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Abstract. Hashing which maps data into binary codes in Hamming space has attracted more and more 

attentions for approximate nearest neighbor search due to its high efficiency and reduced storage cost. 

K-means hashing (KH) is a novel hashing method which firstly quantizes the data by codewords and 

then uses the indices of codewords to encode the data. However, in KH, only the codewords are 

updated to minimize the quantization error and affinity error while the indices of codewords remain 

the same after they are initialized. In this paper, we propose an optimized k-means hashing (OKH) 

method to encode data by binary codes. In our method, we simultaneously optimize the codewords 

and the indices of them to minimize the quantization error and the affinity error. Our OKH method 

can find both the optimal codewords and the optiaml indices, and the resulting binary codes in 

Hamming space can better preserve the original neighborhood structure of the data. Besides, OKH 

can further be generalized to a product space. Extensive experiments have verified the superiority of 

OKH over KH and other state-of-the-art hashing methods. 

Introduction 

Approximate nearest neighbor (ANN) search plays a very important role in many computer vision 

problems such as image retrieval, scene classification and 3D reconstruction. Nowadays, several 

ANN techniques have been developed including tree-based methods, vector quantization methods 

and hashing-based methods. 

The tree-based methods such as modified KD-tree [1] use spatial partitions and recursive 

hyperplane decomposition to implement similarity search. However, for high-dimensional data, the 

tree-based methods can degenerate to exhaustive search. 

Vector Quantization (VQ) is an effective method for ANN search. In VQ, the Euclidean distances 

of vectors can be approximated by the distances of the codewords that quantize them. To achieve 

satisfactory results, the VQ methods need numerous codewords. But this is intractable for practical 

application. To deal with this problem, product quantization (PQ) [2] was designed to decompose the 

original data space into the Cartesian product of m low-dimensional subspaces and each subspace is 

quantized separately by k-means.  

The hashing-based methods [3, 4, 5, 6, 7, 8] have attracted more and more attentions for ANN 

search. These methods transform the original data into compact binary codes in Hamming space that 

preserve the original neighborhood structure of data. The similarity between two data points in the 

original space is approximated by the Hamming distance of their hashed codes in the Hamming space.  

Recently, a novel method, k-means hashing (KH) [4] which combines the hashing methods with 

the vector quantization methods has been developed. In KH, data are quantized by the codewords and 

encoded by the indices of the codewords. The effectiveness of KH is largely affected by two aspects. 

One is the codewords ci. The other is the index of ci. The KH method updates ci by minimizing the 

quantization error and affinity error. On the other hand, since all the data are encoded by the index of 

ci, the optimal indices play a very important role for the effectiveness of KH, even more important 

than the codewords. However this problem is unaddressed in KH. In KH, the index of ci which is 

initiated by PCAH [5] is remaining the same along the whole procedure. This will incur 

ineffectiveness. In this paper, we propose an optimized k-means hashing (OKH) method to encode 

Applied Mechanics and Materials Vols. 651-653 (2014) pp 2168-2171 Submitted: 02.08.2014
© (2014) Trans Tech Publications, Switzerland Accepted: 05.08.2014
doi:10.4028/www.scientific.net/AMM.651-653.2168

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 159.226.181.13-24/09/14,03:21:01)

http://www.ttp.net


 

data by binary codes. In OKH, we simultaneously optimize the codewords and the indices of them to 

minimize the quantization error and the affinity error.  

Optimized K-means Hashing 

First of all, let us introduce some notations. The purpose of hashing is to map a d-dimensional data 

x dÎ to a B-bit binary code I(x) { 1,1}BÎ - . We have a training set T of n data {x1, x2, …, xn} that form 

the rows of the data matrix X n d´Î . The codebook is a set C of k codewords {c1, c2, …, ck}. c(x) is the 

codeword that quantizes x. The binary code (or index) of ci is I(ci). X
i
 is the i-th subspace of X. 

 

K-means Hashing. There are two main steps in KH. The first step is quantizing the data by 

codewords based on nearest neighbor (NN) rule, which will cause quantization error as Eq. 1 
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And the Euclidean distance between data can be approximated by Eq. 2 
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( , )i j i jD x x x x= - denotes the Euclidean distance. The second step is encoding the data by indices of the 

codewords and approximating the Euclidean distance between codewords by the Hamming distance 

of their indices. This step will cause the affinity error as Eq. 3, 
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where 2
/

ij i j
w n n n= , and ni and nj are the number of data quantized by ci and cj respectively. Here 

H(I(ci), I(cj)) = s× sqrt(h(I(ci), I(cj))) where h(× ,× ) is the Hamming distance and s is a constant scale. 

