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Abstract—Point matching is a problem of finding the optimum
matching between two sets of key points which are extracted
from the surfaces of objects. A popular approach represents the
features of a set of points with a graph model. Traditionally,
the measurement applied in the graph model is the Euclidi-
an distance, which is not suitable for objects with non-rigid
deformations. In this paper, we propose a novel graph model
called the geodesic graph model (GGM) which uses a geodesic-
like distance as its measurement. GGM can better tackle non-
rigid deformations because the geodesic-like distance is a kind of
invariant structural feature during non-rigid deformations. The
building process of the GGM is justified under the assumption
that all the key points are spanning on a manifold. To further
handle the deviations of key point locations, we come up
with a feature weighting process to increase our algorithm’s
robustness. We conduct several experiments on different kinds
of deformations over several widely used datasets. Experimental
results demonstrate the effectiveness of our algorithm.

Index Terms—Point matching, non-rigid deformation, mani-
fold, geodesic distance.

I. INTRODUCTION

Point matching, which finds appropriate correspondences
between two different point sets, is an important and funda-
mental problem in the field of computer vision. The applica-
tion scope of point matching is broad, including object recog-
nition, 3D reconstruct, picture mosaicking, motion detection,
robotic grasping and assembling. There have been a number
of studies dedicated to this problem [1], which can be roughly
categorized into two types: 1, rigid deformation matching; 2,
non-rigid deformation matching [2].

Algorithms for rigid deformation matching problem demand
the deformation type of the target object to be rigid. In
spite of their strict assumptions, these algorithms can solve
lots of matching problems including some simple non-rigid
deformation ones. For the wide application of them, a lot of
studies focus on the rigid deformation matching problem [3].
Random Sample Consensus (RANSAC) [4] and its different
variations [5] are commonly used. In addition, this problem
has been studied from the graph matching [6], [7] point of
view, for example, the spectral methods [8], [9]. However, all
these methods have difficulties to handle objects with complex
deformations.

Algorithms for non-rigid deformation matching problem
handle the situations when complex deformations can-not be
well approximated by a rigid one. In this field, typical previous
works include [2], [10]. Chui and Rangarajan proposed the
TPS-RPM [2] which uses the thin-plate spline [11] to param-
eterize the non-rigid deformations and the soft assign for the
correspondence. One popular approach [12], [13] makes use of
the global features such as the spatial relations among points
for matching. This kind of algorithms are called structural
method [14].

Generally, structural methods cast the matching problem as
an energy minimization task by defining a matching objective
including a local loss term and a global one, which depend on
the local features and global ones respectively. The matching
objective calculates the dissimilarity of features of the whole
matched pairs of points.

The features of points are represented by a graph model
which is built up based on the points in the image. Each edge
in the graph describes the features of the relation between its
two end nodes. To build a graph model which stably represents
the spatial relations among key points, the central problem is
how to link all these nodes in a proper way. Extant literatures
have proposed several methods to link nodes, including k-
neighbors, ϵ-neighbors, Delaunay triangulation et al. They
can build a relatively stable graph model while the object
undergoing rigid deformations. However, they are unable to
achieve high performance under the condition of non-rigid
deformations. That is because the spatial relations built by
these methods are based on classical distance measurements,
such as Euclidian distances, which are very sensitive to the
changing of appearance caused by non-rigid deformations.
Points far apart on the surface of the target object may appear
deceptively close as measured by straight-line Euclidean dis-
tance. As a result, the crux of structural methods for non-rigid
deformations is that how we can describe the spatial relations
by a graph model properly.

In fact, the surface of the target object can be regarded as a
manifold which is embedded in 2D image. Hence, the distance
measurement in manifold can be used in point matching prob-
lem for reference. The geodesic distance which is a popular



measurement in manifold can preserve the intrinsic geometry
of the manifold, which is particularly useful for providing
a kind of invariant feature during non-rigid deformations.
Inspired by such measurement, we introduce the geodesic-like
distance in a weighted graph model. The geodesic-like distance
can preserve the intrinsic geometry among key points as the
geodesic distance do among data points in the manifold. For
neighboring points, the Euclidean distance provides a good
approximation to geodesic-like distance. For faraway points,
geodesic-like distance can be approximated by adding up a
sequence of short edges between neighboring points. As a
result, the graph model which represents the geodesic-like
distances among points tends to stay within the manifold
which is the surface of the target object. Since the local
structural features among key points are more stable than the
global ones during non-rigid deformations [15], this graph
model can more stably describe the features of key points
on objects with non-rigid deformations. The approximations
of geodesic-like distances can be efficiently computed in the
graph model by finding shortest paths in it.

