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Abstract— Key point correspondence plays an important role
in lunar surface image processing. Since lunar surface images
often contain obvious illumination changes, noisy points and
repetitive patterns, traditional appearance based algorithm-
s may fail when local appearance descriptors become less
distinctive. In this paper, we introduce a graph matching
based algorithm to tackle this problem. First, by incorporating
structural information, key point sets in lunar surface images
are represented by graphs. Then key point correspondence is
formulated as a specific graph matching problem which aims
to find a specified number of best assignments, and effectively
approximately solved. Finally, an outlier assignment elimination
method is proposed based on the affine invariance assumption.
Simulations on both benchmark datasets and lunar surface
images witness the effectiveness of the proposed method.

I. INTRODUCTION

KEY point correspondence is often an indispensable
part in lunar surface image processing and also finds

applications in lunar rover operations. For instance, it plays
an important role in self-localization and navigation tasks in
China’s first lunar rover Yutu [24], [15].

In literature, various types of algorithms have been pro-
posed to tackle the point correspondence problem. One
popular group of algorithms are based on appearance match-
ing. Specifically, local features such as SIFT [19], bag of
words [14], and shape context [2] are first extracted from
two images, and then the correspondence can be found by
minimizing the appearance difference between features. The
problem is equivalent to a linear programming problem,
for which efficient algorithms exist. Besides, there exist
other algorithms for correspondence between static scenes
under rigid motion [1], [10]. These methods exploit powerful
constraints to reduce the search space and disambiguate the
correspondence problem [9].

However, there are few algorithms dedicated for lunar
surface image correspondence, and the above algorithms
often fail due to some special characteristics of lunar surface
images. Take Yutu rover for instance, one of its cameras
could shoot forward and backward by pan-tilt rotation. As
the rover moves on, images acquired may contain overlapped
lunar surface area, in which extracted key points should be
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matched. However, such a correspondence problem may be
very challenging due to the following reasons.

• Scale and rotation transformation, even reflected view
Since the lunar rover gets images from different posi-
tions and views, the correspondence between these im-
ages suffers from significant geometric transformations;

• Repetitive patterns Many lunar surface images contains
similar small rocks and pits, which results in the repet-
itive patterns. These repetitive patterns further gener-
ate similar appearance descriptor, making appearance
matching fail in lunar surface correspondence problem;

• Outlier The overlapped areas in two lunar surface
images are usually parts in either images, outliers are
inevitable, and there are usually outliers in both images.
This makes the correspondence problem more difficult.

One main drawback of the above methods is that they
focus on constructing discriminative appearance descriptors,
while ignoring other useful information such as structural
information. When utilizing the structural information, the
correspondence problem can be well defined by graph
matching, by representing key points with graph vertices,
and representing relations between points with graph edges.
The incorporation of constraints on geometric compatibility
and spatial coherence between features could alleviate the
dependence on discriminative ability of every feature.

In this paper, we introduce a graph matching based al-
gorithm to tackle the key point correspondence problem in
lunar surface images. First, key point sets are represented
by graphs. In particular, the structure of the key points is
described with edge features like distance and orientation.
Then key point correspondence is formulated as a specific
graph matching problem which aims to find a specified
number of best assignments, and effectively approximately
solved. Finally, an outlier assignment elimination method is
proposed based on the affine invariance assumption.

From an application point of view, our method has some
resemblance to [24] which for the first time utilized a graph
matching based scheme to deal with the lunar surface image
correspondence. The differences between the two methods
are two-fold. First on algorithm, [24] adopts a probabilistic
graph matching algorithm based on spectral decomposition
to match all the points, and then selects best assignments
by ranking assignment probability. When finding specified
number of best assignments, such a two-step scheme may be
inappropriate because even both steps are optimally solved,
the final matching solution may not be the optimal [25]. By
contrast, our method directly targets at the specified number



of best assignment, avoiding the inequivalence in the two-
step scheme. Second on performance, though [25] could well
tackle the geometric transformation problem, it often suffers
from outliers which is common in lunar surface images. By
contrast, with the help of an outlier assignment elimination
step, our method is robust to outliers.

The paper proceeds as follows. Section II describes
the proposed method, including the problem formulation,
optimization algorithm and outlier assignment elimination
method. The experimental results are given in section III.
Finally section IV concludes the paper.

II. THE PROPOSED METHOD

In this section we first introduce the problem formulation
and the objective function, then show how to optimize the
problem, and finally give a outlier assignment elimination
method.

