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ABSTRACT
How to import image-level labels as weak supervision to

direct the region-level labeling task is the core task of weakly-
supervised semantic segmentation. In this paper, we focus
on designing an effective but simple weakly-supervised con-
straint, and propose an exclusive constrained discriminative
learning model for image semantic segmentation. To be spe-
cific, we employ a discriminative linear regression model to
assign subsets of superpixels with different labels. During
the assignment, we construct an exclusive weakly-supervised
constraint term to suppress the labeling responses of each su-
perpixel on the labels outside its parent image-level label set.
Besides, a spectral smoothing term is integrated to encour-
age that both visually and semantically similar superpixels
have similar labels. Combining these terms, we formulate
the problem as a convex objective function, which can be
easily optimized via alternative iterations. Extensive exper-
iments on MSRC-21 and LabelMe datasets demonstrate the
effectiveness of the proposed model.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content

Analysis and Indexing; I.2.10 [Artificial Intelligence]:
[Vision and Scene Understanding ]

General Terms
Algorithms; Experimentation; Theory

Keywords
Semantic Segmentation; Weak Supervision

1. INTRODUCTION
Image semantic segmentation aims to collaboratively per-

form image segmentation and region-level label assignment.
Simply, it is a task of region-level annotation. Semantic
segmentation is a challenging and fundamental task in com-
puter vision. An effective image semantic segmentation can
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Figure 1: Overview of our model. The superpixels
connected by purple lines are both visually and se-
mantically similar. The mappings from superpixels
to labels, denoted by red dash lines, are suppressed
according to the exclusive constraint, while the map-
ping denoted by blue lines are expected.

facilitate many other vision tasks, such as scene understand-
ing, object detection and region-based image retrieval.

Some typical image semantic segmentation methods are to
train models on pixel-level annotated data [3, 5]. However,
the obtainment of these pixel-level annotation costs much
manpower and time. Fortunately, with the flourish of social
media and the success of photo-sharing websites e.g. Flickr
and Picasa, lots of images with user-contributed image-level
annotation are easily to obtain. The online weakly labeled
data allow us to deal semantic segmentation with weak su-
pervision methods [16, 17, 15, 7]. For example, Liu et. al
proposed to handle the image semantic segmentation prob-
lem with a weakly-supervised graph based algorithm [6]. In
this algorithm, the process of label propagation from im-
ages to regions is bounded by weak supervision information.
Y. Liu et. al proposed a weakly-supervised dual clustering
approach to cluster the over-segmented regions and assign
image-level tags to those regions simultaneously[8]. For the
above weakly supervised approaches, they adopted the idea
of multiple instance learning (MIL) to transfer the image-
level labels to regions, i.e., the MIL-based models encourage
maximum labeling responses of regions to be aligned with
image-level labels. However, such a maximum optimization
problem is non-convex and difficult to solve.



From the aforementioned approaches, we find the essence
of weakly-supervised semantic segmentation is to learn the
mapping from superpixels to labels while the co-occurrence
of the labels and superpixels are also explored. Therefore,
our work is motivated to find a well-optimized but effective
form of weakly-supervised constraint to assist the labeling
mapping for each superpixel in semantic segmentation task.
In this paper, we propose a novel discriminative classifica-

tion with exclusive weakly-supervised constraint to perform
superpixel classification and label propagation collaborative-
ly. As shown in Fig. 1, we first over-segment images to
obtain some image patches, i.e., superpixels, as the inputs
of our model. Then, we employ a discriminative linear re-
gression model to assign some subsets of superpixels with
different labels. During the assignment, we expect the la-
beling responses of each superpixel are suppressed on the
labels outside its parent image-level label set, and an ex-
clusive weakly-supervised constraint term is formulated to
implicitly import the image-level labels as weak supervision.
Besides, a spectral smoothing term is integrated to encour-
age that both visually and semantically similar superpixels
have similar labels, while the visual features and the labeling
information of superpixels are jointly considered to contruct
the similarity graph. Combining these terms, we formulate
the problem as a convex objective function, which can be
easily optimized via alternative iterations. Experimental re-
sults on two public datasets, MSRC and LabelMe, demon-
strate that the proposed model outperforms some state-of-
the-art methods.

2. THE PROPOSED MODEL

2.1 Problem Definition
Suppose we have a data collection χ = {Xi}Ii=1, where

Xi indicates the i-th image. The images are from C classes
and the image-level label information for all images is also
given. That label information is represented symbolically
by G = [g1, . . . , gi, . . . , gI ], where gi = [g1i , . . . , g

c
i , . . . , g

C
i ] ∈

{0, 1}C is the image-level label information for Xi and gci =
1 if Xi has the c-th label and otherwise gci = 0. After
over-segmented, Xi are divided into a set of superpixel-
s {xi1, . . . , xini}, where xik indicates the k-th superpixel
in the i-th image and its candidate label set is gi. At
superpixel-level, the data collection χ is also denoted by
{x1, . . . , xi, . . . , xN}, where N =

∑I
i=1 ni. The exact la-

bel information for the superpixel xi is marked as yi =
[y1

i , . . . , y
c
i , . . . , y

C
i ] ∈ {0, 1}C . In weakly-supervised seman-

tic segmentation, Y = [y1, . . . , yn, . . . , yN ] ∈ {0, 1}C is to be
inferred with image label information G given.

