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ABSTRACT

Simple tree model prevails for 2D pose estimation for its sim-

plicity and efficiency. However, the limited kinetic constraints

often lead to double-counting and damage the accuracy of leaf

parts, and this is largely ignored in previous work. In this

paper, we propose a novel enhanced tree model which incor-

porates both local kinetic constraints and global contextual

constraints among non-adjacent parts. By introducing virtu-

al parts, we are able to model richer constraints within a tree

structure and dynamic programming can be utilized for ef-

ficient inference. Experiments on public benchmarks show

that our method is more effective in tackling double counting

problem and can improve the localization accuracy, especially

for the challenging lower limbs.

Index Terms— Articulation, Pose Estimation, Part Based

Model, Mixture, Degree of Freedom

1. INTRODUCTION

The task of 2D human pose estimation is to detect the pres-

ence of human and localize their body parts. It is importan-

t for action recognition, human computer interaction (HCI),

and video analysis etc. The task is challenging due to clut-

tered background, articulation and occlusion.

The most successful pictorial structured model(PSM) [1]

is first introduced to pose estimation by Felzenszwalb and

Huttenlocher [2]. The human body configuration is represent-

ed as a collection of independent parts with pairwise connec-

tions. The pairwise part relationships are embodied in tree

models [3, 4, 5, 6, 7, 8], multi-tree model [9] or loopy graphic

models [10, 11, 12, 13, 14].

Tree models prevail for its simplicity and exact infer-

ence. For instance, Yang and Ramanan [4] proposed the

tree-structured flexible mixture parts(FMP) model which can

capture pairwise spatial relations between locally connected

parts, and it was followed by the hierarchical tree model [6]

and latent tree model [7]. However, existing tree structured

models are insufficient in capturing the relationships of non-

connected body parts, such as symmetric limbs. This often

leads to confuse between left and right limbs and cause the

so called double counting problem. Fig. 1 reflects that the

simple tree structured FMP is prune to double counting with

large deformation and partial occlusion.

Fig. 1. Human pose estimation results from Yang et.al [4]

(top row) and ours (bottom row).

To overcome this issue, Xiao et.al [15] proposed to use

multiple model and recombine the detection results. Wang

et.al [9] utilized multi-tree model to alleviate the limitations

of a single tree-structured model. Some researchers adopted

loopy-graph models [10, 12, 13, 14] and even fully connect-

ed graph [11]. Though loopy models allow more complex

relationships among parts, they can only get approximate so-

lutions with high computational cost.

Our context aware model improves the flexible mixture-

of-parts model [4] in three aspects. First, we model not only

local kinetic constraints but also global contextual constraints

among non-adjacent symmetric parts. This is helpful when

there is weak image evidence for one side of the body parts,

such as occlusion. Then the context aware model maintains

in tree structure by introducing virtual parts, so that dynamic

programming can be utilized for efficient inference. Further,

we propose to use phraselet clustering to learn the local mix-

tures for each part to encode global context. This differs from

that of clustering parts according to the relative position from

the parent node [4] or by the part appearance [7]. Compared

with those loopy graphs of [10] and [14] which also model

constraints among non-adjacent parts, our model is tree struc-

tured and can be inferred efficiently with dynamic program-

ming. Contrast to previous tree structure, our estimation is

more effective in tackling double counting problem and can

improve the localization accuracy of challenging lower limbs

significantly.
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Fig. 2. Structures of the proposed models for upper-body pose

and full-body pose estimation. The nodes colored in blue and

orange denote real parts and virtual parts respectively. The

purple edges represent the kinetic constraints between phys-

ically connected parts, and the green edges are the enhanced

edges used for modeling spacial context among non-adjacent

parts. The arrows show the direction of message passing.

2. OUR APPROACH

In this section we will first briefly overview the Flexible

Mixtures-of-Parts model [4], and then introduce the repre-

sentation of our context aware model as well as the phraselet

clustering, finally we will describe the inference and learning

procedure.

