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ABSTRACT

The task of weakly-supervised semantic segmentation is
solved by assigning image-level labels to over-segmented
superpixels. Considering that superpixels are geometrically
and semantically ambiguous for label assignment, we pro-
pose a joint solution of semantic segmentation to enhance
the learnability of superpixels. First, our model includes a
spectral clustering item and a discriminative clustering item
to obtain some clustering subsets of superpixels (ideally se-
mantic regions), which are more separable semantically than
independent superpixels. Second, sparse coding based fea-
ture for superpixel is adopted to make the representation
robust to noise, and the dictionary for the sparse represen-
tation is learned together with the above clustering items.
Third, a weakly supervised item for superpixels, transferred
from image-level labels, is attached. We jointly formulate
the above problems as a non-convex objective function, and
optimize it by the constraint concave-convex programming
(CCCP) algorithm. Extensive experiments on MSRC-21 and
LabelMe datasets prove the effectiveness of our approach.

Index Terms— Weak supervision, semantic segmenta-
tion, dictionary learning

1. INTRODUCTION

Image semantic segmentation aims to collaboratively perform
image segmentation and tag alignment with those segmented
regions. Simply, it is a task of region-level annotation. This
task is challenging but significant since an effective image
semantic segmentation method can benefit many high-level
vision tasks such as region based image retrieval and fine-
grained image analysis and synthesis.

Owing to the popularity of image sharing websites, e.g.
Flickr, a great deal of images with user-contributed image-
level labels are available, which can provide weak supervision
for the task of semantic segmentation. Hence, in contrast with
the tough requirement on pixel-level annotations from the ful-
ly supervised methods [1, 2, 3, 4], several weakly-supervised
approaches [5, 6, 7] have been proposed and become popu-
lar. X. Liu et al. [8] proposed a bi-layer sparse coding model

for uncovering how to reconstruct an image superpixel with
the over-segmented patches of an image set, and then using
the learned correlation to assign labels to the corresponding
superpixels. S. Liu et al. [9] proposed a weakly-supervised
graph propagation approach, by which the image-level labels
can be propagated to those contextually derived semantic su-
perpixels. The above methods attempt to learn a model on
superpixel level. However, the superpixels are the products of
over-segmention, and hence usually have the geometric and
semantic ambiguities for semantic assignment. How to en-
hance the learnability of superpixels and further improve the
performance of semantic segmentation becomes an important
and challenging task. It is also the motivation of our work.

In this paper, we make the over-segmented superpixels
more learnable from the following two sides of considera-
tions. First, semantically separable subsets of superpixels are
required for label prediction. Second, we expect to obtain a
robust and discriminative feature representation for each su-
perpixel. To address both the considerations in the task of
semantic segmentation, we propose a novel weakly super-
vised solution by jointly employing superpixel clustering and
sparse coding based feature representation. Inspired from the
work in [10], a dual clustering model with weak supervision
is adopted, in which a spectral clustering item is employed
to gather visually similar superpixels into one cluster, and a
discriminative clustering item is used to learn a classifier for
label assignment to each cluster. For the discriminative clus-
tering, a sparse coding feature is used to represent each super-
pixel, and the dictionary for the sparse representation is joint-
ly learned during the dual clustering process. The above prob-
lems could benefit both of them because suitable feature rep-
resentation promotes good clustering results and vice versa.
In addition, a weakly supervised item for superpixels, trans-
ferred from image-level labels, is attached to the dual cluster-
ing model. Combining the above items, a non-convex opti-
mization problem is formulated, which can be solved via the
constraint concave-convex programming iteratively. Finally,
extensive experiments on the public datasets, i.e., MSRC and
LabelMe Outdoor, demonstrate the encouraging performance
of our solution.
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Fig. 1. The flowchart of our approach

