

Uniform Variance Product Quantization

Qin-Zhen Guo, Zhi Zeng and Shuwu Zhang

95 Zhongguancun East Road, 100190, BEIJING, CHINA

{ qinzhen.guo, zhi.zeng, shuwu.zhang }@ia.ac.cn

Keywords: Approximate nearest neighbor search, product quantization, uniform variance projection,
image retrieval.

Abstract.

Product quantization (PQ) is an efficient and effective vector quantization approach to fast

approximate nearest neighbor (ANN) search especially for high-dimensional data. The basic idea of

PQ is to decompose the original data space into the Cartesian product of some low-dimensional

subspaces and then every subspace is quantized separately with the same number of codewords.

However, the performance of PQ depends largely on the distribution of the original data. If the

distributions of every subspace have larger difference, PQ will achieve bad results as shown in our

experiments. In this paper, we propose a uniform variance product quantization (UVPQ) scheme to

project the data by a uniform variance projection before decompose it, which can minimize the

subspace distribution difference of the whole space. UVPQ can guarantee good results however the

data rotate. Extensive experiments have verified the superiority of UVPQ over PQ for ANN search.

Introduction

Approximate nearest neighbor (ANN) search has been widely used to avoid excessive computational

and memory cost of nearest neighbor (NN) search in many computer vision problems, such as image

retrieval, scene classification and 3D reconstruction. The key idea of ANN is to find the nearest

neighbors with high probability instead of probability one. It is a fundamental problem in computer

vision community. Nowadays, several ANN techniques have been developed including tree-based

methods, hashing-based methods and vector quantization.

The tree-based methods use spatial partitions and recursive hyperplane decomposition to provide

an efficient approach for low-dimensional data search, such as KD-tree [1]. However, the tree-based

methods can degenerate to exhaustive search in the worst case for high-dimensional data.

The hashing-based methods [2, 3] have been a popular approach to ANN search. These methods

map the data into Hamming space and the similarity between two data points is approximated by the

Hamming distance of their hashed codes. But because of the thick boundary of Hamming space, these

methods usually cannot achieve ideal results [4].

Vector Quantization (VQ) [5] is an effective method for ANN search. These methods quantize the

data into codewords in order to reduce the cardinality of the data space. The Euclidean distances of

vectors can be approximated by the distances of codewords. Among the VQ methods, product

quantization (PQ) [6] was designed to decompose the original data space into the Cartesian product of

m low-dimensional subspaces and each subspace is quantized into k codewords by k-means. The

distance between two data points is approximated by the sum of the distances between their

codewords of the same subspace. PQ obtains more accurate results than various hashing methods,

which is largely due to its lower quantization distortions and more precise distance computation.

However, PQ considers every subspace having the same importance and uses the same number of

codewords to quantize every subspace, which is unreasonable since the distribution of every subspace

of the data may be not identical, especially when the data are projected by principal component

analysis (PCA). The subspace formed by dimensions with larger variance carry more information. If

we use the same number of codewords in subspaces with more information to quantize the data in

subspaces with less information, it will be redundant. And the distortion will be expanded if we use

the same number of codewords in subspaces with less information to quantize the data in subspaces

with more information. Hence, the performance of PQ depends largely on the distribution of the

original data. Motivated by the above considerations, in this paper, we propose a uniform variance

product quantization (UVPQ) approach for ANN search. The key idea is that before decomposing the

data into subspaces, we use a uniform variance projection to map the data into a new space where

every subspace have the same information. UVPQ can ensure good results even though the

distributions of every subspace are very different. Extensive experiments demonstrate the superiority

of our method.

Uniform Variance Product Quantization

In this section, we introduce the details of our uniform variance product quantization (UVPQ) scheme.

Firstly, we will review the prior work PQ briefly. Then the UVP problem is stated.

First of all, let us introduce some notations. We have a training set of n data {x1, x2, …, xn}, xi
d ,

that form the rows of the data matrix X n d . x
(i)

 is the i-th subvector of x. We use X
i
 to indicate the

subspace that x
(i)

 forms and i

jX means the j-th dimension of subspace X
i
.

Product Quantization. The basic idea of PQ is that the original data are decomposed into m

subspaces of dimension q = d/m (see Eq. 1).
(1) ()

1 1, , , , ,

mx x

q d q dx x x x 

 
   (1)

Then find k codewords to represent the data effectively in every subspace. The most intuitive method

is to cluster the data by k-means algorithm and use the cluster centers as codewords to represent the

data based on nearest neighbor (NN) rule. The original data can be represented by the Cartesian

product of all the subspace. And the Euclidean distance between two points can be computed by:

() ()

1

(,) (,)
m

i i

i

D x y D x y


 (2)

D(x, y) means the Euclidean distance between x and y.

