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Abstract—Spectral matching is an efficient approach for
inexact graph matching. Many spectral matching methods boil
down to power iteration which calculate the confidence vector
iteratively. Inspired by the Web page ranking method Hypertext
Induced Topic Search (HITS), we introduce hubness vector and
authority vector to replace the traditional confidence vector,
and an iterative algorithm is proposed to solve the subgraph
matching problem. The incorporation of hubness and authority
can help reduce the distraction caused by outliers, and provides
better robustness against outliers. The performance of the
proposed algorithm is evaluated on both synthetic graphs and
real-world images.

Index Terms—Graph Matching, HITS, Power Iteration

I. INTRODUCTION

Graph matching provides a powerful tool for pattern recog-
nition and machine vision tasks [1], such as 3D reconstruction
[2]-[4], object detection [5], [6], shape retrieval [7], and
image stitching [8].

The performance of graph matching deteriorates when
faced with outliers [9]-[12]. In practice, it is usually nec-
essary to match a model graph to a scene graph which is
contaminated with noise from background and other targets,
which makes the outlier a challenge for graph matching
algorithms.

Traditional spectral matching methods such as spectral
matching (SM) [13] and graduated assignment (GA) [14]
are vulnerable to outliers because they assume that pairwise
affinity matrix is an empirical estimate of the pairwise assign-
ment probability, which is false when outliers exist [9]. To
deal with outliers, the pairwise assingment probabilities are
reweighed in each iteration in probabilistic graph matching
(PGM) [9] so that the influence of outliers is gradually elimi-
nated. Recently, a max-pooling based graph matching (MPM)
[15] algorithm has been proposed to address the challenge of
matching a model graph to a scene graph with large amount
of outliers. It calculates the score of each candidate match
using the maximal support from nearby matches, and hence
prevents the calculation from being contaminated by outliers
or mismatched pairs.

In this paper, we propose an authority and hubness based
algorithm for graph matching with outliers. Graph matching
can be treated as ranking of candidate matches given relations
between the matches, while Web page ranking algorithms
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rank the pages given the links connecting the Web pages
[11]. Many Web page ranking algorithms have emerged in
the last two decades, and a most famous one is Hypertext
Induced Topic Search (HITS) [16]. Inspired by HITS, we
introduce the concept of authority and hubness into graph
matching. Specifically, we introduce an authority and hubness
based algorithm where they are iteratively updated. Authority
measures how confident a match is, while hubness measures
how well a match supports other matches and thus helps to
distinguish inliers from outliers.

The rest of the paper is organized as follows. Related works
are discussed in Section II, while Section III presents the
novel authority and hubness based graph matching (AHM)
algorithm. Experiment results are shown in Section IV, and
Section V concludes the paper.

II. RELATED WORKS

In this section we discuss related works on spectral
matching. Many spectral matching algorithms boil down
to power iteration. Power iteration is a well-known eigen-
value algorithm which finds the largest eigenvalue (abso-
lute) of a matrix and its corresponding eigenvector. Specif-
ically, the procedure of power iteration takes the following
form:

initialize x to xq

repeat
X Ax
X ¢

lIxIl2
until convergence

The sequence of x converges to the principal eigenvector.

Power iteration has different interpretations in different
graph matching algorithms. Typically, the objective function
of the graph matching problem is formulated by:

max vee(X)T Avec(X)

st Xe {0, 1} N NX; <1,

1
d X <1
j

where vec(X) is the row-wise vectorization of X, and
A is a RMNXMN affinity matrix which stores the pairwise
similarity between two graphs G and H.



Power iteration has been treated as a method for solv-
ing for the principle eigenvector (SM [13]), the Taylor
series expansion of the original objective function (GA
[14]), or the probabilistic transition (RRWM [11], PGM
[9]). All these algorithms share a general iterative frame-
work:

initialize

repeat

Update x

Update A (Optional)

constraint enforcement on x by normalization
until convergence

Discretization of x

SM [13] turns out to be one simple yet effective power iter-
ation based graph matching algorithm. The graph matching
problem is cast as a leading eigenvector solving problem,
where the power iteration serves as a method to compute
the principal eigenvector of the affinity matrix A. However,
no constraint enforcement was conducted during the itera-
tions:

repeat
X Ax
X = =
2
until convergence

Discretization

Other successful power iteration based graph matching algo-
rithms improve the original power iteration by updating the
confidence of assignments or the transition matrix (updated
affinity matrix) in different ways.