2.1. Pictorial Structured Mixtures of Parts

Given an image I , let G = (V,E) be the tree structured FMP

model, where V is the set of parts and E is the set of pairwise

constraints between connected parts. Each part i is parame-

terized by (pi, ti), where pi = (xi, yi) is the part location and

ti is the mixture type of templets for part i. Let (p, t) rep-

resent the pose configuration, where p = [p1, · · · , p|v|]
T and

t = [t1, · · · , t|v|]
T . The goal is to maximize the pose configu-

ration score S(I,p, t), which is composed of part appearance

score SA(I,p, t) and deformation score SD(I,p, t) as fol-

lows:

S(I,p, t) = S
A(I,p, t) + S

D(I,p, t) (1)

Part Appearance Score. The appearance score is the sum-

mation of part filter response and compatibility biases.

SA(I,p, t) =
∑

i∈V

S
A
i (I, pi, ti) =

∑

i∈V

[

α
ti
i · φ(I, pi) + β

ti
i

]

(2)

where αti
i is the part filter parameters, βti

i is the bias term

for each mixture type and occlusion state and φ(I, pi) is the

part appearance, such as Histogram of Gradients(HOG) [16]

feature in this paper.

Deformation Score. The deformation score is as follows:

SD(I,p, t) =
∑

(i,j)∈E

S
D
ij (I, pi, pj , ti)

=
∑

(i,j)∈E

[

γ
ti
ij · ψ(pi − pj) + δ

titj
ij

] (3)

where γtiij is the deformation parameters for each pair of con-
nected parts. The deformationψ(pi−pj) =

[

dx dx2 dy dy2
]T

,

where dx = xi−xj and dy = yi−yj are the relative location

of child part i with respect to its parent part j. δ
titj
ij is the

deformation bias.

2.2. Context Aware Model

Fig. 2 shows the structures of the proposed context aware

models for upper-body and full-body pose estimation respec-

tively. Compared with the FMP model, the proposed model

is characterized by the following three aspects.

Enhanced Edges. One shortcoming of the FMP model is

the lack of constraints among non-adjacent parts. In the FMP

model [4], as the pairwise geometric constraints merely ex-

ist within physically adjacent local parts, the part appearance

only embodies local geometric constraint between child node

and its parent node. Thus the non-connected symmetric parts

turn to explain the same region and the model prunes to dou-

ble counting when there is large deformation or occlusion (as

shown in the top row of Fig. 1). Our context aware model

incorporates both local constraints and long range contextual

information. The deformation score can be formulated as

SD(I,p, t) =
∑

(i,j)∈E

S
D
ij (I, pi, pj , ti) +

∑

(k,l)∈E′

S
D
kl(I, pk, pl, tk)

(4)

where E′ denote the enhanced edges (colored in green) de-

picted in Fig. 2. The long range constraints make our model

more robust to large deformation and occlusion (as shown in

the bottom row of Fig. 1).

Virtual Parts. In the FMP model, the relative position of

leaf parts to the parent are much more diverse than those of

the higher-level parts in the kinetic tree. This will decrease

the localization accuracy of leaf nodes dramatically. To over-

come this issue, we emphasize the loss of localization error

of lower-level parts with virtual parts V ′ (colored in orange in

Fig. 2) in our model and the part appearance score becomes

as follows

SA(I,p, t) =
∑

i∈V

S
A
i (I, pi, ti) +

∑

i∈V ′

S
A
k (I, pk, tk) (5)

To achieve efficient inference, we make the assumption that

each virtual part and its corresponding real part are spacially

independent. Thus the score of virtual parts can pass along

the enhanced edges and the entire structure of our model is

still in the form of tree.