Taking both quantization error and affinity error into consideration, KH find the optimal 

codewords ci by minimizing the following objective function, 
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where l is weight. To minimize Eq. 4, KH uses an alternating method: firstly fix ci and assign x to ci 

based on NN rule. Then update ci to minimize Eq. 5. 
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For the whole data space, if we use B-bit codes to encode the data, 2
B
 codewords need to be 

computed. This is intractable especially when B is a large, such as B=64, 128 even 512. This issue can 

be tackled by generalize KH to product space. Before encoding the data, the data are divided into m 

subspaces and KH use B/m bits codes to encode every subspace. Thus only 2
(B/m)

 codewords are 

needed in every subspace. 

 

Proposed Method. In order to deal with the issue of optimal indices of ci, in our method, we update 

both the cluster centers ci and the indices of ci, I(ci) to minimize Eq.4. 

Directly Eq. 4 is infeasible since the Hamming distance computation is not differentiable. We 

notice that the Hamming distance between two binary codes Ii and Ij is given by the number of bits 

that are different between them, which can be calculated as 
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Putting Eq. 1, Eq. 3, Eq. 6 into Eq. 4, we can optimize the index of cj, I(cj) with other {I(ci)}i≠j fixed: 
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I(ci) and D(ci, cj) are written as Ii and Dij respectively for short. ( )T

j jTr I I is the trace of T

j jI I , which 

controls the scale of Ij. b  is a weighting parameter. Let, 
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We have, 
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Then we can optimize Eq.8 by gradient descent algorithm. After obtaining the optimal Ij, we binarize 

it by zero. 

By the same token with KH, OKH can be naturally generalized to the product space. Firstly, we 

decompose the whole data space into m subspaces. Then we do OKH in every subspace. 
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(a)                                                                      (b) 

Figure 1. Experiments on SIFT1M in term of mAP and Recall: (a) 1000-mAP; (b) Recall@1000. 

Experiments 

In this section, we evaluate the proposed method OKH for approximate nearest neighbor (ANN) 

search. We compare our method with LSH[6], SH[7], ITQ[8], PCAH[5] and KH[4]. We perform 

experiments with SIFT1M [2] and GIST1M [2]. For GIST1M which is a 960-dimensional dataset, we 

reduce the dimensionality to 512 by PCA. We randomly choose 5K vectors as queries, 100K of the 

rest as training set, and the remaining as database. The ground truth is defined by the 1000 nearest 

neighbors computed by the linear scan. The retrieved points are computed by ranking their Hamming 

distance to the query. The performance is measured by mean Average Precision (mAP) and recall. For 

SIFT1M, we set the subcodes length b=(B/M)=4 and b=8 for GIST1M. l and b are set to 10. The 

indices of codewords in every subspace are initialized by PCAH. For KH and OKH, we implement 

the corresponding algorithm for 50 iterations. 
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Results and Analysis. The results on SIFT1M in term of mAP and Recall are presented in Figure 1. 

As we can see, our OKH method achieves the best results from 16 bits to 128 bits. Due to that OKH 

can find both the optimal codewords and the indices while KH can only find the optimal codewords, 

our OKH performs better than KH with all testing code length especially when longer bits are used. 

LSH which adopts data-independent random projection gets worse results, since the random 

projections may be not independent of each other. Table 1 shows the experiments on GIST1M dataset 

in term of Recall@1000. The best results are shown in bold face. Our OKH also obtains the best 

results through all the bit length. SH which assumes that the data are multidimensional uniform 

distributed performs worse mainly because the assumption does not hold on this dataset. 

 

Table 1. Experiments on GIST1M in term of Recall@1000. 

#bits 16 32 64 128 

LSH 0.0299 0.0620 0.1256 0.2167 

SH 0.0376 0.0663 0.1091 0.1329 

PCAH 0.0669 0.0838 0.0864 0.0813 

ITQ 0.0863 0.1531 0.2143 0.2687 

KH 0.0871 0.1569 0.2268 0.2796 

OKH 0.0878 0.1689 0.2342 0.2906 

Conclusion 

In this paper, we propose an optimized k-means hashing (OKH) method, for fast approximate nearest 

neighbor search. Our OKH approach can find both the optimal codewords and the indices of them to 

minimize the objective function which combines quantization error with affinity error. The resulting 

binary codes of OKH in Hamming space can better preserve the original neighborhood structure of 

the data. However, in OKH, the indices of the codewords are initialized by PCAH which can not 

generate codes longer than the dimensionality of the data. This will make OKH can not generate codes 

longer than the dimensionality of the data. However, if we use other hashing method like [3], this will 

enable OKH produce longer codes. In the future, we will tackle this issue. 
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