In GA [14], power iteration is used to solve the one-order
Taylor series approximation of the original objective function.
Compared to the original power iteration method, the con-
fidence of assignments x are manipulated before multiplied
with the affinity matrix:

repeat

X  Ar,r + exp(fx), 8+ B+ 3
x <—row and column normalization of x
until convergence

Discretization

The procedure enhances the matches with high confidence by
using their exponentials and gradually increases the amplifi-
cation factor. The soft-assign operator allows the confidence
to gradually approximate the discrete solution. The row and
column normalization is also used to make sure that x is a
doubly stochastic matrix in each iteration.

A method which is closely related to SM and GA is
RRWM [11]. The affinity matrix is first transformed into a
stochastic transition matrix A in RRWM, some key steps are
as follows:

repeat

X < Ax,r < exp(Bx)
r <— row and column normalization of r

x—ax+ (l—a)r
until convergence
Discretization

Even though interpreted in a random walk framework, the
first two step are similar to GA, with a fixed inflation
parameter 3. The confidence derived in each iteration is a
linear combination of the result from SM and GA. It turns
out that the moderated procedure performs better than both
GA and SM.

In PGM [9], the affinity matrix A is updated to ensure
the convergence to discrete solutions. Its procedure is as
follows:

repeat
A(i,7) = A(i, j) * xe41() /x4 (3)
X1 < AXt

X¢+1 <— row and column normalization of x;4 1
until convergence
Discretization

In MPM [15], apart from the manipulation on the confi-
dence of assignment and the transition matrix, the transition
manner is changed . In traditional transition paradigms, the
confidences of a match is calculated by averaging across
its neighbours. While in MPM, only the neighbour with the
highest supporting confidence is selected, similar to the max-
pooling operation in classification and feature selection tasks
[17], [18].

III. INTRODUCING AUTHORITY AND HUBNESS INTO
GRAPH MATCHING

We introduce authority and hubness into graph spectral
matching inspired by the Web page ranking method Hypertex
Induced Topic Search (HITS) [16]. We first briefly review
the HITS model, then the connection between Web page
ranking and graph matching is analyzed. Finally, the authority
and hubness based graph matching algorithm (AHM) is
introduced.

A. Hubs and Authorities of Web Pages

In HITS model, the Web pages are treated as authorities
and hubs. The basic idea is:

Good authorities are pages that are pointed to by good
hubs, and good hubs are pages that point to good authorities.
[16]

Let L = (I; ;) be the adjacency matrix of Web graph, i.e.
l;; = 1 if page 7 links to page j and [; ; = O otherwise.
Then the hubness vector ( and the authority vector a are
recursively updated as follows:

h=L"aa= (2)
all2
h
a=Lhh= (3)
[z



Note that it is equivalent to:

a= LTLa, a= “4)
all2

h=LL ha= (5)
lall2

The iterations are exactly the power iteration method for
solving the dominant eigenvector of LY L and LL”. Hence
the HITS model is a spectral method in essence.

The advantage of HITS model is that it provides two
scores on each page. Hence the highly ranked hub pages
and pages with high authority are identified. A good hub
represented should point to many high authority pages, and
a good authority should be linked by many different hubs.
The hubs and authorities enforce each other, such that outliers
(unrelated Web pages) are gradually thrown out.

B. Hubs and Authorities in Graph Matching

Suppose that we are given two graph G and H of size M
and N respectively. In the context of graph matching, the
candidate pairs (i,4") with ¢ € G and ¢’ € H are the subjects.
The relation among these candidate pairs are stored in the
affinity matrix A:

(6)

Aiirjjr = AG—1)N+i',(j—1)N+j’
ifiAGi £

_ Jm(dij,dirjr),  and i and j are neighbors
N and i’ and j' are neighbors
0, otherwise.

where m(e;;,e; ) calculates the similarity between two
edges e;; and ey ;. The affinity matrix A plays a similar
role to that of the adjacency matrix in Web graph.

In traditional spectral based graph matching algorithms,
the “confidence” is estimated for each candidate match as
the confidence vector x. Inspired by the HITS model for
webpage ranking, we further divide the confidence into two
parts: hubness h and authority a. Hubness and authority
are assigned to each candidate match. A match with high
hubness is a match who provides many support to highly
authoritive matches (as shown in Fig.1), while a match with
high authority is a match who is supported by many matches
with high hubness.

