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Abstract—Both image alignment and image clustering are
widely researched with numerous applications in recent years.
These two problems are traditionally studied separately. How-
ever in many real world applications, both alignment and
clustering results are needed. Recent study has shown that
alignment and clustering are two highly coupled problems.
Thus we try to solve the two problems in a unified framework.
In this paper, we propose a novel joint alignment and clustering
algorithm by integrating spatial transformation parameters
and clustering parameters into a unified objective function.
The proposed function seeks the lowest rank representation
among all the candidates that can represent misaligned images.
It is indeed a transformed Low-Rank Representation. As far as
we know, this is the first time to cluster the misaligned images
using the transformed Low-Rank Representation. We can solve
the proposed function by linearizing the objective function, and
then iteratively solving a sequence of linear problems via the
Augmented Lagrange Multipliers method. Experimental results
on various data sets validate the effectiveness of our method.

Keywords-joint alignment and clustering; Low-Rank Repre-
sentation; Augmented Lagrange Multiplier method;

I. INTRODUCTION

In recent years, there is a dramatic increase in the amount

of visual data with the development of Internet. The un-

processed visual data suffer from significant illumination

variation, occlusion and misalignment [1], [2]. Among those

problems, misalignment challenges many existing computer

vision tasks. Images from the same object may be misclas-

sified due to the lack of alignment. Seeking more efficient

and effective solutions to solve the misalignment problem

has attracted much attention in recent years. Learner-Miller’s

Congealing algorithm [3] employs a sum of entropy cost

functions to minimize the parametric warp differences be-

tween an ensemble of images. The least squares congealing

algorithm [4] is proposed to seek an alignment that mini-

mizes the sum of squared distances between pairs of images.

Sparse and low-rank decomposition [1] are used to solve the

batch image alignment problem.
In many real world applications, one often encounters

the situation where there are multiple object classes in an

image ensemble. Traditional image alignment methods treat

all of the images as a single class of objects which concerns

about the increase of image similarity whereas neglects

the discriminate information among them. Thus most of

alignment algorithms have poor performance in dealing with

complex data set. The problem addressed here is to align and

cluster the complex data set, that is to remove geometrical

variability whereas to preserve the useful discriminate in-

formation to cluster the images. Frey and Jojic’s work [5]

and Liu et al.’s work [6] have the greatest relevance to our

work. In [5], a transformed mixture of Gaussian models is

used to normalize the input data for global transformations

and cluster the normalized data. In [6], a unified objective

function which consists of the within-cluster difference and

the between-cluster difference is proposed to simultaneously

align and cluster misaligned images.

The main contributions of this work are summarized

as follows. We integrate image alignment and clustering

assignments into a unified objective function which can be

seen as finding the lowest rank representation among all

the candidates that can represent the misaligned images.

Our algorithm inherits the benefit of clustering misaligned

images in an unsupervised manner by using only pixel

information. Experimental results on various data sets have

validated the effectiveness of our algorithm in terms of both

alignment performances and clustering results.

The remainder of this paper is organized as follows.

Section II describes the technical details of our algorithm.

Experimental results and analysis are presented in Sec-

tion III. Finally we draw some conclusions in Section IV.

II. JOINT IMAGE ALIGNMENT AND CLUSTERING

ALGORITHM

A. Subspace Recovery by Low-Rank Representation

Given an ensemble of well aligned images, a reasonable

assumption is that the images are drawn from a mixture of

several low-rank subspaces. Recent development of Low-

Rank Representation (LRR) [7] algorithm provides promis-

ing applications in subspace clustering area. LRR algorithm

seeks the lowest rank representation among all the candi-

dates that can represent data samples as linear combinations

of the bases in a given dictionary, and it has been proven that

LRR algorithm can exactly recover true subspace structures

of all the images under certain conditions.

For n well aligned images, we denote the operator

R
w×h → R

m as selecting an m-pixel region of interest

from the i-th (i = 1, · · · , n) input image and stack it as a

vector representing as Ii. Then we store all of the n well
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aligned images as X = [I1, ..., In] ∈ R
m×n. The low-rank

representation algorithm is formulated as:

min
Z,E

rank(Z) + λ‖E‖2,1,
s.t. X = AZ + E,

(1)

where A = [A1, · · · , An] is a given dictionary, Z =
[Z1, · · · , Zn] is the coefficient matrix with Zi being the

representation of Xi, ‖E‖2,1 =
∑n

j=1

√∑n
i=1 (Eij)

2
is

used to model the sample specific corruptions and outliers,

the parameter λ is used to balance the above two terms.

LRR algorithm can recover the underlying subspaces of the

well aligned images.

