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Abstract— This paper addresses an inversion-free model
predictive control with error compensation for piezoelectric
actuators (PEAs), which is based on a dynamic linearized
multi-layer feedforward neural network model. By the proposed
method, the inverse model of the inherent hysteresis in PEAs
is not required, and the control law can be obtained in an
explicit form. By using the technique of constrained quadratic
programming, the proposed method still works well when
dealing with the plant physical constraints. Moreover, an
error compensation term is introduced into the control law to
attenuate the steady-state error. To verify the effectiveness of the
proposed method, experiments are conducted on a commercial
PEA. The experiment results show that the proposed method
has a good tracking performance for PEAs.

Index Terms— hysteresis, neural network modeling, dynamic
linearization, model predictive control, piezoelectric actuators.

I. INTRODUCTION

NANO-technology has been widely adopted in the high-
precision positioning applications. Due to the fast re-

sponse and high stiffness properties, piezoelectric actuators
are becoming the core components of many high-precision
systems, such as the atomic force microscope [1], comput-
er component [2], and adaptive optics [3]. However, the
inherent hysteresis nonlinearity dramatically degrades the
tracking performance of PEAs under conventional control
methods. Furthermore, the hysteresis nonlinearity of PEAs
is also affected by the changing rate of the input voltage of
PEAs (called rate-dependent property), which increases the
difficulty of designing a desired controller. Therefore, how
to overcome these difficulties has become a challenging and
attractive topic in the literature.

Recently, the inversion-based method is widely adopted in
the field of tracking control of PEAs. This kind of method is
based on a common model structure which is composed of a
linear dynamics submodel and the hysteresis submodel [4].
Under this structure, the hysteresis submodel is independent
of the changing rate of input voltage, and the rate-dependent
property is reflected by the linear dynamics submodel [5].
Therefore, the hysteresis submodel can be compensated by
its inversion. To this end, the model of the hysteresis should
be obtained first, and it is usually expressed by the Preisach
model [6], the Prandtl-Ishlinskii model [7], the Duhem model
[8] in the literature. Then the inverse hysteresis model can be
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calculated accordingly either by an explicit formula or in a
recursive way. Once the hysteresis submodel is compensated,
the only thing left is how to deal with the linear dynamics
submodel, which has been well discussed in the literature [9]-
[11]. However, the tracking performance of PEAs is highly
dependent of the accuracy of the inverse hysteresis submodel.
To alleviate this dependence, the iterative learning control
(ILC) is introduced in the inversion-based method, which
results in the inversion-based iterative control [12]. Here
the ILC method can decrease the error between the desired
trajectory and the actual displacement of PEAs, although the
convergence proof of the inversion-based ILC is based on
the assumption that the hysteresis submodel of PEAs is rate-
independent.

To overcome the disadvantage of the inversion-based
method, the inversion-free approach is drawing attention in
recent years. The widely used inversion-free method is the
sliding mode control (SMC). The main purpose of SMC is
to guarantee the tracking performance of PEAs under the
bounded disturbance and uncertainties, and the hysteresis is
usually considered as a disturbance. Most of SMC schemes
need the feedback of their states [14], therefore, the state
observer is required [15]. Besides, chattering is an inherent
problem of SMC schemes, which can greatly deteriorate the
tracking performance of PEAs. To avoid the design of the
state observer, an input-output-based digital SMC method is
proposed in [16]. However, the chattering problem has to
be solved by using boundary layer technique, which may
cause the steady-state error. Some other studies are focused
on the direct analysis of systems with hysteresis [17]-[18].
These results only give some theoretical discussion and are
seldomly used in the real-time control of PEAs.

Model predictive control (MPC) is a promising method
for tracking control of PEAs, which is suitable for the
control processes with constraints [19]. In [20], an inversion-
based MPC method is studied for the tracking control of
PEAs. Since the inverse model of the hysteresis is needed,
the disadvantage of the inversion-based method still exists.
In our previous study [21], a nonlinear MPC method is
proposed and realized on a commercial PEA. Although it is
an inversion-free method, the control law should be obtained
by solving a complicated nonlinear optimization problem,
and the physical constraints of PEAs are hardly solved.

This paper proposes an inversion-free MPC with error
compensation. The inverse model of hysteresis is not needed.
Compared to the SMC based methods, the state observer
is not required and the chattering problem can be avoided.
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The multi-layer feedforward neural network (MFNN) is
introduced to approximate the behavior of PEAs, and the
dynamic linearization is employed to linearize the MFNN
model in each sampling interval. This dynamic linearized
MFNN based model leads to an explicit control law. To
decrease the steady-state error, an error compensation term
is added in the control law.