However, the update strategy of (2) is not directly applica-
ble to the graph matching problem due to different constraint.
Apart from the discrete constraint in (1), the basic constraint
for subgraph matching is that each node in the model graph
should be matched to only one node in the scene graph. Two
matches with a same node involved in either side results in
a contradiction. Taking this constraint into consideration, we
propose to update the authority and hubness as follows.
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(a) (b)

Fig. 1. Two example to explain hubness. Each square represents a candidate
match and the size of squares indicate the authority of a match. Number on

the link indicates the affinity between matches. The match (1,1) in both (a)
and (b) have high authority, however it has larger hubness in (a) than in (b).

The authority vector a is update as:

x = Ah
a = exp(fx)

(7
®)

Note that the update is followed followed by an inflation step
of a = exp(fx) as in [14] and [11]. The inflation forces the
constraint by attenuating small authority and amplifying large
authority.

The hubness vector h is updated as:
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Fig. 2. The calculation of hubness for one candidate match (i,i’).



Specifically, given a match (¢,¢’), the contradiction free
set of neighbor matches with the max multiplied authority X
pairwise similarity is found as shown in Fig.2. The score is
then normalized with |\ (¢)|-th root to form the hubness of
(i,1"), where N/ (j) denote the neighbors of j and NV (7) is the
number of neighbours of j. The reason of using maximization
and multiplication to calculate the hubness is as follows:

1) The maximization helps filter out outlier matches. The
affinity matrix is filled with entries associated with
outlier matches and the outlier-free entries only occupy
a quite small portion. Using summation will result in
flattened hubness among inliers and outlier.
Multiplication (which is equivalent to logarithmic pool-
ing) rather than summation (which is equivalent to
average pooling) is used such that the hubness bias
towards matches who highly support all the neighbours
with high authority rather than matches who only
highly support several neighbours with surprisingly
high authority.

2)

C. The Algorithm

Algorithm 1 Graph Matching with Locally Scale Estimation

Require: Two graphs G; and G, and their edge distance
matrix Dq and Ds;

Ensure: The assignment vector y;

1: Initialize hg, a9, xo as 4 1MNx1

2: repeat

3: Xt41 = Khy

4 appr = exp(Bxeq1)

5:  Normalize a

6 hyr = ([T enq) maxy A jjixi) YN @D
7:  Normalize h

8: until w <eort> Maxlter

9: X = reshape(a, M, N), and discretize X

The normalization of hubness vector h and authority vector
a is conducted by first reshape them into M x N matrix
and normalize each row to 1, then transform them back to
vectors, similar to the strategy in [9]. The algorithm is ter-
minated when a predefined threshold is reached or MazIter
round of iteration have been conducted. The discretization is
performed using greedy or Hungarian based algorithm.

D. Computational Complexity

The computational complexity of hubness updating and
authority updating is O(M?2Nk,), where M is the number
of nodes in the model graph, NV is the number of nodes in the
scene graph, k; is the average number of edges of each node
in the scene graph. The complexity of row-wise normalization
is O(Mks). Hence, the computational complexity of each
iteration is O(M?2Nk;), which is faster or comparable to
recent state-of-the-art algorithms.
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Fig. 3. Different kinds of outliers affect the structure of the graph
constructed with Delaunay triangle. (a) The model graph. (b) A scene graph
contaminated with an outlier which do not break the original structure of
the model graph. (c) A scene graph contaminated with outliers which break
two of the original edges in the model graph.

IV. EXPERIMENT

We evaluate the proposed algorithms on standard synthetic
benchmarks and real image datasets. For comparison to the
state of the art, graduated assignment (GA) [14], probabilistic
graph matching (PGM) [9] , and spectral matching (SM) [13]
are evaluated in the same setting.

Two typical ways to construct the graph is using full con-
nection graph and Delaunay triangulation. For full connection
graph, the long-range connections may be helpful in rigid
transformations, they can only confuse the matches since the
long-range connections are more vulnerable in the presence
of deformation compared to the short-range connections.
Besides, the full connection makes the association graph
dense and hence increases the computational complexity for
matching.