2. APPROACH

2.1. Notations

Given an image collection χ = {Xi}Ii=1, where Xi repre-
sents the i-th image. The images are from C classes and
their corresponding image-level label matrix is denoted as
G = [g1, . . . , gi, . . . , gI ], where gi = [g1i , . . . , g

c
i , . . . , g

C
i ] ∈

{0, 1}C denotes the image-level label vector of Xi and gci = 1
if Xi has the c-th label and otherwise gci = 0. The im-
ages Xi are over-segmented into ni superpixels such as
{xi1, . . . , xini}, where xik denotes the k-th superpixel in
the i-th image and its candidate label set is gi. So the data
collection χ can also be marked as {x1, . . . , xi, . . . , xN},
where N =

∑I
i=1 ni. And its corresponding superpixel-level

label matrix can be expressed as Y = [y1, . . . , yn, . . . , yN ] ∈
{0, 1}C , where yi = [y1i , . . . , y

c
i , . . . , y

C
i ] ∈ {0, 1}C repre-

sents the label vector of the n-th superpixel.

2.2. Spectral Clustering

Since the visually similar superpixels are likely to belong to
the same class, we employ a spectral clustering term to mine
such relationship. Euclidean distance is adopted to measure
the visually similar relationship between superpixels and thus
we obtain the k−NN similarity graph S ( k = 50 ). Let A =∑N

i,j=1 Sij , and then the Laplacian matrix can be denoted as
L = A−1/2(A − S)A−1/2. The spectral clustering term can
be formulated as follows:

T1 =
1

2

N∑
i,j=1

Sij∥
yi√
Aii

− yj√
Ajj

∥22 = Tr[Y TLY ] (1)

2.3. Discriminative Clustering with Dictionary Learning

One of the requirement for a good performance in semantic
segmentation tasks is a good data representation. Sparse cod-

ing based feature representation can fit the requirement well.
In general, a sampled superpixel xn may contain only a

small part of information about the destination object. Hence,
if only based on xn, the judgement of the presence or ab-
sence of the destination object may be improper since the
superpixel-level representations have geometric and semantic
ambiguities . However, if we have a learned dictionary D that
contains the most representative object parts (visual words),
by sparse coding formulation, the discriminative visual infor-
mation stored in D can divert into the reconstruction sparse
vectors. The sparse coding term is defined as follows:

T2 = ϵ∥x−Dz∥2F + λ∥z∥1, (2)

where z denotes sparse reconstruction vector corresponding
to x and Z = [z1, . . . , zi, . . . , zN ] denotes the sparse repre-
sentation of the whole N superpixels which is more discrim-
inative than the origin representation [x1, . . . , xi, . . . , xN ].
Besides, the number of atoms in D is set to 250.

Then, a linear mapping W from Z to the predicted labels
Y is introduced as a classifier. The discriminative clustering
term can be defined as minimizing the following equation:

T3 = α∥ZTW − Y ∥2F + β∥W∥2F , (3)

where ∥W∥2F is a regularization term.
Joint optimization of T2 and T3 enables to learn the clas-

sifier W and the dictionary D together. Given the classifier
W , the formulation can be regarded as discriminative cluster-
ing supervised dictionary learning, whereas given the dictio-
nary D, it can be regarded as discriminative clustering learn-
ing with sparse coding.

2.4. Weakly-Supervised Constraint

The weakly-supervised constraint is used to transfer image-
level labels to superpixels, which is based on the three premis-
es: (1) The label of the superpixel xij should belong to the
label set of the image Xi. (2) One superpixel can have one
and only one label. (3) Every label in the image-level label



set should have at least one superpixel corresponding to them
in the image. The weakly-supervised constraint can be for-
mulated as follows:

T4 = γ

I∑
i=1

C∑
c=1

| max
xij∈Xi

yc
ij − gic|

s.t. Y TY = IC , Y ≥ 0,

(4)

where IC is an unit matrix.

2.5. Unified Objective Function

Combining the aforementioned items, the problem is formu-
lated as a non-convex objective function as shown below:

min
Y,W,Z,D

L = Tr
[
Y TLY

]
+ ϵ∥X −DZ∥2F + λ∥z∥1

+ α
∥∥∥ZTW − Y

∥∥∥2

F
+ β ∥W∥2F + γ

I∑
i=1

C∑
c=1

| max
xij∈Xi

yc
ij − gci |

s.t. Y TY = IC , Y ≥ 0.