A. Problem formulation

Given a lunar surface image and key point set extracted
from it. The key point set can be represented as a labeled
weighted graph G = {V,E, l, w}, where V = {1, 2, ...,M}
is the vertex set, and E ⊆ V × V is the edge set. The
labeling function l : V → RM×dl assigns a local appearance
descriptor of size dl to each vertex, and weighting function
w : E → R‖E‖0×dw assigns a edge feature of size dw to
each edge. Each vertex i ∈ V represents one key point vi
with appearance descriptor li around the point as a label.
Each edge {i, j} ∈ E represents the connection between
two vertices i and j with a weight vector wij consisting of
structural descriptors. Below we introduce the formulation of
the graph matching problem.

Based on the above definitions and notations, we next
show how to formulate the graph matching objective function
given two graphs G1 = {V 1, E1, l1, w1} of size M and
G2 = {V 2, E2, l2, w2} of size N assuming M ≤ N . Since
there exist outliers in both lunar surface images, the goal is
find specified number of best assignments between vertices
in G1 and G2, or say L best assignment where L ≤M ≤ N
[25].

The L best assignment problem can be formulated as
follows:

x = argmaxxTAx

s.t.

(IN ⊗ 1TM )x ≤ 1N ,

(1TN ⊗ IM )x ≤ 1M ,

1TMNx = L,x ∈ {0, 1}MN×1. (1)

where 1N is vector of 1s of length N . The operator ⊗
denotes Kronecker product between two matrix. The symbol
<= denotes element-wise <= between two vectors. x ∈
{0, 1}MN×1 is row-wise vectorization of the assignment
matrix X ∈ {0, 1}M×N with Xia = 1 if a is assigned to
i. The constraints in (1) guarantees that x represents a one-
to-one mapping with L assignments.

A ∈ RMN×MN is denoted as affinity matrix [24]. It is
constructed as follows:

Aijab = A[[i−1]N+a][(j−1)N+b]

=


αSiml(l

1
i , l

2
a), if i = j, a = b

(1− α)Simw(w
1
ij ,w

2
ab), if i 6= j, a 6= b

0, otherwise

where α is used to balance the appearance similarity and
pairwise consistency, Simw and Siml calculates the simi-
larity between weights and labels respectively.

B. Optimization method

The optimization of (1) is an NP-hard problem with
factorial complexity, and thus approximate methods are nec-
essary. In recent years, continuous methods are among the
most popular approximate methods for graph matching [4],
which typically involve relaxing the discrete domain to the
continuous domain and obtain a continuous solution c. To
finally get a discrete solution x, a winner-take-all projection
is usually adopted [11], [5], [6], [25], which, however, may
introduces significant additional error [17], [25]. Besides,
most current continuous methods [26], [17], [27], [12] cannot
be applied to L best assignment problems.

In this paper, a continuous method [25] is introduced to
optimize (1), which directly targets at the L best assignment
problem, and project the continuous solution to discrete
domain in a graduated manner. Specifically, this method first
relaxes the constraints in (1) to its convex hull C as follows:

C = {x|(IN ⊗ 1TM )x ≤ 1N , (1
T
N ⊗ IM )x ≤ 1M ,

1TM×Nx = L,x ≥ 0}

Then the relaxed optimization problem is

x = argmaxxTAx

s.t.
x ∈ C

Then the method utilizes a recently proposed graduated
nonconvexity and concavity procedure (GNCCP) [16] to get
the continuous solution and gradually project it to the discrete
domain as follows:

max Fζ =

{
(1 + ζ)xTAx+ ζxTx, if −1 ≤ ζ ≤ 0
(1− ζ)xTAx+ ζxTx, if 0 ≤ ζ ≤ 1

s.t. x ∈ C (2)

As ζ increases from −1 to 1, the objective func-
tion implicitly realizes the transition from the con-
cave relaxation of the original objective xTAx to it-
s convex relaxation. Accordingly, the optimization prob-
lem changes from a concave maximization problem 1 to a
convex maximization problem 2. When finally reaching the
convex relaxation, the solution is guaranteed to be in the
discrete domain D [16]. For each specific ζ, (2) is maximized
by the Frank-Wolfe algorithm [7]. The overall optimization
method is summarized in Algorithm 1.