To build such a graph model, the edges of it should be as
short as possible since shorter edges are more likely to change
less during the non-rigid deformations. However, if discarding
all edges that are longer than a threshold, the graph model
may be partitioned into several sub-graphs without any edges
connecting them to each other. Hence, some of the geodesic-
like distances become infinity. To handle this problem, we
establish the minimal spanning tree (MST) of the complete
graph of all the key points as the basis of the graph model. The
minimal spanning tree makes sure that all nodes are involved
in a connected graph while keeping the edges of the graph
model as short as possible. However, the structure of MST
changes easily while the object undergoing deformations. In
order to improve its robustness, we further extend the MST
with more edges which are shorter than a threshold. This final
graph model is referred to as geodesic graph model (GGM).
Based on the GGM, geodesic-like features among points can
be extracted for matching.

In order to give our algorithm a complete performance
evaluation, we conduct several experiments on both non-
rigid deformation matching tasks and rigid ones. Experimental
results show the effectiveness of our algorithm compared with
others, since our algorithm achieves the best performance in
most cases.

The rest of this paper proceeds as follows: Section II
discusses some of the related works. Section III details the
procedure of getting the geodesic-like features proposed by our
model. Section IV formulates the point matching as an energy
minimization task. The experimental results are reported in
Section V. We draw the conclusions in the final section.

II. RELATED WORK

Non-rigid deformations are handled in various sub fields
of computer vision. By regarding the surface of the targeted
object as a manifold, algorithms proposed in manifold learning

can provide useful insights for the non-rigid deformation
matching problem.

Manifold learning [16]–[18] which has been a research
focus for feature subspace learning, maintains the geometric
relations among data points during the dimensional reduction
process. To be more specific, it keeps the same (or as similar as
possible) geometric relations among the projected data in the
target low dimensional space with those in high dimensional
space. Since the data with high dimension are often twisted
in space while the projected data are flatten, the dimensional
reduction process is actually non-rigid.

In point matching problem, the surface of the target object
can be regard as a manifold which is embedded in 2D image.
The key points in the image are analogical to the data points
in the manifold. In the meanwhile, features of key points are
represented by a graph model. With this observation, it is
reasonable to use the ideas of manifold learning for reference
in the point matching problem which also needs to describe
the geometric information of data points. In fact, some of
matching studies have similar insight with us in terms of taking
advantage of algorithms proposed in manifold learning.

Li et al. proposed an object matching method [19] which
is inspired by the Locally Linear Embedding (LLE) algorithm
[17] and has a similar formulation. Based on the fact that one
data point can be linearly reconstructed by its neighbor points,
their method keeps the reconstruction weight to describe the
geometric relations among points. However, this method is not
suitable for the target non-rigid deformations since the recon-
struction weight of each point possibly change too violently
to be able to get a satisfied description of the geometry.

Zheng and Doermann proposed a point matching method
[15] which has a similar idea with LPP algorithm [20]. Their
method matches two points if the correspondence of one
point’s neighbor be a neighbor of its correspondence. This
neighborhood relationship is much robust during non-rigid
deformations. However, this method discards all the geometric
information between points who are far (not neighbor) from
each other.

Focus on the geodesic-like distance proposed in our algo-
rithm, it is inspired by the geodesic distance used in the Isomap
[18] which is a popular manifold learning algorithm.

Isomap presents the data points with a graph model which is
commonly used in point matching problem. It maintains the
spatial relations among data points by keeping the geodesic
distances among points constant during the dimensional re-
duction process. Since the geodesic distance is insensitive
to non-rigid deformations especially articulated deformations
naturally, it is therefore a good choice for representing the
geometric relations among key points in the matching problem.

Some matching algorithms take advantage of the geodesic
distance in matching problems as we do. Elad and Kimmel
proposed an algorithm [21] used in 3D object matching
problem taking advantage of the geodesic distance among key
points. It is a typical work using the geodesic distance to
describe the spatial relations among key points. Since applied
in 3D shapes, it is a direct application of the geodesic distance.



However, the geodesic distance can hardly be applied in the
situations of 2D images directly. Without the depth informa-
tion, the direct counterpart of the geodesic distance between
two key points on the surface of a 2D shape is the distance
between them along the contour. This distance is not useful
in the matching process [22].

To still make use of the intrinsic idea of geodesic distance,
some studies come up with new measurements which discard
the superficial representation of geodesic distance.