B. Joint Image Alignment and Clustering

Due to changes of poses in practical applications, images

are usually misaligned with each other. Thus the above

model has a poor performance in clustering misaligned

images. Considering the assignment of clustering misaligned

images, we propose a novel algorithm that can jointly align

and cluster these misaligned images. Let us denote the

warping parameters for the entire n misaligned images as

τ = [τ1, · · ·, τn]. τi is a p-dimensional vector which allows

the alignment from each image to a predefined common

coordinate space depending on the specific transformation

type. The warping function W (x; τi) takes the pixel x in

the coordinate of the original input image and maps it to

the coordinate of the common space. Thus the warped image

vector of m-pixel region of interest from each input image

Ii (x) can be represented as Ii (W (x; τi)) ∈ R
m. For the

rest of this paper, we use Ii◦τi to represent Ii (W (x; τi)) for

convenience. The overall warped images can be represented

as X ◦ τ = [Ii ◦ τi, · · · , Ii ◦ τi] ∈ R
m×n.

Then we can model the joint image alignment and clus-

tering problem in the following form:

min
Z,E,τ

rank (Z) + λ‖E‖2,1,
s.t. X ◦ τ = AZ + E.

(2)

RASL algorithm [1] also formulates the image alignment

algorithm as a low-rank optimization problem. The differ-

ences between RASL and our algorithm are that by setting

A = I and using the �0 norm of the matrix E, Equation (2)

will become the same objective function used in RASL

algorithm. Note that compared with RASL algorithm, our

algorithm can be seen as a more general one and l2,1 norm

of the matrix E is used to model the sample specific errors so

as to recover the underlying subspaces of misaligned images.

C. Solving The Optimization Problem

The above formulation is difficult to solve due to the

discrete property of the rank function and the nonlinear

nature of the transformation parameter. In order to solve

the first problem, nuclear norm ‖Z‖∗ is used to replace

the rank minimization function. For the second problem,

similar to Lucas-Kanade [8] algorithm, we can approximate

the parameter τ : suppose that the current estimate of τ is

known and then solve for increments of τ iteratively. For

the current estimate of τ , we linearize the parameter by:

X ◦ (τ + Δτ) = X ◦ τ +
∑n

i=1
JiΔτiεiε

T
i , (3)

where Ji = ∂
∂ξ (Ii ◦ ξ) |ξ=τi ∈ R

m×p is the Jacobian of the

i-th image with respect to τi, Δτi ∈ R
p is the increments of

τi. εi is the standard basis for ∈ R
n. Substitute Equation (3)

into Equation (2) we get the following formulation:

min
Z,E,Δτ

‖Z‖∗ + λ‖E‖2,1,
s.t. X ◦ τ +

∑n
i=1 JiΔτiεiε

T
i = AZ + E.

(4)

Inspired by [7], we use the current estimate of the warped

images X ◦ τ as the dictionary A. Then Equation (4)

becomes:

min
Z,E,Δτ

‖Z‖∗ + λ‖E‖2,1,
s.t. X ◦ τ +

∑n
i=1 JiΔτiεiε

T
i = (X ◦ τ)Z + E.

(5)

For computation convenience, we introduce an auxiliary

variable M and convert Equation (5) to the following

equivalent problem:

min
M,Z,E,Δτ

‖M‖∗ + λ‖E‖2,1,
s.t. X ◦ τ +

∑n
i=1 JiΔτiεiε

T
i = (X ◦ τ)Z + E,

Z = M,
(6)

Then we can repeatedly linearize our estimate of τ and

solve problem (6) to get the transformation parameter τ and

the clustering parameter Z. Problem (6) can be solved by

various methods. In this paper, we adopt the Augmented La-

grangian Multiplier (ALM) [9] method to solve the problem

because of its fast speed and high accuracy. The augmented

Lagrangian functions take the form of:

f(Z,E,Δτ) = X ◦ τ +
∑n

i=1 JiΔτiεiε
T
i − (X ◦ τ)Z − E,

g(M,Z) = Z −M.
(7)

By applying the ALM method, we can rewrite Equation (6)

as:

Lμ (M,Z,E,Δτ, Y1, Y2) = ‖M‖∗ + λ‖E‖2,1,
+tr
(
Y T1 f (Z,E,Δτ)

)
+ tr
(
Y T2 g (M,Z)

)
,

+μ
2

(
‖f (Z,E,Δτ)‖2F + ‖g (M,Z)‖2F

)
,

(8)

where Y1 and Y2 are Lagrangian multipliers, tr represents

the trace of a matrix, μ > 0 is a penalty parameter. The

above unconstrained optimization problem can be minimized

through an alternative strategy with respect to M , Z, E and

Δτ by fixing the other variables and then update Y1, Y2 and
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μ as the following form:

Mk+1 = arg min
M

Lμk(M,Zk, Ek,Δτk, Y k1 , Y
k
2 ), (9)

Zk+1 = arg min
Z

Lμk(Mk+1, Z,Ek,Δτk, Y k1 , Y
k
2 ),

(10)