II. A MULTI-LAYER FEEDFORWARD NEURAL NETWORK

BASED MODEL OF PEAS: MODELING AND DYNAMIC

LINEARIZATION

The hysteresis is a kind of memory effect, which is relied
on the past input and output signals [26]. Therefore, the
“nonlinear auto-regressive moving average with exogenous
inputs” (NARMAX) structure is a proper way to approximate
the hysteresis nonlinearity. The NARMAX model of PEAs
is given as follows:

y(t) = F (ϕ(t)), (1)

where ϕ(t) = [y(t− 1), · · · , y(t−na), u(t), · · · , u(t−nb)],
y(t) and u(t) are the displacement and input voltage of
PEAs, respectively; integers na and nb are the corresponding
maximum lags for y(t) and u(t). In this paper, a multi-
layer feedforward neural network is used to approximate the
nonlinear function F (·). Since the input of F (·) includes
u(t), · · · , u(t − nb), it can be assumed that the F (·) in-
cludes the terms like

(

u(t) − u(t − 1)
)

,
(

u(t − 1) − u(t −
2)
)

, · · · ,
(

u(t + 1 − nb) − u(t − nb)
)

. Therefore, the rate-
dependent property is inherently implemental in F (·).

A. MFNN Based Modeling of PEAs

The MFNN is set to have three layers: the input layer, the
hidden layer, and the output layer. For the neurons in the
hidden layer, the tangent sigmoid function is chosen as the
activation function. Meanwhile, the linear unit function is
chosen as the activation function in the input and output lay-
ers. The input-output relationship of MFNN can be written
as follows:

y(t) =
n
∑

j=1

wo
jσ(

m
∑

i=1

wh
jiϕi(t) + wh

j0) + wo
0, (2)

where m = na + nb + 1 is the number of neurons in the
input layer, and n is the numbers of neuron in the hidden
layer. The inputs of this MFNN, ϕi(t)(i = 1, · · · ,m), are the
elements of ϕ(t). σ(·) denotes the tangent sigmoid function.
The structure of MFNN is shown in Fig. 1. For convenience,
(2) can be written in a compact form,

y(t) = W oσ(Whϕ(t)), (3)

where Wh ∈ ℜn×(m+1), W o ∈ ℜ1×(n+1) are the weight ma-
trices of the hidden layer and the output layer, respectively;
σ(Whϕ(t)) = [1, σ(Wh

r1
ϕ), σ(Wh

r2
ϕ), · · · , σ(Wh

rn
ϕ)]T ∈

ℜn+1 (Wh
ri

represents the ith row of matrix Wh).
The Levenberg-Marquardt (LM) training method [27] can

be used to obtain the optimal Wh and W o in an off-line way.
For convenience, it is set that W = [W o,Wh

r1
, · · · ,Wh

rn
]T ∈
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Fig. 1. MFNN model structure for PEAs.

ℜ

(

n×(m+1)+1×(n+1)
)

×1 as the weight vector form of the
weight matrices for training, then the derivative information
could be obtained directly.

B. Dynamic Linearization of the MFNN Based Model

At the current operating point, the dynamic linearization
is carried out to extract the linearized model from the MFNN
based model in each sampling interval. Since the linearized
model is only used around the current operating point, it can
approximate the behavior of PEAs more efficiently. Let the
current operating point be ϕ(τ), then the dynamic linearized
MFNN based model is expressed by Taylor-expansion:

y(t)− y(τ) = −a1(y(t− 1)− y(τ − 1)) · · ·

−ana
(y(t− na)− y(τ − na))

+b0(u(t)− u(τ)) · · ·

+bnb
(u(t− nb)− u(τ − nb)),

(4)

where

ai = −
∂F(ϕ(t))
∂ϕi(t)

∣

∣

∣

∣

ϕ(t)=ϕ(τ)

, i = (1, · · · , na),

bi′ = −
∂F(ϕ(t))
∂ϕi′+i(t)

∣

∣

∣

∣

ϕ(t)=ϕ(τ)

, i = na + 1, i′ = 0, · · · , nb.

Define a bias term ζ(τ) = y(τ) + a1y(τ −

1),+ · · · ,+ana
y(τ − na)− b0u(τ),− · · · ,−bnb

u(τ − nb),
then equation (4) can be rewritten as

y(t) = −a1y(t− 1) · · · − ana
y(t− na)

+b0u(t) · · ·+ bnb
u(t− nb) + ζ(τ).