Ling’s inner distance method [23] for shape classification
is the most similar work with ours. They come up with the
inner distance inspired by the geodesic distance as we do with
the geodesic-like distance. The biggest difference between
our algorithm and Ling’s is that, our algorithm calculates the
distances only depending on the locations of key points. In
contrast, Ling’s method calculates distances depending on not
only the locations of key points but also the contour of the
object. Though their method has a variety of applications [24],
it is not appropriate for point matching problem because of its
dependence of the contour. When there is no contour or it is
too vague to locate its position, this algorithm is not suitable
to be applied.

The good results achieved by these methods mentioned
above in their own target problems show the useful connection
between the matching problem and the manifold learning
algorithms.

III. GEODESIC-LIKE FEATURES

In this section, we detail the procedure of obtaining the
geodesic-like features in our algorithm. First, the building
mechanism of the geodesic graph model is introduced. After
that, a weight setting process which makes the matching
process more robust is presented.

A. Geodesic Graph Model

The minimal spanning tree (MST) is a minimum-cost
connected graph which links nodes far from each other via
relaying nodes. We select it as the skeleton of our graph model
for its flexibility in non-rigid deformations, especially in the
articulated deformations. In addition, MST contains the short-
est edges which describe the local relations among neighboring
points. However, the structure of the MST changes easily when
the object undergoing violent deformations. In the meanwhile,
the discriminative ability of it is not powerful enough since it
contains a few edges.

In order to improve the robustness and the discriminative
ability of our graph model, the MST is further extended by
adding more edges which are restricted to be shorter than
a threshold t. The extended graph model is referred to as
the geodesic graph model (GGM). The specific procedure of
building GGM are described as follows.

Since the long edges possibly change violently in non-rigid
deformations, the edges between nodes in our graph model are
designed be as short as possible so that all the edges longer
than a threshold are removed in procedure 3.

Algorithm 1: Procedure of building the geodesic graph
model.

Input: The coordinations of all the key points.
Output: The geodesic graph model GGM.

1 Calculate the Euclidian distances between every pair of
key points to build the complete graph G of all the
points.

2 Build the minimal spanning tree Tr of the complete
graph G.

3 Remove all the edges longer than a certain threshold t in
the graph G to obtain a new graph Gr.

4 Combine Tr and Gr together by adding all the edges of
them into a single graph model which is the GGM.

5 return The single graph model which is the GGM.

Suppose the key points of an image are intensively located
in two separate regions so that no short edges can connect
these two regions to each other. As a result, the graph model
Gr is partitioned into two sub-graphs gr1 and gr2 without any
edges connecting these two to each other. Hence, the distance
from one node in gr1 to another node in gr2 is infinite which
is intractable for the solver. We handle this issue by adding
edges which belong to Tr to make Gr a connected graph in
procedure 4. The edges in Tr are the shortest ones that can
link these sub-graphs. To only select edges belong to Tr is
consistent with the statement that the edges in our graph model
should be as short as possible.

We call the shortest path between two nodes in the graph
a link. Than the lengths of links between every pair of nodes
are the geodesic-like distances which are computed based on
the GGM. Fig. 1 shows the procedure of building the GGM.

B. Weight Setting

While the object undergoing dramatic deformations, the
geometric relations between two points who are far from each
other are probably not as reliable as these who are closer to
each other. So, for a specific node in the graph model, the
reliabilities of the geodesic-like features decrease while the
lengths of corresponding links getting longer. In order to de-
scribe the reliabilities, a reasonable approach is to set weights
for different features. Someone uses the learning algorithm
[25] to set the weights of features. But learning algorithm is
much complicated and is not suitable when training samples
are not available. We propose a concise method to set weights
on links based on their variances.

Assuming the nodes are infected by Gaussian noise, a link
with more nodes passed by has a larger variance.

Proof : there are three nodes: a, b, c and three edges ab, bc,
ac. We assume all the node locations Pa, Pb, Pc are infected by
Gaussian noise N (0, σ). The lengths of ab = ∥Pa − Pb∥, bc =
∥Pb − Pc∥ and ac = ∥Pa − Pc∥ are three random variables
whose variances D(ab), D(bc), D(ac) are equal to 2σ which
is the sum of the variances of their corresponding end nodes.
In another way, we link a and c by a dog-leg path through
the node b. Then, the length of the new link from a to c



Fig. 1. The schematic diagram of our algorithm: (a) indicates the locations
of nodes in a graph model; (b) is the complete graph of all these nodes; (c)
shows the minimal spanning tree of (b); (d) is the graph model obtained by
discarding edges which are longer than a threshold in (b); (e) is the GGM
which is the combination of (c) and (d).

is abc = ∥Pa − Pb∥ + ∥Pb − Pc∥ with variance D(abc) =

D(ab) +D(bc) + Cov(ab, bc) ≥
√
D(ab)D(bc) = 2σ where

the Cov(ab, bc) is the covariance between ab and bc. if b lies
on the straight line between a and c, the equality hold.

