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ABSTRACT

In this paper, we focus on the issue of large scale image
annotation, whereas most existing methods are devised for
small datasets. A novel model based on deep representation
learning and tag embedding learning is proposed. Specifi-
cally, the proposed model learns an unified latent space for
image visual features and tag embeddings simultaneously.
Furthermore, a metric matrix is introduced to estimate the
relevance scores between images and tags. Finally, an objec-
tive function modeling triplet relationships (irrelevant tag,
image, relevant tag) is proposed with maximum margin pur-
suit. The proposed model is easy to tackle new images and
tags via online learning and has a relatively low test com-
putation complexity. Experimental results on NUS-WIDE
dataset demonstrate the effectiveness of the proposed model.
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1. INTRODUCTION

In the era of big data, there are many image related appli-
cations, such as keyword based image search and picture rec-
ommendation, in need of image annotation. Plentiful tags,
as high level semantic features, are assigned to images to
definitely improve the quality of these applications. In this
paper, we address the issue of large scale image annotation,
namely a large number of images with tags engaged. Many
existing methods [2, 19, 14, 10, 3, 15, 1] for image annota-
tion are established on small datasets, such as Corel5K [6],
TAPRTC-12 [9] and ESP-game [18]. These datasets have on-
ly around 5000 to 20000 images, and these methods are dif-
ficult to be applied to large datasets. By contrast, we focus
on designing an algorithm that can handle a large number
of images.

There exist some methods [20, 8] for large scale image an-
notation (we omit the review of those methods for small scale
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datasets). Weston et al. [20] proposed a method (called WS-
ABIE) to optimize top k tag lists for images. In this method,
tag embeddings are initialized with random variables in a
low-dimensional space. Then a projection matrix is used to
transform the image features into the tag embedding space.
In such space, the relevance scores between images and tags
are measured by inner product. Finally, the objective is to
minimize weighted approximate-rank pairwise (WARP) loss.
The model parameters are tag embeddings and projection
matrix that can be learned recursively via online updating.
Recently, in [8], Gong et al. used convolutional neural net-
work (CNN) [12] to map raw image data to tag indicator
space. Three categories of loss functions for CNN are stud-
ied, namely cross-entropy loss with softmax, pairwise hinge
loss and WARP. The results show that ranking based CNN
(pairwise hinge loss and WARP) is better than classifica-
tion based CNN (cross-entropy loss with softmax). One of
the advantages of ranking based CNN is that the test com-
putation complexity is a constant. However, when new tags
appear, the number of output layer nodes has to be increased
and the network needs to be retrained. Besides these two
methods, kNN and probability SVM [8] are feasible to solve
this problem. In NN based method, tag votes are collect-
ed through top k nearest neighbors. This straightforward
method can achieve state-of-the-art performance, which will
be presented in experiment section. Whereas, it is time-
consuming to find nearest neighbors in large datasets. The
probability SVM based method is to train many one-vs-all
classifiers for each tag. The drawbacks of this method is that
tags have no mutual interactions and the classifiers may not
be sufficiently trained due to sample imbalance.

In this paper, we propose a novel model based on Deep
Representation learning and tag Embedding Learning (DR
EL). First, images and tags are represented as visual fea-
tures and embedding vectors, respectively. Tag embedding
vectors are created for each tag and randomly initialized.
They will be updated in the learning process. The merit of
tag embeddings is to make the direct interactions between
tags and images possible in the unified latent space. Then, t-
wo deep neural networks (DNN) are used to do feature learn-
ing while mapping image features and tag embeddings from
their original spaces to an unified latent space. In the latent
space, the relevance scores between images and tags are es-
timated by a metric matrix. Finally, a pairwise hinge loss
for triplets (irrelevant tag, image, relevant tag) are adopt-
ed with maximum margin pursuit. The model parameters,
including weights of two DNNs, the metric matrix and tag
embeddings, are learned through stochastic gradient descent
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Figure 1: Architecture of the proposed model. The input is a triplet (irrelevant tag, image, relevant tag).
Through two specific DNNs, the image features and tag embeddings are nonlinearly mapped to the latent
space. In the latent space, we use a metric matrix to calculate the relevance scores between images and tags.
The irrelevant and relevant image-tag pairs are put to the pairwise hinge loss based objective function to
optimize the model parameter. The process of test phase is highlighted in the red dashed box.

and backpropagation. The proposed model is easy to handle
new images and tags via online learning. Actually, the mod-
el in [20] can be viewed as a “shallow” type of ours. Both
methods have a relatively low test computation complexity
of O(T') (T is the number of tags). The experimental re-
sults demonstrate the effectiveness of the proposed model
compared to state-of-the-art methods.

