

Optimized K-means Hashing for Approximate Nearest Neighbor Search

Qin-Zhen Guo, Zhi Zeng, Shuwu Zhang Yuan Zhang and Guixuan Zhang

95 Zhongguancun East Road, 100190, BEIJING, CHINA

{ qinzhen.guo, zhi.zeng, shuwu.zhang, yuan.zhang, guixuan.zhang }@ia.ac.cn

Keywords: Approximate nearest neighbor search, vector quantization, hashing, image retrieval.

Abstract. Hashing which maps data into binary codes in Hamming space has attracted more and more

attentions for approximate nearest neighbor search due to its high efficiency and reduced storage cost.

K-means hashing (KH) is a novel hashing method which firstly quantizes the data by codewords and

then uses the indices of codewords to encode the data. However, in KH, only the codewords are

updated to minimize the quantization error and affinity error while the indices of codewords remain

the same after they are initialized. In this paper, we propose an optimized k-means hashing (OKH)

method to encode data by binary codes. In our method, we simultaneously optimize the codewords

and the indices of them to minimize the quantization error and the affinity error. Our OKH method

can find both the optimal codewords and the optiaml indices, and the resulting binary codes in

Hamming space can better preserve the original neighborhood structure of the data. Besides, OKH

can further be generalized to a product space. Extensive experiments have verified the superiority of

OKH over KH and other state-of-the-art hashing methods.

Introduction

Approximate nearest neighbor (ANN) search plays a very important role in many computer vision

problems such as image retrieval, scene classification and 3D reconstruction. Nowadays, several

ANN techniques have been developed including tree-based methods, vector quantization methods

and hashing-based methods.

The tree-based methods such as modified KD-tree [1] use spatial partitions and recursive

hyperplane decomposition to implement similarity search. However, for high-dimensional data, the

tree-based methods can degenerate to exhaustive search.

Vector Quantization (VQ) is an effective method for ANN search. In VQ, the Euclidean distances

of vectors can be approximated by the distances of the codewords that quantize them. To achieve

satisfactory results, the VQ methods need numerous codewords. But this is intractable for practical

application. To deal with this problem, product quantization (PQ) [2] was designed to decompose the

original data space into the Cartesian product of m low-dimensional subspaces and each subspace is

quantized separately by k-means.

The hashing-based methods [3, 4, 5, 6, 7, 8] have attracted more and more attentions for ANN

search. These methods transform the original data into compact binary codes in Hamming space that

preserve the original neighborhood structure of data. The similarity between two data points in the

original space is approximated by the Hamming distance of their hashed codes in the Hamming space.

Recently, a novel method, k-means hashing (KH) [4] which combines the hashing methods with

the vector quantization methods has been developed. In KH, data are quantized by the codewords and

encoded by the indices of the codewords. The effectiveness of KH is largely affected by two aspects.

One is the codewords ci. The other is the index of ci. The KH method updates ci by minimizing the

quantization error and affinity error. On the other hand, since all the data are encoded by the index of

ci, the optimal indices play a very important role for the effectiveness of KH, even more important

than the codewords. However this problem is unaddressed in KH. In KH, the index of ci which is

initiated by PCAH [5] is remaining the same along the whole procedure. This will incur

ineffectiveness. In this paper, we propose an optimized k-means hashing (OKH) method to encode

Applied Mechanics and Materials Vols. 651-653 (2014) pp 2168-2171 Submitted: 02.08.2014
© (2014) Trans Tech Publications, Switzerland Accepted: 05.08.2014
doi:10.4028/www.scientific.net/AMM.651-653.2168

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 159.226.181.13-24/09/14,03:21:01)

http://www.ttp.net

data by binary codes. In OKH, we simultaneously optimize the codewords and the indices of them to

minimize the quantization error and the affinity error.

Optimized K-means Hashing

First of all, let us introduce some notations. The purpose of hashing is to map a d-dimensional data

x dÎ to a B-bit binary code I(x) { 1,1}BÎ - . We have a training set T of n data {x1, x2, …, xn} that form

the rows of the data matrix X n d´Î . The codebook is a set C of k codewords {c1, c2, …, ck}. c(x) is the

codeword that quantizes x. The binary code (or index) of ci is I(ci). X
i
 is the i-th subspace of X.