Consequently, we know that the length of a link which
consists of two parts have higher variance than connecting
the end nodes directly. By mathematical induction, we can
generalize this conclusion to regular situations. Finally, we
know that the variance of the length of a link increase as the
nodes passed by getting more.

We set the weight by function:

wpi
ph

= α−λ
pi
ph (1)

where λpi
ph

≥ 0 is the number of nodes passed by from Pi to
Ph except the end points and α is the decrease rate.

IV. PROBLEM FORMULATION

The matching problem is cast as an energy minimization
task in our algorithm. The energy function used in our algo-
rithm is introduced first in this section. Then, the optimization
scheme of the energy function is presented.

A. Energy Function

The set of key points in an image is represented by a graph
model whose nodes and edges describe the local features
of points and the relations among points respectively. The
graph model can be denoted as g = {V,E,C}, where V =
[v1, v2, . . . vn] ∈ Rdv×n and E = [e1, e2, . . . em] ∈ Rde×m

are feature matrices computed for nodes and links respectively.

C specifics the topology of g based on a node-node affinity
matrix, in which Cij = 1 when the ith and jth nodes are
connected directly, and 0 otherwise.

The matching problem is cast as finding correspondences
among nodes of two graphs that minimize a local loss term
and a global one simultaneously. So, our energy function F
has the form as below:

F (M̃) = L(M̃) +W ·G(M̃) (2)

where L stands for the local loss term. G stands for the global
loss term. W is a weight adjusting the relative importance
between L and G. The matching function M̃ describes the
estimated assignments from the nodes in the template graph
to those in the scene graph. It is an estimation of the true
matching function M . We use pi to denote the ith node in the
template, then the corresponding node of pi in the scene can
be represented as M̃(pi). For the sake of brevity, we rewrite
M̃(pi) as qj below.

Focusing on the specific terms in Eq. (2), the local loss term
L is defined as:

L(M̃) =
∑

DL(pi, qj) (3)

where DL is the estimation of local loss between each corre-
spondence which can be defined as:

DL(pi, qj) = min dist(vpi , vqj ) (4)

Here, vpi and vqj denote the local features of pi and qj
respectively. Many kinds of local features can be applied such
as SIFT, SPINE [26]. The distance between two features is
defined according to the chosen feature descriptor.

The global loss term in Eq. (2) is defined as:

G(M̃) =
∑

DG(dG(E
pi , Eqj );wpi , wqj ) (5)

where Epi is the set of the links whose end nodes include pi.
dG(E

pi , Eqj ) is the evaluation of the global loss between pi
and qj which can be rewritten as:

dG(E
pi , Eqj ) =

∑
pk∈V1\pi

min dist(epi
pk
, e

qj

M̃(pk)
) (6)

in which the epi
pk

denotes the features of the link from pi to
pk. eqj

M̃(pk)
is the corresponding features in the scene graph.

wpi is a weight setting term which is calculated based on the
variances of the global features of pi. DG calculates the global
loss while taking the corresponding weights into consideration.

Let IT and IS denote the template and the scene image
respectively. Suppose their graph models are given: g1 =
{V1, E1, C1} and g2 = {V2, E2, C2}. Two affinity matrices
KV ∈ Rn1×n2 and KE ∈ Rm1×m2 can be calculated
according to the similarities of every pair of nodes and
links respectively. To be more specific, kVij = DL(vpi , vqj )
measures the similarity of the local features of pi and qj ,
and kEij = dG(E

pi , Eqj ) measures the similarity of the global
features of these two nodes.



B. Calculation Details

This subsection details the calculation of these functions
mentioned above, including the matching function, the local
loss term and the global loss term.

1) Matching Function: The matching function M̃ is usually
modeled as a set of binary variables. Similarly, we define
a binary variable matrix X = {0, 1}nt×ns to represent
the matching result of M̃ . Xij = 1 denotes that the ith
template node and the jth scene node are corresponded, and 0
otherwise. In other words, Xij is 1 if and only if M̃(pi) = qj .
We use the widely applied one-to-one constrain which makes
each row of X contain exactly one 1, meaning every template
node must be matched to exactly one node in the scene graph.
As a result, ns is larger than nt in the matrix X .