In every subspace, D(x
(i)

, y
(i)

) can be approximated by D(c(x
(i)

), c(y
(i)

)) for symmetric distance

computation or D(x
(i)

, c(y
(i)

)) for asymmetric distance computation if x is the query and y is an item in

the database where c(x
(i)

) and c(y
(i)

) are codewords that x
(i)

 and y
(i)

 are quantized to in the i-th subspace

respectively. D(x, y) can be computed fast by looking up table if we precompute D(c(x
(i)

), c(y
(i)

)) or

D(x
(i)

, c(y
(i)

)). Moreover, the items in the database can be indexed by the codewords’ indices with

m*logk bits, which can largely reduce the storage.

Uniform Variance Projection.

Definition 1 Average Distribution Variance (ADV)

1

1
() var()

q
i i

j

j

ADV X X
q 

  (3)

where var()i

jX denotes the variance of the j-th dimension of the subspace X
i
.

Definition 2 Subspace Distribution Difference (SDD)

2

1 1

1 1
() (() ())

m m
i j

i j

SDD X ADV X ADV X
m m 

   (4)

where ADV(X
i
) denotes the ADV of the i-th subspace of the X, which is the whole space.

We use ADV, which can reflect the information of a subspace, to describe the variance of a

subspace and SDD to describe the variance of the whole space. For the original data, the ADV of

every subspace is not the same and the SDD of the whole space may be large. It is unreasonable to use

the same number of codewords to quantize all the subspaces.

In order to minimize the SDD of the whole space, we use an orthogonal uniform variance

projection P to project (or rotate) the data, which does not change the neighbor structure of the

original data. We formulate our objective function as:

arg min ()
TP P I

SDD XP


, (5)

It is easy to understand that the optimal solution of Eq. 5 is ADV((XP)
i
) = ADV((XP)

j
) for i ≠ j.

And in order to achieve this goal, we compel P to satisfy var(()) var(())i j

u vXP XP for 1≤i,j≤m, 1≤u,v≤q.

This means that for Y=XP, every dimension of Y has the same variance. Directly solve the problem is

very difficult because there are much degrees of freedom. Since P is an orthogonal matrix, by some

simple mathematical transformations, we have Eq. 6
T T TY Y P X XP   , (6)

Λ is a diagonal matrix and Λ(i, i) = Λ(j, j) for 1≤i,j≤d. Eq. 6 has the similar formula as [7]. And we can

respectively use lift and project algorithm and gradient flow algorithm to obtain the uniform variance

projection matrix P. The corresponding approaches are termed UVPQ-LP and UVPQ-GF.

Experiments

In this section we evaluate our methods for approximate nearest neighbor (ANN) on GIST1M [6] and

SIFT1M [6]. We randomly choose 100K vectors as training set, 5K of the rest as queries, and the

remaining as database. The first 1000 nearest neighbors computed by the exhaustive, linear scan

based on the Euclidean distance are defined as the ground truth. The performance is measured by

mean Average Precision (mAP) and recall. The compared methods are:

 PCA-PQ: For comparison, the original data are rotated by PCA projection.

 PQ [6]: Do PQ procedure directly on the original data.

 rPQ: The original data are rotated by a random orthogonal projection.

 UVPQ-LP: The uniform variance projection is calculated based on lift and project algorithm.

 UVPQ-GF: The uniform variance projection is calculated based on gradient flow algorithm.

Table 1. Experiment on GIST1M dataset in term of 1000-NN mAP and Recall@1000.

 1000-NN mAP Recall@1000

bits 16 32 64 128 256 512 16 32 64 128 256 512

PCA-PQ 0.0063 0.0082 0.0114 0.0181 0.0305 0.0608 0.0550 0.0615 0.0713 0.0900 0.1212 0.1825

PQ 0.0153 0.0224 0.0448 0.0804 0.1598 0.2851 0.0793 0.1154 0.1635 0.2217 0.3184 0.4212

rPQ 0.0110 0.0202 0.0415 0.0820 0.1564 0.2884 0.0777 0.1123 0.1562 0.2232 0.3168 0.4235

UVPQ-LP 0.0111 0.0228 0.0450 0.0862 0.1600 0.2898 0.0778 0.1167 0.1651 0.2304 0.3203 0.4477

UVPQ-GF 0.0077 0.0231 0.0411 0.0868 0.1626 0.2909 0.0742 0.1162 0.1632 0.2314 0.3226 0.4473

Table 2. Experiment on SIFT1M dataset in term of 1000-NN mAP and Recall@1000.