(5)

This dynamic linearized MFNN based model is a linear mod-
el plus a constant bias ζ(τ), which can be considered as the
influence of the hysteresis nonlinearity and the disturbance of
PEAs. According to (2), the partial derivative terms defined
in (4) can be calculated as follows:

∂y(t)

∂ϕi(t)
=

n
∑

j=1

wo
jw

h
ji

(

1− σ2(

m
∑

i=1

wh
jiϕi(t) + wh

j0)
)

. (6)

III. INVERSION-FREE MPC WITH ERROR COMPENSATION

The control schematic diagram of the inversion-free MPC
is shown in Fig. 2. In each sampling interval, the dynamic
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linearized MFNN based model is obtained according to
the current operating point, then the inversion-free MPC is
designed for the tracking control of PEAs.
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Fig. 2. Schematic diagram of the inversion-free MPC.

A. Design of the Inversion-Free MPC

The dynamic linearized MFNN based model is used as the
displacement predictor. Due to the bias term ζ(τ) is a con-
stant during one sampling interval, the adjacent differential
form of the model (5) can be employed to eliminate the bias
term ζ(τ), leading to the displacement predictor as follows:

ŷ(t+ j) =(1− a1)ŷ(t+ j − 1) + (a1 − a2)ŷ(t+ j − 2)

· · ·+ ana
ŷ(t+ j − na − 1)

+ b0∆u(t+ j) · · ·+ bnb
∆u(t+ j − nb),

(7)
where ŷ(t) is the predicted value of the displacement of
PEAs. From the first step to the Ny-th step, the displacement
predictor can be written as










ŷ(t+ 1)
ŷ(t+ 2)

...
ŷ(t+Ny)











=G











∆u(t+ 1)
∆u(t+ 2)

...
∆u(t+Ny)











+H











∆u(t)
∆u(t− 1)

...
∆u(t− nb + 1)











+ S











y(t)
y(t− 1)

...
y(t− na)











,

(8)
where G ∈ ℜNy×Ny , H ∈ ℜNy×nb , and S ∈ ℜNy×(na+1)

are constant matrices, and this equation can be rewritten in
a compact form for convenience:

Ŷ (t) = G∆U(t) +H∆U ′(t) + SY ′(t). (9)

After obtaining the displacement predictor, a performance
index should be designed to obtain the control law of
inversion-free MPC. The performance index is defined by

J = [R(t)− Ŷ (t)]T [R(t)− Ŷ (t)] + ρ∆UT (t)∆U(t),
(10)

where R(t) = [r(t), · · · , r(t +Ny)]
T denotes the reference

signal of PEAs’ displacement. Parameter ρ > 0 is a penalty
term to limit ∆U(t). If constraints of inputs are not con-
sidered, the optimal control law can be obtained by solving

the following equation. Since problem defined by (10) is a
convex quadratic programming problem.

∂J

∂∆U(t)
= 0. (11)

This results in

∆U(t) = (GTG+ ρI)−1GT (R(t)−H∆U ′(t)− SY ′(t)).
(12)

The first element of ∆U(t) is used as the control increment
for the next sampling interval. Therefore, the control signal
u(t+ 1) is given by

u(t+ 1) = u(t) + ∆u(t+ 1). (13)

It can be seen that the inversion-free MPC has an explicit
form in each sampling interval. This advantage can produce a
better adaptation in high-frequency tracking control of PEAs.

If constraints are considered, the optimal control law is
obtained by solving a constrained optimization problem.
Define the changing rate constraint and amplitude constraint
as follows

u ≤ ∆u(t) ≤ u,

U ≤ u(t) ≤ U.
(14)

For ∆U(t) and U(t) = [u(t+1), · · · , u(t+Ny)], the relevant
constraints can be written in a matrix form:

C∆U(t) ≤ Q, (15)

where

C =









INy×Ny

−INy×Ny

T

−T









, Q =









Lu

−Lu

LU − Lu(t)

−LU + Lu(t)









,

T is a lower triangular matrix whose non zero entries are
constant one, and L is an Ny × 1 vector formed by constant
one.

Seeking the optimal control law of (10) subject to the con-
straints (15) is a constrained quadratic optimization problem.
And it is solved by the active set method proposed in [28].

B. Inversion-Free MPC with Error Compensation

By (12), the optimal control law is similar to a proportional
feedback closed-loop controller. Therefore, the steady-state
error may occur under varied references. In order to decrease
the steady-state error, an error compensation term is adopted
in the control law (12), which results in the inversion-free
MPC with error compensation.