2) Local Loss Term: In this paper, the shape context [27]
is selected as our local feature. Shape context is a popular
local feature which describes the distribution of all remaining
points from one point’s view. It gets a description about the
global situation which provides it with good robustness and
discriminative ability.

Intuitively, considering a point pi in an image, we draw bins
around it and all the other points must locate in one of these
bins. Then, the numbers of key points located in every bin
can form the shape context which is a distribution describing
the local feature of pi. According to the original method, we
represent the shape contexts as histograms and use the χ2 test
statistic:

kVij = DL(pi, qj) =
1

2

H∑
h=1

[bpi(h)− bqj (h)]
2

bpi(h) + bqj (h)
(7)

where bpi(h) and bqj (h) denote the H-bin normalized his-
togram at pi and qj respectively.

Given the KV , the local loss term L can be calculated as:

L(X) =
∑

DL(pi, qj) = tr(KV
TX) =

nt∑
i=1

ns∑
j=1

kVijXij (8)

where ns and nt are the number of points in the template and
the scene graph respectively.

3) Global Loss Term: The global loss term can be directly
calculated as the sum of the global loss of ever correspon-
dence. The global loss of one correspondence is defined as
the square sum of the differences between corresponding
geodesic-like distances of these two nodes. Specifically, the
epi
pk

is obtained according to the geodesic-like distance between
pi and ph which is denoted as lpi

pk
. Hence, the global loss of

a correspondence can be calculated as:

kEij = dG(E
pi , Eqj ) =

∑
ph∈V1\pi

[lpi
ph

− l
qj

M̃(ph)
]2 (9)

Then, the function DG is calculated as:

DG =
∑

ph∈V1\pi

wpi
ph
w

qj

M̃(ph)
[lpi
ph

− l
qj

M̃(ph)
]2 (10)

where wpi
ph

denotes the weight of our confidence on the
geodesic-like distance between pi and ph in the template
graph. wqj

M̃(ph)
is the corresponding weight in the scene graph.

Finally, the global loss term G which is defined in Eq. (5)
is calculated as:

G(M̃) =

nt∑
i=1

∑
ph∈V1\pi

wpi
ph
w

qj

M̃(ph)
[lpi
ph

− l
qj

M̃(ph)
]2 (11)

which can be rewritten as:

G(X) =

nt∑
i=1

ns∑
j=1

Xij

∑
ph∈V1\pi

wpi
ph
w

qj

M̃(ph)
[lpi
ph

− l
qj

M̃(ph)
]2 (12)

C. Optimization Scheme

The graph matching problem is usually a NP-hard problem
[14]. Someone searches the exponential solution space using
brute methods such as the branch and bound method whose
worst and average complexities are exponential. But this
method is only available for small scale problems, otherwise it
is too inefficiency. To speed up the solving process, researchers
usually use approximation methods to get an approximate
solution.

We use the IPFP algorithm [28] which can approximately
solve the corresponding problem. It is able to approximately
solve problems with the form:

min
x

∥∥xTHx
∥∥
F

s.t. Ax = 1, xTA = 1T , x ∈ {0, 1}ntns

(13)

where x is formed by concatenating column vectors of X , and
H is the affine matrix. Let Hij;ab be the entry of H at the
(i−1)nt+jth row and (a−1)nt+bth column which measures
the total loss if we match pi to qj and pa to qb at the same
time. In this paper, assuming a pair of points (i, a) in IT and
(j, b) in IS , Hij;ab is calculated as:

Hij;ab = DL(i, j) +DL(a, b) + wi
aw

j
b min dist

(
eia, e

j
b

)
(14)

Note that the function DL and min dist
(
eia, e

j
b

)
are both

symmetrical. Therefore H is a symmetrical ntns × ntns

matrix.

V. EXPERIMENTAL RESULTS

In order to give our algorithm a complete performance
evaluation, we test it in both articulated deformation matching
tasks and rigid ones.

Since the way to construct the graph model plays a central
roll in our algorithm, we compare our algorithm with graph
matching algorithms where the graph models are constructed
by conventional methods. The compared methods include the
Delaunay triangulation (Del), the k nearest neighbors (Knei)
and the ϵ neighbors (Enei). The Del triangulates the point set
such that no point is inside the circumcircle of any triangle.
In the meanwhile, the Del maximizes the minimum angle of
all the angles of the triangles. The Knei links each point with
its k nearest points. The Enei links every pair of points whose



distance is smaller than ϵ. On these graph models, the distances
between points are calculated as the lengths of the shortest
path connecting points. The distances are used in the matching
problem as features. Besides, all the methods apply the IPFP
[28] to solve the quadratic assignment problem.