Phraselet Clustering As shown in Fig. 3, the FMP clusters

local parts only according to the relative position from their

parents, the right elbows with different global upper pose con-

figurations(left: frontal view with separated arms v.s. right:

side view with overlapping arms). This will confuse the two

different kinds of pose configurations and encourage double

counting. To alleviate this challenge, we propose to cluster

local parts by modeling both local and long range interac-

tions between parts. Specifically, the local parts are clustered

according to the relative position from all the parents and

children (including virtual parts) of the part. The proposed

method is similar to the relational phraselets by Desai and Ra-

manan [17], and we call our method as phraselet clustering.

However, the difference is that they model the interaction be-

tween people and objects while we use visual phraselets to

model the interactions between different body parts.
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Clusters of FMP Clusters of ours

Fig. 3. Phraselet clustering for the right elbow. Right elbows

with different pose configuration will be clustered together by

the FMP [4].

2.3. Inference and Learning

Our goal is to maximize the score of the enhanced tree model

as follows:

(p∗, t∗) = argmax

[

∑

i∈V

SA
i (I, pi, ti) +

∑

(i,j)∈E

SD
ij (I, pi, pj , ti)

+
∑

k∈V ′

SA
k (I, pk, tk) +

∑

(k,l)∈E′

SD
kl(I, pk, pl, tk)

]

(6)

As mentioned above, our model is still tree structured with

virtual parts and enhanced edges. We can take the advantage

of dynamic programming by passing messages from leaf n-

odes to the root nodes for efficient inference.

Given training data with labeled positive examples, i.e.

images containing people with annotated part locations and

learned mixture types to be
{(

In,pn, tn
)
∣

∣ n ∈ pos
}

. Denote

the model parameter asw = [αti
i , . . . , β

ti
i . . . , γ

ti
ij . . . , δ

titj
ij ]T ,

which is a concatenation of HOG filters αti
i , part appearance

bias βti
i , deformation parameters γtiij and deformation bias

δ
titj
ij . Let Φ(In,pn, tn) be the concatenation of all the fea-

tures with the same order. The parameter w can be learned

with structural SVM [18] as follows:

argmin
w, ξn≥0

1

2
w

T
w + C

∑

n

ξn

s.t. w · Φ(In,pn, tn) ≥ 1− ξn ∀n ∈ pos,

w · Φ(In,p, t) ≤ −1 + ξn ∀n ∈ neg,∀(p, t).

We optimize this objective function using dual coordinate

descent [19]. The formulation above forces the exponential

number of negative examples to be scored lower than -1. We

follow the advice of [4] to search for hard negative examples

from images without person.

3. EXPERIMENTS AND COMPARASION

The proposed approach is evaluated on three public dataset-

s: Buffy [20], LSP [21] and FLIC [22], which are popular

benchmark datasets. The training procedure and setting are

the same as [4] which is chosen as our baseline method, e.g.,

the non-person images of INRIA Person dataset [16] is used

for hard negative example mining.

3.1. Evaluation Criteria

The most popular criterion for human pose estimation is the

Percentage of Correct Parts (PCP) measure, where estimated

part end points must be within half of the part length from the

ground truth part end points [20]. We adopt the more stric-

t criterion “PCP-strict”: single output and “both end points

to be correct” as described in [23] for the LSP dataset. As

most of the previous results on the Buffy dataset are evaluat-

ed with the original PCP-average criterion [20], we also adopt

the same criterion.

Though PCP was the most widely used metric for evalu-

ation, it has the drawback of penalizing short limbs, such as

lower arms, which are usually more difficult to detect. An

alternative is the Percentage of Corrected Keypoints (PCK)

measure [23], which is adopted by most of the literatures. We

use the PCK criterion to precisely evaluate the localization

accuracy of body joints on the FLIC dataset.

3.2. Evaluation Results

LSP dataset The LSP dataset contains sport images with var-

ious pose and we use the observer-centric annotations as sug-

gested in [24]. Table 1 compares our approach with some

state-of-the-art methods. Some of the average PCP outper-

form us because they utilize deep structures [25, 26], and

some others use stronger feature and prior [27]. However,

our method is much better at localizing lower limbs such as

forearms. Fig. 4 shows some detection results compared with

that of [4].