Algorithm 1 Optimization algorithm for L best assignments
Require: Two graphs G1 and G2;
Ensure: The assignment vector x;

1: Initialize x = 1MN
L
MN , ζ = −1

2: Construct the affinity matrix A by (2)
3: repeat
4: xold = x
5: repeat
6: y = argmax∇Fζ(xold)Ty, s.t. y ∈ C
7: α = argmaxFζ(xold + α(y − xold)), 0 ≤ α ≤ 1
8: xnew = xold + α(y − xold)
9: xold = xnew

10: until ∇Fζ(xnew)T (y−xnew) < ε, where ε is a small
positive constant

11: x = xnew
12: ζ = ζ + dζ
13: until ζ > 1 or x ∈ D
14: return x

In Algorithm 1, the gradient ∇Fζ(x) is given as follows:

∇Fζ(x) =
{

(1 + ζ)(A+AT )x+ 2ζx, if −1 ≤ ζ ≤ 0.
(1− ζ)(A+AT )x+ 2ζx, if 0 ≤ ζ ≤ 1,

In the algorithm y is obtained by solving a linear pro-
gramming problem, for which we utilize a fast approximate
approach following [25] with a complexity of O(M2N).
The step size α can be found by inexact line search, e.g.
backtracking method [3].

C. Outlier assignment elimination

Though the above optimization algorithm could find L
best assignments, there may still be mismatched points,
especially when L is larger than the number of ground truth
assignments. Hence we introduce a outlier assignment elim-
ination method based on angular spatial order [18]. Angular
spatial order is an affine transformation invariant descriptor
which is applicable in lunar surface images, because most
lunar surface areas are flats or gentle slopes. Based on
[18], we further use Delaunay triangulation to construct the
graph and propose a new method to determine convergence.
Below before introducing the outlier assignment elimination
method, we first show how to adapt angular spatial order to
our problem.

D. Angular spatial order

Two subgraphs of size L found by the above algorithm are
denoted by Gs1 and Gs2, their vertex sets are respectively
denoted as V s1 and V s2. For a vertex i in Gs1, a star-
shaped graph Si can be constructed around it. The leaf
vertices of Si are adjacent vertices of i, denoted by adj(i) =
{m1,m2, · · · ,mk}, where ni ∈ V s1, i = 1, · · · , k and
k ≤ L. We also construct a star-shape graph S′i around
i′ in Gs2, i.e. the corresponding vertex of i in Gs1, by
directly utilizing the corresponding vertices of adj(i) as the
leaf vertices of S′i, denoted by adj′(i) = {n1, n2, ..., nk}.
Since S′i is constructed based on the adjacency relation of

(a) (b)

Fig. 1. Star-shaped graph and angular spatial order. (a) Star-shaped graph
S1, and angular spatial order O1 = {5, 4, 3, 2} in Gs1 (b) Star-shaped
graph S′

1, and angular spatial order O′
1 = {4, 3, 5, 2} in Gs2, assuming

vertex 1 in Gs1 is assigned to vertex 1 in Gs2 . Note O1 and O′
1 are

different due to the outlier 5.
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(b) Gs2

Fig. 2. The angular spatial difference vector d = (0, 0, 2/3, 0, 1/2),
and the average angular spatial difference vector d =
(1/4, 7/18, 1/6, 7/12, 1/6).

i in Gs1, hence vertices in adj′(i) are not guaranteed to be
adjacent with i′ in Gs2. The angular spatial order is right the
order of the leaf vertices in clockwise direction [18]. Then
we can obtain the angular spatial orders for Si and S′i, which
are respectively denoted by Oi = {np1 , np2 , ..., npk}, O′i =
{np′1 , np′2 , ..., np′k}, where pi, p′i ∈ {1, 2, ..., k}. For example,
in Fig. 1, i = 1, adj(1) = {2, 3, 4, 5}, O1 = {5, 4, 3, 2} and
O′1 = {4, 3, 5, 2}.

If all the points are matched correctly, Oi and O′i should
be the same because angular spatial order is invariant to
affine transformation. When there is a mismatch, Oi and O′i
should be different as illustrated in Fig.1. Their difference
can be measured by cyclic edit distance of strings [20].
Specifically, to get the cyclic edit distance, first O′iO

′
i =

{np′1 , np′2 , ..., np′k , np′1 , np′2 , ..., np′k} is obtained by concate-
nating O′i with itself. Then the string edit distance between
Oi and O′iO

′
i is computed by the insertion, deletion, and

substitution operation with [20].
Since the cyclic string edit distance between Oi and O′i

is bounded by k, i.e. the number of adjacent vertices of i,
which may be different for other vertices, we normalize it as
follows:

di =
CyclicDistance(Oi, O

′
i)

k
. (3)

For instance, in Fig. 1 there are outliers due to similar
local appearance and d1 = 2/4 = 1/2. The complexity of
calculating a string edit distance is O(k2) [22]. To calculate
the distance for all vertices the complexity is O(Lk2) where
L is the size of the common subgraph.