(5)

where ϵ, λ, α, β, γ are weight coefficients. By optimizing
the objective function, we can learn a good dictionary D and
a discriminative classifier W simultaneously. Finally, the
learned W is used to predict the label of superpixels.

2.6. Optimization

The objective function is non-convex due to the max function
in T4. In order to translate the original optimization prob-
lem into a convex optimization problem, at each iteration, we
replace the non-convex part with the first-order Taylor expan-
sion according to CCCP algorithm [11]. Furthermore, we put
the orthogonality constraint ∥Y TY − IC∥2F into the objective
function. So Eq. 5 is rewritten as:

min
Y,W,Z,D

Tr
[
Y TLY

]
+ ϵ∥X −DZ∥2F + λ∥z∥1

+ α
∥∥∥ZTW − Y

∥∥∥2

F
+ β ∥W∥2F +

µ

2
∥Y TY − IC∥2F

+ γ

I∑
i=1

C∑
c=1

[(1− gci )hcY
T qi + gci (1− hcBUiY hT

c )]

s.t. Y ≥ 0.

(6)

where hc ∈ RC is an indicator vector with all elements but
c−th element are zeros and B = [B1, ..., Bi, ..., BI ], each
Bi = [bTi1, ..., b

T
ic, ..., b

T
iC ] ∈ RC×ni is a matrix correspond-

ing to the image Xi and bic = ηT . And Ui = diag(u1, ..., ui),
uk = 0nk×nk

for k = 1, ..., i−1, i+1, ..., I and ui = Ini×ni.
To solve the optimization problem, we propose an itera-

tive optimization algorithm. At rth iteration:
1. Compute the sparse coding Z with the previous round

of dictionary by gradient descent method.

∂L
∂Z

= 2αW (WTZ − Y T ) + 2ϵDT (DZ −X) + λsign(Z) (7)

Z = Z − ρt
∂L
∂Z

(8)

where ρt = ρ/t is the learning rate at tth iteration in the
gradient descent algorithm and ρ is the initial learning rate.

2. After Z is updated, let ∂L/∂W = 0 and we obtain

W = α(αZZT + βI)−1ZY (9)

3. After W is updated, let ∂L/∂Y = 0 and we have

Yij ← Yij
2(µY )ij

(2MY + P + 2µY Y TY )ij
(10)

where P = γ
∑I

i=1

∑C
c=1[(1− gci )qihc − gciU

T
i BThT

c hc].
4. After Y is updated, let ∂L/∂D = 0 and we obtain

D = XZT (ZZT )−1 (11)

Repeat step 1 to 4 until the objective function converges
to a stable state.

3. EXPERIMENTS

We evaluate the proposed model on two public datasets:
MSRC-21: This dataset contains 591 images from 21 cat-

egories with pixel-level ground truths and there are about 3
labels for each image on average. Here we use the standard
spilt into training and test sets as defined in [12].

LabelMe Outdoor (LMO): The dataset consists of 2688
images from 33 classes also with pixel-level gound truths.
There are around 5 labels per image on average. It is ran-
domly spilt into 2488 training images and 200 test images.

We employ SLIC algorithm [13] to divide all the images
into over-segmented patches (superpixels). After image over-
segmentation, we use SIFT [14] as the local descriptor and
the typical bag-of-words model as the original representation
of each superpixel. To evaluate the performance of semantic
segmentation, we adopt the average per-class accuracy (per-
centage of pixels with agreement between the assigned label
and groundtruth for a class, averaged on the whole classes).
Besides, the parameter settings are given in table 1.