 1000-NN mAP Recall@1000

bits 16 32 64 128 256 512 16 32 64 128 256 512

PCA-PQ 0.0385 0.0807 0.1637 0.3540 0.6527 0.9000 0.1502 0.2132 0.3130 0.4907 0.7167 0.9087

PQ 0.0513 0.1219 0.2617 0.4631 0.7205 0.9098 0.1782 0.2903 0.4235 0.5805 0.7694 0.9071

rPQ 0.0420 0.1149 0.2542 0.4577 0.7179 0.9126 0.1706 0.2789 0.4155 0.5753 0.7660 0.9182

UVPQ-LP 0.0426 0.1225 0.2653 0.4835 0.7276 0.9221 0.1727 0.2876 0.4246 0.5949 0.7730 0.9278

UVPQ-GF 0.0407 0.1154 0.2595 0.4650 0.7243 0.9211 0.1684 0.2798 0.4214 0.5836 0.7702 0.9269

For all the experiments, we use the asymmetric distance computation (ADC) where only vectors in

the database are quantized and we set k=256 in every subspace.

Table 1 and Table 2 show the 1000-NN mAP and Recall@1000 on GIST1M and SIFT1M. The

code length means m*logk. Since the size of the codewords k is fixed to 256, we experiment with m

set to 2, 4, 8, 16, 32, and 64. The corresponding code lengths are 16, 32, 64, 128, 256, and 512 bits.

Our UVPQ method performs best across the tested bit lengths ranging from 32 bits to 512 bits on both

datasets. Not surprisingly, PCA-PQ always achieves the worst results since its largest subspace

distribution difference (SDD). The rPQ method gets good results, which may be due to the random

projection balance the average distribution variance of the subspaces and SDD of the whole space to

some extent. But rPQ is not better than our UVPQ method since UVPQ can guarantee the uniform

variance in every subspace and this will reduce the quantization distortion in the subspaces.

The advantage of UVPQ on GIST1M and SIFT1M is not obvious. The main reason is that the SDD

of the original space is small on both datasets, which will reduce the superiority of UVPQ over PQ.

The performance improvement of our methods can be greater when the SDD of the original space is

larger, like the case of PCA-PQ where PQ will achieve bad results on PCA-projected data. Since

UVPQ gets the same results however the data rotate, the comparison between UVPQ and rPQ,

PCA-PQ can be seen as the comparison between UVPQ and PQ on the random rotated and

PCA-projected GIST1M and SIFT1M dataset where UVPQ performs significantly better than PQ.

Conclusion

In this work, we propose a new approximate nearest neighbor (ANN) search approach which we call

UVPQ. It is simple and effective. Extensive experiments have demonstrated the superiority of our

method. But to solve the objective function Eq. 5, we compel the uniform variance projection P to

meet the requirement that every dimension of all the subspaces after projection has the same variance,

which is not necessary. Actually, we only demand of the ADV of every subspace after projection to be

the same. In the future, we will tackle this issue.

Acknowledgment

This work has been supported by the National Key Technology R&D Program of China under Grant

No. 2012BAH04F02, 2012BAH88F02, 2013BAH61F01 and 2013BAH63F01 and the International

S&T Cooperation Program of China under Grant No. 2013DFG12980.

References

[1] J. Freidman, J. Bentley, and A. Finkel, ACM Transactions on Mathematical Software, Vol. 3

(1977), p. 209.

[2] A. B. Torralba, R. Fergus, and Y. Weiss, in: Proc. of IEEE Conference on Computer Vision and

Pattern Recognition, 2008, p. 1.

[3] Q.-Z. Guo, Z. Zeng, S. Zhang, Y. Zhang, and F. Wang, in: Proc. of IEEE Conference on

Multimedia and Expo, 2013, p. 1.

[4] T. Trzcinski, V. Lepetit and P. Fua, P. R. Letters, Vol. 33 (2012), p. 2173.

[5] R. Gray, ASSP Magazine, IEEE, Vol. 1 (1984), p. 4.

[6] H. Jegou, M. Douze, and C. Schmid, IEEE Trans. Pattern Analysis and Machine Intelligence,

Vol. 33 (2011), p. 117.

[7] W. Kong, and W.-J. Li, in: Advances in Neural Information Processing Systems, 2012, p. 1646.