2.2 Weakly-Supervised Discriminative learn-
ing

To deal with semantic segmentation task, we introduce the
linear regression model with weak supervision constraint to
mine the co-occurrence of superpixel-label pairs.
The linear regression is employed to model discriminative

classification, which is formulated as

T1 = α∥XTW − Y ∥2F + β∥W∥2F , (1)

where ∥W∥2F is a regularization term and α and β are weight
coefficients.

The mapping from superpixels to labels should be bound-
ed by weak supervision information. In other words,label
propagation should meet the constraint that the assigned
label of the arbitrary superpixel should belong to the image-
level label set. Besides, one superpixel can have and only one
label. However, in consideration of the inevitable existence
of noisy tags in training data for practical application, the
constraint that one label has at least one superpixel mapped
to it, is not required. In other words, non-image-level label
should be suppressed [4]. To model the limitation on label
propagation, we propose exclusive weakly-supervised con-
straint term:

T2 = Tr[Y (P − [g1, . . . , g1︸ ︷︷ ︸
n1

, . . . , gi, . . . , gi︸ ︷︷ ︸
ni

, . . . , gI , . . . , gI︸ ︷︷ ︸
nI

])]

= Tr[YMT ],

(2)

where P ∈ {1}C×N , M is a binaryzation penalty matrix
in which punishment or impunity is denoted by 1 or 0 re-
spectively. If a superpixel xij is given a label outside its
candidate set gi, it will be punished; If xij maps to a label
which belongs to gi, it will not be punished. Moreover, the
noisy tags in gi are not required to have superpixels mapped
to it. So the weakly-supervised discriminative classification
is defined as minimizing the following equation:

F = α∥XTW − Y ∥2F + β∥W∥2F + γTr[YMT ] (3)

It’s worth mentioning that the proposed exclusive weak-
supervised constraint term is a convex function and can be
easily optimized.

2.3 Spectral Smoothing with Semantic Graph
The employment of spectral smoothing is based on the ob-

servation that the adjacent superpixels in feature space have
good chance to share the same label. We adopt Euclidean
distance to measure the similarity of superpixels. What’s
more, semantic information is also embed into the construc-
tion of the affinity graph, e.g. k-NN semantic graph. Unlike
k-NN original graph, the k-nearest neighbors in k-NN se-
mantic graph should be not only similar in feature space but
also semantic relevant. For a specific image Xm, its image-
level label set is denoted as gm = {l1, l2, . . . , ln}, where n is
the total numbers of labels for the image Xm. For a specific
label lj ∈ gm and superpixel xmi from the m−th image, we
select the k-NN superpixels of xmi from the images with the
specific label lj and the selected superpixels corresponding
to lj is denoted as a set Kmi

j . Then we compute the average

similarity Ami
j between xmi and the elements in Kmi

j :

Ami
j =

k∑
a=1

Sim(xmi, xja) s.t. xja ∈ Kmi
j , (4)

where Sim(x1, x2) = exp(−∥x1 − x2∥2/t), t is a parameter
controlling decay rate. The optimal k-NN superpixels Kmi

of xmi is decided by the following equation:

Kmi = argmax
Kmi

j

{Ami
1 , . . . , Ami

j , . . . , Ami
n } (5)

The similarity between superpixels are formulated as a
similarity matrix S



Spq =

{
exp(−∥xp − xq∥2/t) xq ∈ Kp or xp ∈ Kq

0 otherwise.
(6)

Accordingly, the spectral smoothing term can be formu-
lated as follows:

T3 =
1

2

N∑
p,q=1

Spq∥
yp√
App

− yq√
Aqq

∥22 = Tr[Y TLY ], (7)

where A =
∑N

p,q=1 Spq, and L = A−1/2(A− S)A−1/2.

2.4 Unified Objective Function
Combining the aforementioned items, the problem is for-

mulated as a non-convex objective function as shown below:

min
Y,W
L =α

∥∥∥XTW − Y
∥∥∥2

F
+ β ∥W∥2F + γTr

[
YMT

]
+Tr

[
Y TLY

]
s.t. Y TY = IC , Y ≥ 0.

(8)

where α, β, γ are parameters controlling the weight of the
three terms.

2.5 Optimization
We put the orthogonality constraint ∥Y TY − IC∥2F into

the objective function. So Eq. 5 is rewritten as:

min
Y,W
L =α

∥∥∥XTW − Y
∥∥∥2

F
+ β ∥W∥2F + γTr

[
YMT

]
+Tr

[
Y TLY

]
+

µ

2
∥Y TY − IC∥2F

s.t. Y ≥ 0.