3.1. Experiments on MSRC Dataset

We compare the proposed dictionary learning based super-
pixels clustering (DLSC) approach with two fully-supervised
methods [12, 15] and four weakly-supervised methods [7, 16,
5, 10]. Table 2 shows the general comparison and the detailed

Parameters ρ ϵ λ α β γ µ
MSRC 0.1 2× 105 8× 104 104 104 115 10

LabelMe 0.1 2× 105 8× 104 104 104 400 10

Table 1. The parameter settings on MSRC and LabelMe.
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Texboost [12], FS 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7
HCRF [15], FS 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9
MTL [7], WS 37 7 96 18 32 6 99 0 46 97 54 74 54 14 9 82 1 28 47 5 0 0
MRF [16], WS 50 45 64 71 75 74 86 81 47 1 73 55 88 6 6 63 18 80 27 26 55 8
MIM [5], WS 67 12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58

WSDC [10], WS 68 65 98 50 65 55 79 30 50 85 86 59 96 51 60 89 72 77 93 63 25 49
DLSC, WS 70 71 97 64 77 68 79 52 66 71 84 50 97 69 64 93 76 62 93 70 19 56

Table 2. Semantic segmentation results on MSRC-21 dataset. WS denotes weak supervision and FS denotes full supervision.

Method Texboost [17] LT [3] Supix [18] THSR [19] MIM [5] GMIM [6] WSDC [10] DLSC
Supervision FS FS FS FS WS WS WS WS
Accuracy 13 24 29 32 14 21 26 31

Table 3. Semantic segmentation results on LabelMe dataset. WS denotes weak supervision, FS denotes full supervision.

comparison results for individual classes. From the result-
s, we can draw three conclusions: (1) In general comparison
with the weakly-supervised methods, our method achieve the
highest average accuracy of 70 percent, which validates the
effectiveness of our method. And the average accuracy of
ours is close to the best fully-supervised approach HCRF. (2)
In detailed comparison with the baselines, our DLSC algorith-
m get the best results on 6 out of 21 categories. (3) Compared
with WSDC, the proposed DLSC method has better perfor-
mance on the average accuracy and 13 out of 21 categories. It
demonstrates that the employment of sparse coding as feature
representation with dictionary learning is more effective than
the original feature representation in WSDC.

3.2. Experiments on LabelMe Dataset

Seven popular methods [17, 3, 18, 19, 5, 6, 10] are implement-
ed as benchmark baselines for comparison with our model,
as shown in Table 3. From the results, we can observe that
the proposed DLSC algorithm surpasses the other weakly-
supervised methods and even some full-supervised approach-
es (e.g. LT) significantly. Besides, THSR achieves a little
higher performance than our method on account that THSR is
under full-supervised constraint. In other words, our method
is comparable with full-supervised approaches, which shows
the effectiveness of DLSC. It’s also worth pointing out that
the performance has been improved more obviously on La-
belMe than on MSRC dataset. It is reasonable since MSRC
is a simple and over-development dataset, while labelMe is
more challenging and diverse one.

3.3. Out-of-Sample Discussion

To evaluate the generalization performance of our model, we
conduct experiments on out-of-sample problem. We adopt
different data settings during the learning and predicting pe-
riods. The standard training set and test set are denoted by
τ1 and τ2 respectively. Table 4 display the results of our pro-

posed algorithm under different settings on MSRC and La-
belMe respectively. Several observations can be obtained. In
general, the fluctuation of the accuracy rate across differen-
t settings is quite minimal, which proves the stability of our
approach. Comparing setting 2 and setting 3, we can find the
performance is scarcely affected whether the test images are
added into the training set or not. The aforementioned phe-
nomena indicate our approach has certain stability and high
generalization performance.

Order Learning Predicting Accuracy
MSRC LabelMe

1 τ1 + τ2 τ1 + τ2 71.0 30.8
2 τ1 + τ2 τ2 70.6 31.5
3 τ1 τ2 70.4 31.3

Table 4. Results of DLSC under different settings.

4. CONCLUSION

In this paper, we propose a novel dictionary learning based su-
perpixels clustering (DLSC) approach to collaboratively per-
form image segmentation and tag alignment with those seg-
mented regions. Our model combines dictionary learning, du-
al clustering and weakly-supervised constraint. To obtain dis-
criminative features, sparse coding is employed to represent
each superpixel, and the dictionary for sparse representation
is jointly learned during the clustering process. On base of
the proposed framework, image semantic segmentation can
be effectively implemented.
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