Since only the first term of (12) is used for the controller
design, the real controller can be rewritten as follows:

∆u(t+ 1) =KG











1
z
...

zNy











r(t)

−KGH











1
z−1

...
z−nb+1











∆u(t)−KGS











1
z−1

...
z−na











y(t),

(16)
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where KG is the first row of (GTG + ρI)−1GT , and z is
the forward shift operator. Define

Kr(z) = KG











1
z
...

zNy











, Ku(z) = −KGH











1
z−1

...
z−nb+1











,

and Ky(z) = −KGS











1
z−1

...
z−na











.

Then substituting these terms into (16) yields

∆u(t+ 1) = Kr(z)r(t)−Ku(z)∆u(t)−Ky(z)y(t).
(17)

Substituting (13) into (17) leads to

(1 +Ku(z)z
−1)(z − 1)u(t) = Kr(z)r(t) −Ky(z)y(t).

(18)
To compensate the steady-state error, an error compen-

sation term is added into (18). The definition of the error
compensation term is

ue(t) = ue(t− 1) +Ke(r(t) − y(t)). (19)

Then the final control law is

∆u(t) =
Ky(z)

(1+Ku(z)z−1)(z−1)

(

Kr(z)
Ky(z)

r(t) − y(t) + ue(t)
)

.

(20)
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Fig. 3. Schematic diagram of the inversion-free MPC with error compen-
sation.

The block diagram of the controller defined by (20) is il-
lustrated in Fig. 3. It can be seen that the error compensation
term affects the close-loop control system as an integrator.
By the knowledge of classical control theory, the integral
term has the ability to alleviate the steady-state error.

IV. EXPERIMENTS AND DISCUSSIONS

The proposed model and control scheme are verified on a
commercial PEA product (P-753.1CD, Physik Instrumente,
Karlsruhe, Germany). A horizontal movement up to 15 µm
can be performed by this PEA. The displacement can be
measured by a built-in capacitive displacement sensor. The
host computer and the amplifier of this PEA are wired
to an I/O data acquisition board. The sampling time in
the following experiments is set to be 0.05 ms, and the
proposed model and control scheme are implemented in
MATLAB/SIMULINK.

A. Verification of the MFNN based Model and the Dynamic
Linearization

The identification of the MFNN based model needs to be
accomplished first. According to [29], the structure of the
MFNN based model of PEAs could be chosen as a second-
order system, i.e., na = 2. Meanwhile, n is chosen to be 5.
nb is set to be 1. A mixed sinusoid voltage ud(t) is used to
excite the PEA. The amplitude of this voltage input is from
0 V to 80 V, while the frequency is between 1 Hz to 400 Hz.
Then the displacement of the PEA, yd(t), is measured under
this mixed sinusoid vlotage input. With the training data set
[ud(t), yd(t)]

T and the weight vector W , the MFNN based
model can be obtained by the LM training method.

Figure 4 gives the experiment results of the MFNN based
model. The output of the MFNN based model is close to
the real displacment of PEAs. This means that the MFNN
based model has a good performance to approximate the
dynamical behavior of PEAs. Furthermore, the behavior
of PEAs is dramatically different with the increase of the
sinusoid voltage’s frequency. Notably, the MFNN based
model also has a good match, which means that it has the
rate-dependent property.
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Fig. 4. The displacements of the PEA and MFNN based model under
different sinusoid input voltages.

B. Verification of the Inversion-Free MPC with Error Com-
pensation

Comparison experiments of the inversion-free MPC with
and without error compensation are also conducted on the
PEA. The parameter ρ is set to be 30 and Ke = 0.01.
The experiment result is given in Fig. 5. It can be seen
that the inversion-free MPC with error compensation has a
better tracking performance compared with the inversion-free
MPC without error compensation. The experiment results
suggest that the error compensation term could effectively
decrease the steady-state error, resulting in a better tracking
performance.

5492



0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

Time (s)

di
sp

la
ce

m
en

t 
(u

m
)

 

 

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

Time (s)

di
sp

la
ce

m
en

t 
(u

m
)

 

 

0 0.25 0.5 0.75 1
−0.4
−0.2

0
0.2
0.4

Time (s)er
ro

r 
(u

m
)

0 0.25 0.5 0.75 1
−0.4
−0.2

0
0.2
0.4

Time (s)er
ro

r 
(u

m
)

Ref
PEA

Ref
PEA (with error compensation)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

Time (s)

di
sp

la
ce

m
en

t 
(u

m
)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

Time (s)

di
sp

la
ce

m
en

t 
(u

m
)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4
−0.2

0
0.2
0.4

Time (s)er
ro

r 
(u

m
)

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4
−0.2

0
0.2
0.4

Time (s)

er
ro

r 
(u

m
)

Ref
PEA

Ref
PEA (with error compensation)

Fig. 5. Compared experiments of the inversion-free MPC with and without
error compensation.