All the methods are evaluated according to their matching
precisions. The matching precision is defined as the ratio
between the number of correct correspondences of inliers and
the total number of inliers.

A. Articulated Deformation

Articulated deformation is a kind of non-rigid deformations
commonly observed. Articulated objects include human bod-
ies, multiple tools and lots of robots. They change their shapes
by rotating around their joints.

Since the geodesic-like feature is invariant under the artic-
ulated deformations, the geodesic graph model built by our
algorithm is suitable for this kind of deformations naturally.
To show the advantage of our algorithm in articulated defor-
mations, we choose the tools dataset to test on. In this dataset,
there are 7 kinds of different tools with 5 different deformed
shapes in each kind.

To quantitatively analysis our model, we manually select 18
to 30 key points from each image and label their corresponding
ground truth. Fig. 2 shows instances of the key points manually
labeled on different kinds of tools.

( a ) ( b ) ( c )

( d )

( e ) ( f ) ( g )

Fig. 2. Key points manually labeled in our experiment on the tools dataset.

Hence, we can calculate the matching precision of our
algorithm by matching every pair of images which contain the
same tool, since every key point has a unique correspondence
in each of the rest images. Table. I shows the matching results,
where the tool indexes are indicated in Fig. 2.

In this experiment, our algorithm obtains the best precisions
in 6 out of 7 subset tests among all the algorithms tested.

In summary, this experiment shows obvious advantage of
GGM in representing the spatial relations among key points
on object with articulated deformations.

TABLE I
MATCHING PRECISIONS ON THE TOOLS DATASET (UNIT: PERCENT)

Tool indexes a b c d e f g
Del 87.9 77.2 59.7 87.9 44.3 42.1 56.1
Knei 75.3 69.6 66.4 87.4 27.9 50.3 55.5
Enei 82.6 76.0 57.3 87.4 37.5 44.1 54.5
Ours 87.4 83.6 83.3 88.7 82.9 89.0 82.1

B. Rigid Deformation

Rigid deformation matching problem is the fundamental
of all the other matching problems. Rigid deformation is
commonly used to approximate more complex deformations.

To show the ability of our method in rigid deformations, we
choose the CMU house/hotel motion data as our test dataset.
This dataset concludes 111 frames of house and 101 frames
of hotel with 30 key points labeled in each frame. We create
test pairs using two frames separated by a specific in-between
frames. As the separation between frames increases, the degree
of deformations increases. Fig. 3 shows a pair of matched
images in the house subset.

In this experiment, we also compare our algorithm with
the PLNS algorithm. [15] which tackles the non-rigid point
matching problem using an idea proposed in a manifold
learning algorithm [15]. We use the code of PLNS algorithm
which is implemented by its authors and apply the default pa-
rameters. For a fair comparison, the PLNS algorithm runs for
one iteration. The matching results under different separation
between frames are shown in Fig. 4.

Fig. 3. Typical matching instance of our algorithm on house dataset.
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Fig. 4. (a) shows the matching precisions on the house sub-dataset; (b) shows
the matching precisions on the hotel sub-dataset.

As shown in the results, our algorithm is the best or the
second best in different separations between frames.



VI. CONCLUSION

In this paper, we introduce a new kind of graph model
which is referred to as the GGM. The geometric relations
among key points are maintained in the matching process
by keeping the same geodesic-like distances in the template
GGM with those in the scene GGM. Different from common
methods, the GGM is built on the basis of the minimal
spanning tree of points which is more flexible to the non-rigid,
especially articulated, deformations. In addition, we introduce
a discretization process and a weight setting process which
can handle the drifting of points effectively. By comparative
experiments, we demonstrate that this algorithm can provide
robust structural features which are invariant to non-rigid
deformations.

This algorithm is easy to implement. And the computational
complexity mainly derives from the procedure of graph build-
ing. The complexity of this procedure is O

(
nt

3 + ns
3
)
.

The parameters of this algorithm are set manually by
experience. We want to build a mechanism to automatically
set these parameters depending on the different conditions of
each key point and the task handled. Meanwhile, this algorithm
is easily infected by outliers. So, our next researching goal
includes making it more robust to outliers.
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