2. THE PROPOSED MODEL

We first introduce some notations: the training set con-
tains N images {x;}]* (x; are visual feature vectors) and
T tags {yi}iT:l (y: are randomly initialized embedding vec-
tors). For each image x;, its associated relevant tag set is
Tix ={yij };i?’ and irrelevant tag set is Ti— = {yix }rz:r )
n; is the number of relevant tags.

The architecture of the proposed model is illustrated in
Fig. 1. Generally, the model consists of two parts: the
DNN feature learning and latent space interaction. In the
DNN feature learning, image features and tag embeddings
are mapped from the original spaces to the latent space. For
image features, the transformation is formulated as:

% = f(W7a} + b?),

1)
)
where W}, W2 and b}, b? are weights and bias respectively,
f(-) is sigmoid function and X; are representations of images
in the latent space (the dimensions of these variables are pre-
sented in Section 3.2&3.5). Similarly, §; are representations
of tags in the latent space. There are two hidden layers for
both DNNs, and the second hidden layer is for the latent s-
pace (highlighted in blue dashed box in Fig. 1). The reasons
of this nonlinear transformation process is two-fold: 1) the
resulting latent space makes images and tags interact easily
for relevance score estimation; 2) this process is the feature
learning directly driven by the model objective.

In Fig. 1, images and tags are organized into irrelevant
pairs (the left part of Fig. 1) and relevant pairs (the right

part of Fig. 1). A metric matrix M is employed to compute
the relevance scores of these pairs:

_ ~T ~
Si = Yie MX;,

®3)
(4)

where s, and sjj are relevance scores for irrelevant and rele-
vant pairs (the larger, the more relevant). The matrix M can
capture more complex relationships than just inner produc-
t used in [20], that is, the interactions of each dimension
between y;; (¥:x) and X; can be adjusted by matrix M.
The objective of the our model is to increase relevance
scores of relevant pairs, while decreasing relevance scores of
irrelevant pairs. Here, we adopt pairwise hinge loss:
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where m is used to control margin size (m is set to 1 in ex-
periments). Hinge loss is used in a ranking objective with
the notion of large margin. In this case, it makes relevan-
t pairs rank ahead of irrelevant pairs. The final objective
function is formulated as:

N
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where 0 is the model parameter and Tn is the number
of triplets generated according to N training images with
their tags. Since the deep model has many parameters to
be learned, a large number of samples need to be trained
to prevent overfitting. The form of triplets can expand
N training images to much more training triplets'. Pa-
rameters involved in the proposed model are DNN weight-
s (Wi, b;, W? b7, Wi, b, W7, b%), the metric matrix M

'For example, there are 100 images and 10 tags. Each image
has 2 tags on average. The number of triplets is 1600 (Ctog X
C3 x C3).



and tag embeddings (y;). Error backpropagation and stocha-
stic gradient descent are used to optimize the proposed mod-
el. In the test phase, relevance scores between the test image
and all tags are calculated through the forward pass of the
structure (highlighted in red dashed box in Fig. 1), and tags
with highest scores are taken as the final annotations.

Furthermore, the proposed model can handle new training
images with new tags. The new data can be processed by the
same way in which the original training data is processed.
This online updating only fine-tunes the model parameters
without changing the model structure, which is not feasible
for method in [8].

Test computation complexity. According to the de-
scription of the proposed model, the final annotations are
determined by the relevance scores between the test image
and all tags. Therefore, test computation complexity of the
proposed model is O(T'). Similarly, the text complexity of
method in [20] and probability SVM [17] based method is
also O(T'). For kNN based method, the test complexity will
increase to O(NN) because the distances between the test im-
age and all training images need to be calculated (in prac-
tice, N > T). The method in [8] only requires a single
forward pass of CNN for testing, resulting in a computation
complexity O(C), C is a constant.

3. EXPERIMENTS

3.1 Dataset

The dataset used in the experiment is NUS-WIDE [4],
which is the largest publicly released multilabel dataset. In
this dataset, 269,648 images with 81 different concepts? are
collected from Flickr. Since the compared method [8] uses
CNN, it needs raw images as inputs that are not provided
instead of source URLs. However, some URLs are no longer
valid and some images have no tags, the final set contains
113,290 images. We randomly divide it into the training set
(103,290 images) and the test set (10,000 images).

3.2 Features

We conduct two groups of experiments with low level vi-
sual features and off-the-shelf CNN features (it is widely
accepted to use learned CNN models as feature extractors
[16, 7]), respectively. The low level features include 64-
dimensional color histogram, 144-dimensional color correlo-
gram, 73-dimensional edge direction histogram, 128-dimens-
ional wavelet texture, 255-dimensional block-wise color mo-
ments and 500-dimensional bag of words based on SIFT de-
scriptor [13]. As for CNN features, we use the model trained
on Imagenet [5], provided by Caffe® [11]. The dimension of
CNN feature is 4096. Additionally, the method in [8] with
raw images as inputs is compared with other methods using
off-the-shelf CNN features

3.3 Compared Methods

The methods listed below are taken for comparison:

e WSABIE [20]. This method projects images features
to tag embedding space, and then relevance scores are
calculated using inner product.

o CNNsofimaz; CNNiingetoss, CNNwarp [8]. CNN
based methods must take raw images as inputs, and

2Following [8], we directly regard concepts as tags.
3http://caffe.berkeleyvision.org/

Table 1: Annotation results with low level features.