K-means Hashing. There are two main steps in KH. The first step is quantizing the data by

codewords based on nearest neighbor (NN) rule, which will cause quantization error as Eq. 1

21
()

quan
x T

E x c x
n Î

= -å (1)

And the Euclidean distance between data can be approximated by Eq. 2

(,) ((), ())
i j i j

D x x D c x c x (2)

(,)i j i jD x x x x= - denotes the Euclidean distance. The second step is encoding the data by indices of the

codewords and approximating the Euclidean distance between codewords by the Hamming distance

of their indices. This step will cause the affinity error as Eq. 3,
1 1

2

0 0

((,) ((), ()))
k k

aff ij i j i j
i j

E w D c c H I c I c
- -

= =

= -åå (3)

where 2
/

ij i j
w n n n= , and ni and nj are the number of data quantized by ci and cj respectively. Here

H(I(ci), I(cj)) = s× sqrt(h(I(ci), I(cj))) where h(× ,×) is the Hamming distance and s is a constant scale.

Taking both quantization error and affinity error into consideration, KH find the optimal

codewords ci by minimizing the following objective function,

quan aff
E E El= + (4)

where l is weight. To minimize Eq. 4, KH uses an alternating method: firstly fix ci and assign x to ci

based on NN rule. Then update ci to minimize Eq. 5.
2

, ()

2

;

1
arg min(

 2 ((,) ((), ())))

j
j

j j
c

x c x c

ij i j i j
i i j

c x c
n

w D c c H I c I cl

=

¹

= -

+ -

å

å

 (5)

For the whole data space, if we use B-bit codes to encode the data, 2
B
 codewords need to be

computed. This is intractable especially when B is a large, such as B=64, 128 even 512. This issue can

be tackled by generalize KH to product space. Before encoding the data, the data are divided into m

subspaces and KH use B/m bits codes to encode every subspace. Thus only 2
(B/m)

 codewords are

needed in every subspace.

Proposed Method. In order to deal with the issue of optimal indices of ci, in our method, we update

both the cluster centers ci and the indices of ci, I(ci) to minimize Eq.4.

Directly Eq. 4 is infeasible since the Hamming distance computation is not differentiable. We

notice that the Hamming distance between two binary codes Ii and Ij is given by the number of bits

that are different between them, which can be calculated as
21

(,)
4

i j i j
h I I I I= - (6)

Putting Eq. 1, Eq. 3, Eq. 6 into Eq. 4, we can optimize the index of cj, I(cj) with other {I(ci)}i≠j fixed:

2

; 1

1
arg min ()

2

 ()

j

k

j ij ij i j
I

i j i

T

j j

I w D s I I

Tr I Ib

¹ =

= - -

+ ×

å
 (7)

Applied Mechanics and Materials Vols. 651-653 2169

I(ci) and D(ci, cj) are written as Ii and Dij respectively for short. ()T

j jTr I I is the trace of T

j jI I , which

controls the scale of Ij. b is a weighting parameter. Let,

2

; 1

1
() ()

2

k
T

ij ij i j j j
i j i

O w D s I I Tr I Ib
¹ =

= - - + ×å (8)

We have,
2

; 1

2
2

1

; 1

2

1
2

; 1

()()
(

1
()
4) 2

 (()

1
 ()) 2

2

1
 ()()

2

k
ij ij i jij ij

i j ij j j

ij i j

j

j

k

ij ij j i j i
i j i

ij j i j

k

ij j i ij j i
i j i

w D s I Iw DO

I I I

w s I I

I
I

w D s I I I I

w s I I I

w I I s D s I I

b

b

¹ =

-

¹ =

-

¹ =

¶ -¶¶
= -

¶ ¶ ¶

¶ -
+ +

¶

= - - -

+ - +

= - - -

å

å

å 2 jIb+

Then we can optimize Eq.8 by gradient descent algorithm. After obtaining the optimal Ij, we binarize

it by zero.

By the same token with KH, OKH can be naturally generalized to the product space. Firstly, we

decompose the whole data space into m subspaces. Then we do OKH in every subspace.