Ek+1 = arg min
E

Lμk(Mk+1, Zk+1, E,Δτk, Y k1 , Y
k
2 ),

(11)

Δτk+1 = arg min
Δτ

Lμk(Jk+1, Zk+1, Ek+1,Δτ, Y k1 , Y
k
2 ),

(12)

Y k+1
1 = Y k1 + μkf

(
Zk+1, Ek+1,Δτk+1

)
, (13)

Y k+1
2 = Y k2 + μkg

(
Mk+1, Zk+1

)
, (14)

μk+1 = ρμk, (15)

where ρ is an incremental factor for the parameter μ. At each

step we solve Equation (9)-(15) to get the corresponding

parameters and then update the parameters until the whole

process converged.

The parameterM can be obtained by solving Equation (9)

using the soft threshold methods [10]:

Mk+1 = US 1

μk
[Σ]V T ,

(U,Σ, V ) = svd
(
Zk + Y k2 /μ

k
)
,

(16)

where S denotes the soft threshold operator which acts

elementwise. Equation (10) can be solved efficiently as a

least squares problem:

Zk+1 =
(

(X ◦ τ)TX ◦ τ + I
)−1

(
(X ◦ τ)T (X ◦ τ +

∑n
i=1 JiΔτ

k
i εiε

T
i − Ek)

+Mk+1 + (X ◦ τ)TY k1 /μk − Y k2 /μk
) (17)

Equation (11) can be solved through the following lemma.

Lemma 1: ( [7], [11]) Let Q be a given matrix. If the

optimal solution to

min
W

α‖W‖2,1 +
1

2
‖W −Q‖2F

is W ∗, then the i-th column of W ∗ is

W ∗
:,i =

{‖Q:,i‖2−α
‖Q:,i‖2

Q:,i, if ‖Q:,i‖2 > α
0, otherwise

Then we can write the solution to Equation (11) as:

E:,i =

{‖K:,i‖2−α
‖K:,i‖2

K:,i, if ‖K:,i‖2 > λ
μ

0, otherwise

whereK = X◦τ+
∑n

i=1 JiΔτ
k
i εiε

T
i −X◦τ∗Zk+1+Y k1 /μ

k.

Equation (12) can be solved as a least squares problem:

Δτk+1 =
∑n

i=1 J
+
i

(
X ◦ τ ∗ Zk+1 + Ek+1

−X ◦ τ − Y k+1
1 /μk

)
εiε

T
i .

(18)

Algorithm 1 The framework of our algorithm.

Input:
The set of the misaligned images I1, · · · , In, initial

transformations τ1, · · · , τn.

1: while not converged do
2: Compute the Jacobian matrix with respect to the

specific transformation:

Ji = ∂
∂ξ

(
Ii

◦ξ
‖Ii◦ξ‖2

)
|ξ=τi , i = 1, · · · , n.

3: Warp and normalize the images:

D ◦ τ = [ I1◦τ1
‖I1◦τ1‖2

| · · · | In◦τn
‖In◦τn‖2

].

4: Solve for the parameters J , Z, E, Δτ :

min
M,Z,E,Δτ

‖M‖∗ + λ‖E‖2,1,
s.t. X ◦ τ +

∑n
i=1 JiΔτiεiε

T
i = (X ◦ τ)Z + E,

Z = M.

5: Update the parameter: τ = τ + Δτ .
6: end while

Output:
The final parameter τ = [τ1, · · · , τn] and Z =
[Z1, · · · , Zn].

where J+i denotes the Moore-Penrose pseudo inverse of

Ji. The framework of our algorithm is summarized in

Algorithm 1. After obtaining the clustering parameter Z, we

use the method proposed by [7] to get the final clustering

result.

III. EXPERIMENTS

In order to evaluate the performance of our algorithm, we

have conducted experiments on the MNIST data set [12]

and the Labeled Faces in the Wild (LFW) data set [13]. The

parameters ρ and μ0 are set to be 1.1 and 10−6 respectively.

The stopping criterion of the inner loop of our algorithm is

that the difference value of the cost function between two

consecutive iterations is less than 10−7. The parameter λ and

the stopping criterion of the outer loop are tuned empirically.

A. Results on The MNIST Data Set

In this experiment, we validate performances of our

algorithm by aligning and clustering the images from the

MNIST data set. We choose 200 images from 10 digit

classes which are also used by Liu et al. [6]. Some of the

digits are showed in Figure 1(a). In order to align and cluster

the digits, we set the initial transformation as identity matrix,

and Euclidean transformation is used in this experiment. The

results are evaluated both visually and quantitatively based

on the metrics suggested by [6]. Alignment score measures

the distance between pairs of the warped images which

are assigned to the same cluster. The mean and standard

deviation of all the distances are reported. Rand index is

used to evaluate the clustering accuracy with respect to the

correct labels. It is computed from the estimated membership
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Algorithm Alignment Clustering

TIC 6.0 ± 1.1 35.5%

USAC [6] 3.8 ± 0.9 56.5%

SSAC [6] not reported 73.7%

RASL [1]+K-means 3.3 ± 1.4 68.0%

Our algorithm 3.1 ± 1.6 74.0%

Table I: Alignment and clustering results on the MNIST

data set. All of the alignment scores are divided by 106.