For the Delaunay triangulation, the formation of edges
are sensitive to outliers. There are two interpretations for
outliers in graph matching literature. Basically, outliers are
referred to the vertexes that have no corresponding vertex in
the other graph. In some other literatures, the mismatched
pairs are also called outliers. In this paper, we consider the
first scenario. In this scenario, there are still two kinds of
outliers. The first kind of outliers do not sabotage the graph’s
structure. For the sake of sparseness of the association matrix,
Delaunay triangulation has been used to build the graphs in
many works. For graphs constructed this way, if the outliers
spread around the model graph in the scene graph, most of the
structure in the model graph will be preserved in the scene
graph as shown in Fig.3(b), and hence the performance of
graph matching algorithms can be guaranteed. This usually
makes the inliers have higher density than the outliers, and
it is the reason why many mode-seeking based algorithms
worked. On the other hand, if the outliers are highly mixed
in the territory of the inliers, then the original graph structure
of the inliers may be totally destroyed as shown in Fig.3(c).
This prevents us from finding good matches because the
endorsement from one good match to another is blocked with
outliers.

A good graph construction method should preserve the



structure of the model graph in the scene graph as much
as possible. For the ease of scale estimation, we constructed
the graphs in such a way: the model graph is constructed with
k., nearest neighbours while the scene graph is constructed
with kg nearest neighbours, where ks > k,,, such that all the
edges in model graph are covered in the scene graph.

A. Synthetic point set matching

The proposed algorithm is first evaluated on the task of
random point set matching, which is used for testing in
other algorithms [9], [13], [14]. The synthetic point sets
are generated as follows. The model graph G consists of
15 inlier points under uniform distribution in [0, 1]. All the
points in G are copied to the scene graph H. To test against
disturbance noise, each node was added with an indepen-
dent Gaussian disturbance following the distribution N (0, 7)),
where 1 € [0,0.1]. To test against outliers, 1 to 10 outliers
are added to the scene graph with step size of 1. For all the
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Fig. 4. Matching result on synthetic graphs.

experiments, we constructed the graphs G and H following
the method introduced at the beginning of this section. No
unary similarity is used. Normalized distance is used as edge
features calculated as d;; = ||ps;,p;ll2/ maxqp ||PasDbll2s
and the similarity used in (6) is defined as m(d;j,d; /) =
exp—(d;; — di1j1)? /o with o = 0.15. For all the methods,
Hungarian algorithm is used to project the final result into
binary assignment matrix.

The results are shown in Fig.4. AHM performs better than
other methods against disturbance and outliers. And AHM
performs surprisingly well when the noise level is low and
the number of outliers is large.
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Fig. 5. Experimental results on CMU house sequence. (a) Comparison of
accuracy with respect to baseline width. (b) Comparison of accuracy with
respect to #outlier. (c)-(f) Matching samples.

In practice, SGM performs well against outliers as well
as deformation as shown in the following real image exper-
iments.

B. Experiment on House Sequence

The CMU house image dataset is a benchmark dataset for
graph matching. It consists of 111 frames of a house with a
varying view of point, the wider the baseline, the larger the
deformation. Each of them has been manually labeled with 30
landmarks. Outliers are randomly added to the point set. The
accuracies were compared as the baseline width increased
from 0 to 90 with the number of outliers set to be 5 (with
a step size of 10). Then the accuracies were compared with
respect to the number of outliers when the baseline width
was set to be 50 (with a step size of 1). No unary feature
was used in this experiment. The affinity matrix is calculated
in the same way as in The results are depicted in Fig.5.

Essentially, the points undergo perspective deformation in
each pair of images. The results are similar to that of the
evaluation on synthetic point set perspective deformation. The
proposed algorithm outperforms other algorithms, especially
when the number of outliers is large and the baseline is wide.

C. Experiment on Zurich Building Image Database (ZuBud)

The dataset contains images of different viewpoints ac-
quired from various scenes. 30 pair of images are select for
this experiment, including the figures shown in Fig.6. Feature
points are detected on each image pair. As we can observe,
the images in each pair contain many repetitive pattern.
Which means for each keypoint there exist multiple possible
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Fig. 6. Images samples in Zubud dataset [19].

correspondences. To examine the algorithms on the datasets,
we first manually labeled 30 ground truth correpondence for
each pair of images (since there lacks ground truth label for
this dataset). Then we extend each point set with 1 to 10
outliers by adding nearest neibghbor in SIFT feature space
for the keypoint. The results are shown in Fig.7 together with
some matching samples.

accuracy

Fig. 7. Matching result on Zubud.

V. CONCLUSION

In this paper we introduce the authority and hubness to
graph matching. The relation between graph matching and
the Hypertext Induced Topic Search method is discussed.
By introducing the concept of authority and hubness, an
iterative algorithm is proposed with a novel hubness updating
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scheme. The proposed approach is experimentally shown to
outperform other algorithms, especially when the matching
becomes difficult due to outliers.
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