E. Outlier assignment elimination method

Based on angular spatial order, we next introduce outlier
assignment elimination method. The angular spatial differ-
ence vector is denoted by d = (d1, d2, ..., dL)

T where



di, i = 1, · · · , L is defined in (3). First d is normalized by

d = D−1s1 As1d, (4)

where As1 is the unweighed adjacency matrix of Gs1 and
Ds1 is the corresponding degree matrix. d can be interpreted
as the average angular spatial difference of each vertex’s
neighbors. We use d rather than d to estimate the existence
of outliers because the previous one better characterizes
the matching error. An example of calculating d and d is
illustrated in Fig. 2.

To remove outlier assignments, we conduct the matching
algorithm iteratively decreasing L by a step size 1 until
max[d] < η, where η ∈ (0, 1] is a termination parameter.
This whole outlier assignment elimination method is sum-
marized in Algorithm 2.

Algorithm 2 Outlier assignment elimination method
1: repeat
2: Calculate L best assignment with Algorithm 1;
3: Calculate the angular spatial order Oi and O′i′ for each

pair of assigned points;
4: Calculate angular spatial difference:

di = CyclicDistance(Oi, O
′
i)/|adj(i)|

5: d = D−1s1 As1d, As1 is the adjacency matrix of Gs1,
Ds1 is the degree matrix;

6: L← L− 1
7: until max[d] < η

III. EXPERIMENTAL RESULTS

Evaluation of the proposed graph matching method is
conducted on benchmark datasets in Section 3.1 and Section
3.2 to examine the graph matching method together with the
outlier elimination method. The performance of the proposed
graph matching based method is evaluated on the lunar
surface images in Section 3.3.

In the experiments, the graphs are constructed with De-
launay triangulation. The vertex similarity Siml(li, la) is
defined by

Siml(li, la) = exp(−‖li − la‖22
δl

).

where δl is the kernel width.
The most commonly used edge features are normalized

distance dij and orientation oij . Assume that rij = pj − pi
is the offset vector pointing from coordinate pi to coordinate
pj , and ex is the unit vector along x-axis. dij and oij are
defined as:

dij =
|rij |

maxi,j |rij |
, oij =

1

π
arcsin

rij × ex
|rij |

The edge similarity based on the distance descriptor and
orientation descriptor Simw(wij ,wab) is defined by

Simw(wij ,wab) = exp(−‖wij −wab‖22
δw

) (5)

where δw is the kernel width.

The algorithms included for comparison are spectral
matching (SM) [11], graduated assignment (GA) [8], prob-
abilistic spectral graph matching (PGM) [24], and Bipartite
(BP) [21].

All the simulations are carried out in Matlab 2014a on
2.5GHz CPU(two cores) and 8.00GB RAM.

A. Evaluation on the CMU house image dataset
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(b) Baseline width = 30

Fig. 3. Comparison of the graph matching algorithms on the CMU house
dataset. The baseline width is set to be (a) 10 and (b) 30. The average
accuracy and estimated L are shown.

The CMU house image dataset consists of 111 frames
of a house. Each of them has been manually labeled with
30 landmarks. Same number of randomly chosen outliers
are added to the landmarks of both images to generate G1

and G2. No vertex feature is used, and the distance and
orientation is used as edge feature. The similarity between
edges is calculated with (5). The experiments are conducted
with three setups, in which the baseline width is set to be
10, 30, and 50 respectively. The number of outliers increases
from 0 to 10 with a step size of 1. For each method,
the number of inliers L is estimated through the outlier
elimination procedure. The number of nearest neighbors k
for calculating angular spatial order is set to be 7, and the
threshold η is set to be 0.4. The lowest L is set to be 20.
The accuracy is calculated as:

accuracy =
#CorrectMatches

L

The results are shown in Fig. 3. From the perspective of
matching accuracy, OUR outperforms other algorithms. PGM
performs slightly worse than OUR, and the L estimated from
PGM is less than OUR’s. For GA and SM, the estimated L
approaches to the lower limit of 20, and the accuracy drop
faster than OUR and PGM.



