM 0.1082 0.2412 0.3729 0.4901 0.5692 0.6169
Table 8

Comparison of bit allocation methods with different thresholds using ANN-SIFT-1M
in terms of mAP.

# Bits 16 32 64 128 256 512

ABAH_IM 0.0254 0.0926 0.2129 0.3471 0.4630 0.5403
ABAH_GMM 0.0201 0.0915 0.2100 0.3547 0.4724 0.5453
SC_IM 0.0192 0.0859 0.1920 0.3075 0.4144 0.4693
SC _GMM 0.0188 0.0890 0.1958 0.3135 0.4166 0.4660

for different projected dimensions like PCAH. As far as we know,
there are two methods to deal with this problem. One is adaptive
bit allocation scheme like our ABAH methods. We use more bits to
encode the dimensions with larger variance while fewer bits to
encode dimensions with smaller variance. The other is that we
project the data to a new space where every dimension of the data
has the same variance like IsoH.

Table 9
Comparison of bit allocation methods with different thresholds using ANN-SIFT-1M
in terms of Recall@1000.

# Bits 16 32 64 128 256 512

ABAH_IM 0.1104 0.2434 0.3750 0.4835 0.5608 0.6116

ABAH_GMM 0.1082 0.2412 0.3729 0.4901 0.5692 0.6169

SC_IM 0.1015 0.2382 0.3615 0.4691 0.5321 0.5735

SC _GMM 0.1003 0.2322 0.3655 0.4745 0.5344 0.5705
Table 10

Experiment on PCA projected, random projected and raw ANN-SIFT-1M in terms
of mAP for ABAH_IM.

# Bits 16 32 64 128 256 512

PCA 0.0254 0.0926 0.2129 0.3471 0.4630 0.5403

Random 0.0100 0.0360 0.1116 0.2739 0.4261 0.5400

Raw 0.0083 0.0379 0.1332 0.2953 0.4417 0.5063
Table 11

Experiment on PCA projected, random projected and raw ANN-SIFT-1M in terms
of Recall@1000 for ABAH_IM.

# Bits 16 32 64 128 256 512

PCA 0.1104 0.2434 0.3750 0.4835 0.5608 0.6116
Random 0.0570 0.1236 0.2505 0.4221 0.5484 0.6037
Raw 0.0534 0.1353 0.2866 0.4441 0.5591 0.5862

From the experiment results, we can see that our methods
perform better than IsoH in terms of both recall and mAP. Since we
adaptively allocate different numbers of bits to encode dimensions
with different dispersions, the important dimensions in the
original space will be still important in Hamming space. Hence,
adaptive bit allocation scheme may be a better alternative to
dealing with anisotropy of the projected data.

6. Conclusion

In this work, we propose a new hashing method to embed the
real-value vectors into a neighborhood structure-preserved Ham-
ming space for ANN search. The dispersions of different dimen-
sions after projection are not the same, and it is unreasonable to
use the same number of bits to encode them. We adopt the
adaptive bit allocation scheme to adaptively use different numbers
of bits to encode different dimensions. For those dimensions that
have a larger dispersion, we use more bits to encode them and
fewer bits for the dimensions with smaller dispersion. This can
preserve the original neighborhood structure. Our methods are
very simple and intuitive. Extensive experiments have demon-
strated the effectiveness of our method. The proposed method can
be combined with some other projection techniques like kernel
PCA. Besides, combined with distance metric learning techniques,
our ABAH methods may capture the semantic structures of the
data. In future, we will tackle these issues.
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