Method mP mR F1 Ny
kNN 0.1896 | 0.2216 | 0.2043 | 74

SVM 0.0878 | 0.2358 | 0.1279 | 78
WASBIE | 0.1083 | 0.3025 | 0.1595 | 81
DREL 0.1614 | 0.3193 | 0.2144 | 81

Table 2: Annotation results with CNN features.

Method mP mR F1 Ny
kNN 0.2566 | 0.3826 | 0.3072 | 81
SVM 0.1147 | 0.4192 | 0.1801 | 81

WASBIE 0.1667 | 0.4677 | 0.2458 | 81
CNNofimaz | 0.1903 | 0.4896 | 0.2741 | 81
CNNpingeloss | 0.2063 | 0.4718 | 0.2871 | 81

CNNwarp | 0.1996 | 0.4637 | 0.2790 | 78
DREL 0.2295 | 0.4223 | 0.2973 | 81

we implement them using toolkit MatConvNet*. Fur-
thermore, the parameters of these CNN models are
initialized with the same model that is used to extract
off-the-shelf CNN features.

e SVM. For each tag, a probabilistic SVM [17] is trained.
The tags with highest probabilities are determined as
the final annotations.

e ENN. The kNN based method follows the same man-
ner as in [8]. The k is set to 100 for both experiments.

3.4 Evaluation Protocol

We follow the conventional protocol in [14] to evaluate
all methods, namely mean recall (mR) over all tags, mean
precision (mP) over all tags, F1 (F1 = %) score and
N4 (the number of tags that have non-zero recall). The top

5 tags are regarded as the final annotations for each image.

3.5 Setting of the Proposed Structure

Since we take two groups of experiments using low level
features and CNN features respectively, two different groups
of DNNs are used. Specifically, for low level features, the
number of nodes for each layer in image DNN and tag DNN
are 1164-1024-1024 and 256-512-1024. For CNN features,
the structure is changed to 4096-2048-1024 for image DNN
and 256-512-1024 for tag DNN.

3.6 Experimental Results

The results of two groups of experiments are presented in
Table 1 and Table 2, respectively.

From Table 1 and Table 2, we can make some observa-
tions. In low level feature based results, our method and
kNN can achieve state-of-the-art performances with high F1
scores. kNN trends toward a higher mean precision but rela-
tively a lower mean recall and N;. WASBIE and our method
can obtain higher mean recall and full Ni, but mean pre-
cision of WASBIE is lower than ours partially due to its
“shallow” structure. SVM performs poor because it isolates
all tags from each other.

“http://www.vlfeat.org/matconvnet/



In Table 2, CNN feature based results are shown. It can be
observed that the overall performances are much higher than
those using low level features. Actually, off-the-shelf CNN
features always result in high performance [16]. kNN, three
CNN based methods and our method can achieve state-of-
the-art performances. All methods obtain full Ny except
for CNNw arp. kNN still shows the same trend of higher
mean precision and lower mean recall, but the highest F1
score. Three CNN based methods have higher mean recall,
in particular, CN Ngo ftmas gain additional 10% mean recall
compared to KNN. Our method outperforms WASBIE in
mean precision and F1, again demonstrating the superiority
of the deep structure.

In summary, first, CNN features are much better than
low level features for the task of image annotation. Second,
our method and kNN can achieve state-of-the-art perfor-
mances, whereas the proposed method has much lower test
computation complexity. Third, the proposed method can
significantly outperform WASBIE, which demonstrates the
effectiveness of deep representation learning. Finally, CNN
based methods are effective. However, they have to be re-
trained with new images and tags, which is not necessary in
our method.

4. CONCLUSIONS

In this paper, a novel model is proposed for large scale
image annotation via deep representation learning and tag
embedding learning. Image features and randomly initial-
ized tag embeddings are refined and mapped to the latent
space through two deep neural networks. In such latent
space, relevance scores between images and tags are calcu-
lated through a metric matrix. Finally, a pairwise hinge loss
based objective function is adopted to optimize the model
parameters with notion of large margin. The proposed mod-
el can accept new images and tags for training via online
learning without modifying the structure. Furthermore, the
proposed method has low test computation complexity of
O(T). The comparative results with state-of-the-art meth-
ods on NUS-WIDE dataset demonstrate the effectiveness of
our method.
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