The tracking performance of the inversion-free MPC with
error compensation for high frequency references are given
in Fig. 6. Sinusoid references with 200 Hz and 300 Hz
are adopted as the desired trajectory. The experiment results
suggest that the tracking performance of the inversion-free
MPC with error compensation is satisfactory.
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Fig. 6. Tracking performance of the inversion-free MPC with error
compensation under high frequency references.

To compare the tracking performance of the SMC method
and the inversion-based method, the PID-based SMC scheme
proposed in [13] and the inversion-based MPC approach
proposed in [20] are both used in the experiments. For
the PID-based SMC scheme, the reference is defined as

r(t) = 5sin(2πft− π
2 )+5, f is the frequency of the signal.

The root mean square (RMS) value of the error between the
desired trajectory and the displacement of the PEA is used
as the performance index. Meanwhile, a special reference
signal SW defined in [20] is introduced in the experiments.
The definition of SW is set as SW = 0.5

(

30
7 sin[

2πfmax

20 (t−

0.1)+π]+ 25
7 sin[

2πfmax

5 (t−0.1)+0.5π]+ 5
7sin[

2πfmax

2 (t−
0.1) + 0.2π] + 5

7sin[2πfmax(t− 0.1)]
)

+ 5, where fmax is
the maximum frequency.

The comparison experiments results are listed in Table I.
Compare with the PID-based SMC scheme, the inversion-
free MPC with error compensation has a better tracking
performance than the PID-based SMC scheme, especially
in the high frequency reference case. Compared with the
inversion-based method, the tracking accuracy has an notable
improvement by the inversion-free MPC with error compen-
sation under the low frequency case.

TABLE I

THE COMPARISON EXPERIMENTS BETWEEN THE PROPOSED METHOD

AND THE APPROACH IN [13] OR [20]. THE ROOT MEAN SQUARE (RMS)

ERROR OF THE DISPLACEMENT ERROR VECTORS ARE LISTED.

References the proposed
method

the method in
[13] or [20]

Sinusoid f = 1 Hz 0.0054 µm 0.008 µm
references f = 5 Hz 0.0079 µm 0.012 µm
from [13] f = 10 Hz 0.0178 µm 0.018 µm

f = 50 Hz 0.0489 µm 0.051 µm
f = 100 Hz 0.0773 µm 0.086 µm
f = 150 Hz 0.1166 µm 0.138 µm

SW from [20] fmax=10Hz 0.0014 µm 0.009 µm
fmax=50Hz 0.0237 µm 0.025 µm

C. Comparison of Control with Constraints

Besides the tracking performance, constraints on the input
voltage of PEAs is another vital factor in industrial appli-
cations. Although it increases the computational burden to
obtain the optimal control law, a better transient response
has been reported in some situations.

The comparison experiments of the inversion-free MPC
with constraints and the hard limiting method (the hard
limiting method means that the input voltage of PEAs will
maintain its upper/lower bound values if the calculated input
voltage exceeds the physical limit) are given in Fig. 7: the
transient trajectory of the step response of the PEA and the
variation of the input voltage. In this experiment, it is set
that ρ = 80 and Ke = 0. The limits of u(t) in (15) are given
as: u = −5, u = 5, U = −65, and U = 65.

It can be seen that the overshoot of the inversion-free
MPC with constraints is less than the one based on the hard
limiting method. This suggests that the constrained inversion-
free MPC can reach the reference faster than the one based
on the hard limiting method.

V. CONCLUSIONS AND FUTURE WORKS

An inversion-free MPC with error compensation is pro-
posed in this paper. First, the dynamic linearization is intro-
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Fig. 7. Comparison experiments of the inversion-free MPC with and
without constraints.

duced to linearize the MFNN based model, which results in
the dynamic linearized MFNN based model. This dynamic
linearized MFNN based model leads to the optimal control
law in an explicit form. After that, the constraints on the
inputs of PEAs are considered. Furthermore, the steady-state
error is compensated by an error compensation term, result-
ing in the inversion-free MPC with error compensation. To
verify the proposed model and control scheme, experiments
are conducted on a PEA. Comparison experiments illustrate
the effectiveness of the proposed method.

In this paper, only the constraints on the inputs of PEAs are
considered. If the constraints on the outputs of PEAs can also
be handled, the proposed constrained MPC approach in this
paper will be more practical. When these constraints are con-
sidered, the constrained optimization problem will become
more complex. Therefore, to ensure the computational speed
of the constrained MPC approach, the methods in [22]-[25]
can be adopted to solve the constrained optimization problem
effectively. These ideas will be studied in the future.
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