Table 1. Test results on LSP dataset.

Method Head Torso U.Leg L.Leg U.Arm L.Arm Avg

Ours 78.8 86.2 74.5 71.1 62.1 46.9 67.4

Ramakrishna et al. [26] 84.3 88.1 79.0 73.6 62.8 39.5 67.8

Pishchulin et al. [27] 85.6 88.7 78.8 73.4 61.5 44.9 69.2

Ouyang et al. [25] 83.1 85.8 76.5 72.2 63.3 46.6 68.6

Eichner et al. [24] 80.1 86.2 74.3 69.3 56.5 37.4 64.3

Pishchulin et al. [8] 78.1 87.5 75.7 68.0 54.2 33.9 62.9

Yang & Ramanan [4] 77.1 84.1 69.5 65.6 52.5 35.9 60.8

Yang & Ramanan [23] 79.3 82.9 70.3 67.0 56.0 39.8 62.8

Andriluka et al. [3] 74.9 80.9 67.1 60.7 46.5 26.4 55.7

Buffy dataset Table 2 shows quantitative results of PCP-

average. Our model without phraselet clustering is on par

with that of Yang & Ramanan [4]. And the model with

phraselet clustering is 2.5% better in overall PCP-average.

Table 2. PCP-average on Buffy dataset.
Method Head Torso U.Arm L.Arm Avg

Ours with PCa 100 100 97.2 73.0 90.1

Ours without PC 100 99.3 96.7 66.5 87.4

Yang & Ramanan [4] 99.6 98.9 95.1 68.5 87.6

Sapp et al. [28] 81.9 85.1 77.6 53.6 72.8

Eichner et al. [29] 83.4 84.0 70.5 50.9 68.2

Andriluka et al. [3] 81.3 77.2 67.5 35.1 62.6

aPC = Phraselet Clustering

From Fig. 5 we observed that the position of virtual parts is

closer to its corresponding real part when the model is trained
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Fig. 4. Comparison of detection results. The first row for FMP [4] and the second row for ours. The full-body images are from

the LSP dataset and the upper-body images are from the FLIC dataset.

with phraselet clustering. It reflects that phraselet clustering

is complementary to the spacially independent assumption

between virtual part and its real part.

Fig. 5. The visualization of skeletons of trained models on

Buffy dataset without (left) and with (right) Phraselet Clus-

tering. The blue edges and green edges represent kinetic con-

straints and the enhanced edges respectively. The red and ma-

genta ellipses show the variance of each child part relative to

its parent. We only show one pose configuration for clearance

by placing parts at their best-scoring location relative to their

parent.

FLIC dataset The FLIC dataset contains images of real

life scenes and is challenging in the localization of elbows

and wrists. We compare with several state-of-the-art models

whose codes are available. The result of MODEC [22] is

derived from the model trained by the authors. The model of

FMP [4] is retrained on FLIC training set. Since the train-

ing code of Eichner et al. [29] is not available, we use the

provided model for test.

As shown in Fig 6, our method outperforms MODEC [22]

by 9.8% and 9.0% in AUC1 respectively on elbows and wrist-

s. It reflects that the modeling of long range interactions be-

tween physically unconnected parts(e.g., left and right wrists)

is beneficial for the localization of lower arms.

4. CONCLUSION

In this paper, we propose a novel context aware model which

incorporates both local kinetic constraints and global contex-

1Here AUC means the average detection rate for normalized distance

threshold to be within 0 ∼ 0.2.
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Fig. 6. PCK on FLIC dataset for the most challenging parts:

elbows and wrists.

tual constraints of non-adjacent parts. The model can main-

tain in the form of tree structure by introducing virtual parts,

thus dynamic programming can be utilized for efficient in-

ference. Experiments on public benchmarks show that effec-

tiveness of our method in tackling double counting problem

and improving the localization accuracy of challenging lower

limbs.
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