(9)

To solve the optimization problem, we propose an iterative
optimization algorithm like in [10]. At rth iteration:
1. Given Y , optimizing W : Fixing Y , let ∂L/∂W = 0 and

we obtain

W = α(αXXT + βI)−1XY (10)

2. Given W , optimizing Y : Fixing W , let ∂L/∂Y = 0 and
we have

Yij ← Yij
2(µY )ij

(2PY + γM + 2µY Y TY )ij
(11)

where

P = L+ α(IN − α(αXXT + βI)−1X) (12)

Repeat step 1 to 2 until the objective function converges
to a stable state.

3. EXPERIMENTS
We test our model on two frequently-used data in seman-

tic segmentation field, e.g. MSRC-21 and LabelMe Out-
door(LMO). To evaluate the effectiveness, we compare the
proposed model with several related works, including weakly-
supervised approaches WSDC, MIM, MRF, MTL, GMIM

 

 

Figure 2: Average per-class accuracy with different
percentage of images with 1,2 or 3 noisy tags on
LabelMe dataset.

and fully-supervised approaches HCRF, Texboost, THSR,
Supix, LT. Methods are compared by computing the aver-
age per-class accuracy(percentage of pixels with agreement
between the assigned label and groundtruth for a class, av-
eraged on the whole classes).

Besides, to evaluate the robustness of our model, we con-
duct experiments on LabelMe in different noise polluted va-
riety.

3.1 Experiments on MSRC-21
MSRC-21 dataset is widely used in image semantic seg-

mentation field. There are 591 images with pixel-level ground
truths in the dataset. The images are from 21 class and
each image contains 3 labels on average. The dataset is s-
tandardly spilt into 276 images for training, 59 images for
verification and 256 images for testing. The images are over-
segmented into 40 superpixels per image on average via S-
LIC algorithm[1]. After over-segmentation, we employ SIFT
as local descriptor and the standard bag-of-words model as
representation of the superpixels. Besides, the parameter-
s in formulation (9) are set as follows: α = 10000, β =
10000, γ = 100000, µ = 10.

Table 2 shows the experimental results of our approach
and other comparison methods. From the experimental re-
sults, we have the following observations: (1) Our approach
outperforms all the listed weakly-supervised methods and
is close to some fully-supervised methods like HCRF. This
clearly validate the effectiveness of our approach. (2) By
comparing the results of ours and WSDC, we can see the
proposed approach has enhanced the semantic segmentation
accuracy 6 percentage points, which is largely due to the ex-
clusive weakly-supervised constraint.

3.2 Experiments on LabelMe Outdoor
LabelMe Outdoor is a more challenging dataset for se-

mantic segmentation, which consists of 2688 images from 33
classes. Each image contains around 5 labels and has pixel-
level ground truths. It is randomly spilt into 2488 images
for training and 200 images for testing. The parameters in
this dataset are set as follows: α = 10000, β = 100, γ =
10000, µ = 100.

The experimental results of the proposed model and base-
line algorithms are presented in Table 2. From the results,
we can observe that our ECDL algorithm achieve the highest
average per-class accuracy of 34 percent, which surpasses all
the listed comparison methods. Specifically, compared with
WSDC, our approach improves the accuracy by 8 percentage



Method Texboost [11] HCRF [2] MTL [15] MRF [14] MIM [16] WSDC [8] ECDL
Supervision FS FS WS WS WS WS WS
Accuracy 58 75 37 50 67 68 74

Table 1: Semantic segmentation results on MSRC dataset. WS denotes weak supervision, FS denotes full
supervision.

Method Texboost [12] LT [5] Supix [13] THSR [9] MIM [16] GMIM [17] WSDC [8] ECDL
Supervision FS FS FS FS WS WS WS WS
Accuracy 13 24 29 32 14 21 26 34

Table 2: Semantic segmentation results on LabelMe dataset. WS denotes weak supervision, FS denotes full
supervision.

points. The above comparisons show our method leads to
a significant improvement over previous weakly-supervised
approaches and even over some fully-supervised approaches.
To further explore the robustness of the proposed model

to noisy tags, we perform experiments on LMO in different
noise polluted variety. To be specific, the p ∈ {10, 20, . . . , 100}
percentage images are randomly chosen and accordingly each
chosen image is added N ∈ {1, 2, 3} randomly chosen labels
as noise. The experimental results are shown in Figure 2.
From Fig. 2, we can find the accuracy reposefully descends
with the increase of noisy tag number, which demonstrates
to some extent our method are robust to noisy tags. Fur-
thermore, with 70 percent images added one random noisy
tag, our method can still achieve 27 percent accuracy, which
is better than other weakly-supervised methods.

4. CONCLUSIONS
In this paper, we propose an exclusive weakly-supervised

constraint with discriminative learning to collaboratively per-
form image segmentation and region-level annotation. We
impose the exclusive constraint term on linear regression to
construct a weakly-supervised discriminative classification
model. To ensure that both visually and semantically sim-
ilar superpixels have similar labels, a semantic graph based
spectral smoothing term is integrated into the framework.
Extensive experiments on two public datasets demonstrate
the effectiveness of our approach.
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