16 32 64 128
0

0.1

0.2

0.3

0.4

Binary code length (#bits)

 m
A

P

LSH

SH

PCAH

ITQ

KH

OKH

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

Binary code length (#bits)

R
e
c
a
ll@

1
0
0
0

LSH

SH

PCAH

ITQ

KH

OKH

(a) (b)

Figure 1. Experiments on SIFT1M in term of mAP and Recall: (a) 1000-mAP; (b) Recall@1000.

Experiments

In this section, we evaluate the proposed method OKH for approximate nearest neighbor (ANN)

search. We compare our method with LSH[6], SH[7], ITQ[8], PCAH[5] and KH[4]. We perform

experiments with SIFT1M [2] and GIST1M [2]. For GIST1M which is a 960-dimensional dataset, we

reduce the dimensionality to 512 by PCA. We randomly choose 5K vectors as queries, 100K of the

rest as training set, and the remaining as database. The ground truth is defined by the 1000 nearest

neighbors computed by the linear scan. The retrieved points are computed by ranking their Hamming

distance to the query. The performance is measured by mean Average Precision (mAP) and recall. For

SIFT1M, we set the subcodes length b=(B/M)=4 and b=8 for GIST1M. l and b are set to 10. The

indices of codewords in every subspace are initialized by PCAH. For KH and OKH, we implement

the corresponding algorithm for 50 iterations.

2170 Material Science, Civil Engineering and Architecture Science, Mechanical
Engineering and Manufacturing Technology II

Results and Analysis. The results on SIFT1M in term of mAP and Recall are presented in Figure 1.

As we can see, our OKH method achieves the best results from 16 bits to 128 bits. Due to that OKH

can find both the optimal codewords and the indices while KH can only find the optimal codewords,

our OKH performs better than KH with all testing code length especially when longer bits are used.

LSH which adopts data-independent random projection gets worse results, since the random

projections may be not independent of each other. Table 1 shows the experiments on GIST1M dataset

in term of Recall@1000. The best results are shown in bold face. Our OKH also obtains the best

results through all the bit length. SH which assumes that the data are multidimensional uniform

distributed performs worse mainly because the assumption does not hold on this dataset.

Table 1. Experiments on GIST1M in term of Recall@1000.

#bits 16 32 64 128

LSH 0.0299 0.0620 0.1256 0.2167

SH 0.0376 0.0663 0.1091 0.1329

PCAH 0.0669 0.0838 0.0864 0.0813

ITQ 0.0863 0.1531 0.2143 0.2687

KH 0.0871 0.1569 0.2268 0.2796

OKH 0.0878 0.1689 0.2342 0.2906

Conclusion

In this paper, we propose an optimized k-means hashing (OKH) method, for fast approximate nearest

neighbor search. Our OKH approach can find both the optimal codewords and the indices of them to

minimize the objective function which combines quantization error with affinity error. The resulting

binary codes of OKH in Hamming space can better preserve the original neighborhood structure of

the data. However, in OKH, the indices of the codewords are initialized by PCAH which can not

generate codes longer than the dimensionality of the data. This will make OKH can not generate codes

longer than the dimensionality of the data. However, if we use other hashing method like [3], this will

enable OKH produce longer codes. In the future, we will tackle this issue.

Acknowledgment

This work has been supported by the National Key Technology R&D Program of China under Grant

No. 2012BAH04F02, 2012BAH88F02, 2013BAH61F01 and 2013BAH63F01 and the International

S&T Cooperation Program of China under Grant No. 2013DFG12980.

References

[1] J. Beis, and D. Lowe, in: CVPR, 1997, p. 1000.

[2] H. Jegou, M. Douze, and C. Schmid, IEEE TPAMI, Vol. 33 (2011) p. 117.

[3] Q.-Z. Guo, Z. Zeng, S. Zhang, Y. Zhang, and F. Wang, in: ICME, 2013, p. 1.

[4] K. He, F. Wen, J. Sun, in: CVPR, 2013, p. 2938.

[5] B. Wang, Z. Li and M. Li, in: ICME, 2006, p. 353.

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, in: Annu. Symp. Computational Geometry,

ACM, 2004, p. 253.

[7] Y. Weiss, A. Torralba and R. Fergus, in NIPS, 2008, p. 1753.

[8] Y. Gong and S. Lazebnik, in CVPR, 2011, p. 817.

Applied Mechanics and Materials Vols. 651-653 2171