From the perspective of estimated L, with a small baseline
width the estimated L is close to the ground truth of 30.
With a larger baseline width, the deformation becomes more
severe and the matching becomes harder. Accordingly, the
estimated L decreases. In all the cases the L estimated by
OUR is closest to the ground truth of 30. The running time
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Fig. 4. Running time of graph matching algorithms as a function of graph
size using a logarithmic scale for both the x-axis and the y-axis.

of different graph matching algorithms is also compared as
shown in Fig. 4. The size of graph varies from 10 to 30. The
slope of OUR ≈ 3.1. The slope of SM ≈ 3.3, while GA has
a slope ≈ 4.

B. Evaluation on the Car and Motorbike dataset

The car and motorbike dataset was created in [13]. The
dataset consists of 30 pairs of car images and 20 pairs of
motorbike images along with ground truth labels and outliers.
For each pair of images, outliers are added to the ground
truth landmarks in both images to build two graphs G1 and
G2. Similar to the CMU house image dataset, no vertex
feature is used and the distance and orientation is used as
edge feature. The matching accuracy is compared with the
number of outliers increasing from 0 to 10 with step size
of 1. The number of nearest neighbors k for calculating
angular spatial order is set to be 7, and the threshold η is
set to be 0.4. Some matching examples are shown in Fig.
6. Compared with the house dataset, point sets in the car
and motorbike dataset suffers from more severe deformation
and scale change which makes the matching more difficult.
In both datasets, OUR outperforms other methods, which
suggests the proposed method can perform well in real world
images.
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Fig. 5. Comparison of the graph matching algorithms on the car and motor
bike dataset. (a) shows the result on the car dataset, and (b) shows the result
on the motorbike dataset.

C. Evaluation on the Lunar surface images

Finally, the proposed method is evaluated on real lunar
surface images acquired by China’s Yutu rover and from
NASA’s Apollo 15 mission 3. 20 pairs of images are used,
with 5 pairs acquired by Yutu rover and 15 pairs from
the Apollo 15 mission. The keypoints are extracted with a
contrast invariant and quasi-parameter free detector tree-base
morse regions [23] . Each image is labeled with 20 ground
truth points. The SIFT [19] descriptor of each keypoint is
adopted as the vertex feature since it is robust against scale
change, orientation, and local geometrical distortion.

The graph matching algorithms used for the matching in-
clude OUR, PGM, GA, SM, and BP. The outlier elimination
procedure is used together with each of these algorithms to
determine the size of common subgraph. A baseline accuracy
is also shown which is derived with local features alone.
Besides the 20 ground truth points, 1 to 10 outliers are added.
The number of nearest neighbors k for calculating angular
spatial order is set to be 7, and different thresholds are set to
show the affection of the threshold on the final result. The
results are shown in Fig. 7.
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Fig. 7. Matching accuracy and estimated L with respect to the number of
outliers.The threshold η = 0.25.

From Fig. 7 we can observe as follows. When the threshold
is low (Fig. 7 (a,b)), the standard of outlier elimination is
tight. From the perspective of accuracy, since the baseline
method does not utilize structural features it performs poorly.
When the number of outliers is zero, the matching accuracy
is lower than 0.7, which is a direct evidence of the existence
of repetitive patterns in the lunar surface images. The perfor-
mance of OUR, GA, BP and PGM is similar. OUR sightly
outperforms the other methods, while the number of inliers
estimated with OUR is closer to the ground truth than others.
Some matching results achieved by OUR are shown in Fig.
8. With a higher threshold (Fig. 7 (c,d)) few matches are
recognized as outliers. The matching accuracy drops and the
estimated number of inliers tend to be larger than the ground
truth.

IV. CONCLUSIONS

The results in this paper show that key point correspon-
dence for lunar surface images can be solved with graph
matching based algorithm. A graph matching algorithm is
used to solve the L best assignment problem, and an outlier

3Available at http://www.lpi.usra.edu/resources/apollo/catalog/ 70mm/
mission/?15



(a) OUR(19/19) (b) SM(4/11) (c) GA(4/11) (d) PGM(10/11)

Fig. 6. Comparison of the matching results on and a pair of motorbike image. The ground truth number of inliers 30. The estimated L and number of
correctly found matches (#correct) are shown in the brackets (#correct/L).

(a) 11/12 (b) 12/14

(c) 19/20 (d) 12/12

(e) 13/14 (f) 14/14

(g) 16/17 (h) 19/20

Fig. 8. Typical matching samples by OUR with η = 0.25. Green lines
indicate right assignments, and red lines indicate incorrect assignments. The
estimated L and number of correctly found matches (#correct) are shown
in the brackets (#correct/L).

assignment elimination method is used to obtain reliable as-
signments. Simulations on both benchmark datasets and lunar
surface images confirm the effectiveness of the proposed
method.
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