The results of TIC, USAC and SSAC are reported in [6].

vectors. Confusion matrix is also used to evaluate the

clustering performance of different algorithms.

(a) (b) 

Figure 1: (a) Some of the digits before alignment. (b) The

corresponding digits after alignment using our algorithm.

The compared algorithms are briefly introduced as fol-

lows. The Transformation-invariant Clustering (TIC) [5]

algorithm is used as the baseline in [6]. Unsupervised

simultaneous alignment and clustering algorithm (USAC)

and semi-supervised simultaneous alignment and clustering

algorithm (SSAC) are proposed by [6]. The difference

between USAC and SSAC is that parts of the ensemble of

digits are manually labeled in terms of clustering labels for

the SSAC algorithm. We also compare our algorithm with

RASL [1] + K-means algorithm: digits are aligned using

the Euclidean transformation according to their released

code (the parameters are set as default), then clustering

performances are reported using the best of 100 K-means

runs.

Table I summarizes the alignment score and clustering

accuracy. Figure 1(b) shows some of the digits after align-

ment using our algorithm. Figure 2 plots the average digits

after alignment using the estimated labels. From Table I, we

can see that the clustering performance of our algorithm is

the best and the alignment performance is similar to RASL

algorithm. The reason is that both RASL and our algorithm

seek the low-rank representation among the images whereas

our algorithm is a more general form which can be used

in clustering misaligned images. We can also find that

our algorithm is even better than SSAC which utilizes the

manually labeled information in terms of the clustering

accuracy. Besides, we used the pixel information directly

(b) 

(c) 

(d) 

(e) 

(a) 

(f) 

Figure 2: Average digits before and after alignment. (a) The

average digits before alignment using the ground truth

cluster labels. The average digits after alignment using the

estimated cluster labels by (b) TIC, (c) USAC, (d) SSAC,

(e) RASL+K-means and (f) our algorithm.

rather than the HOG features used in [6]. Figure 3 further

plots the confusion matrices of different algorithms. As

shown in Figure 3, when our algorithm is used to cluster

the digits, the between-class similarity of digit ”2” and digit

”7” is higher than the within-class similarity of digit ”6”.

Thus digit ”2” and digit ”7” are confused, and digit ”6” is

clustered into two different clusters. Most of the other digits

are clustered correctly by our algorithm.

B. Results on The LFW Data Set

We also pursue an evaluation of our algorithm on the LFW

data set. The LFW data set is taken under the unconstrained

environments with variability in pose, lighting and occlusion.

We choose 5 subjects from this data set, and each of

the selected subjects has 35 images. We obtain the initial

estimate of the transformation by using the Viola-Jones face

detector [14]. Then affine transformation is used to align the

images. We compare our algorithm with RASL+K-means

algorithm in this experiment.

The average images and clustering accuracy are used to

evaluate different algorithms. Figure 4 plots the average

images using the estimated cluster labels. From Figure 4

we can see that the average images of our algorithm is

better than RASL+K-means algorithm though RASL is

useful for alignment and K-means is powerful for clustering.

The clustering accuracy of our algorithm is 69% whereas

the RASL+K-means is 46%. From this experiment we can

conclude that our algorithm is effective for aligning and

clustering the complex data set, such as the digit classes

and faces taken under unconstrained environment.

IV. CONCLUSION

In this paper, we have proposed an efficient joint align-

ment and clustering algorithm via transformed Low-Rank

Representation. We model the misalignments as domain
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(a) (b) (c) (d) 
Figure 3: The confusion matrices of digits estimated by (a) TIC, (b) USAC, (c) SSAC and (d) our algorithm. (a), (b) and

(c) are published in [6]. The index ”1-10” correspond to 10 digit classes.

(b) 

(c) 

(a) 

Figure 4: Average images on the LFW data set. (a) The

average images before alignment using the ground truth

labels. (b) The average images after alignment using the

estimated cluster labels by RASL+K-means algorithm. (c)

The average images after alignment using the estimated

cluster labels by our algorithm.

transformations, and integrate the domain transformations

into Low-Rank Representation. Then a unified objective

function is proposed to cluster the misaligned images. The

Augmented Lagrange Multiplier method is adopted to op-

timize the objective function. Experimental results on the

MNIST and LFW data sets have validated the effectiveness

of our algorithm.
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