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Abstract

Temporal dynamics of postures over time is crucial for
sequence-based action recognition. Human actions can
be represented by the corresponding motions of articulated
skeleton. Most of the existing approaches for skeleton based
action recognition model the spatial-temporal evolution of
actions based on hand-crafted features. As a kind of hier-
archically adaptive filter banks, Convolutional Neural Net-
work (CNN) performs well in representation learning. In
this paper, we propose an end-to-end hierarchical architec-
ture for skeleton based action recognition with CNN. Firstly,
we represent a skeleton sequence as a matrix by concate-
nating the joint coordinates in each instant and arrang-
ing those vector representations in a chronological order.
Then the matrix is quantified into an image and normal-
ized to handle the variable-length problem. The final image
is fed into a CNN model for feature extraction and recog-
nition. For the specific structure of such images, the sim-
ple max-pooling plays an important role on spatial feature
selection as well as temporal frequency adjustment, which
can obtain more discriminative joint information for differ-
ent actions and meanwhile address the variable-frequency
problem. Experimental results demonstrate that our method
achieves the state-of-art performance with high computa-
tional efficiency, especially surpassing the existing result by
more than 15 percentage on the challenging ChaLearn ges-
ture recognition dataset.

1. Introduction

Action recognition plays an important role in computer
vision and has a wide range of applications, e.g., human-
computer interaction, video surveillance, robotics, game
control, and so on [1, 24]. Generally, human body can be re-
garded as an articulated system with rigid bones and hinged
joints, and human actions can be represented as the mo-
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Figure 1: An illustrative sketch of the proposed method.
Three components of all skeleton joints in each frame are
separately concatenated by their physical connections. Af-
ter arranging the representations of all frames in chrono-
logical order, the generated matrix is quantified and nor-
malized into an image, which is fed into the hierarchical
spatial-temporal adaptive filter banks model for representa-
tion learning and recognition.

tions of skeleton [19]. Currently, the cost-effective depth
sensor combining with real-time skeleton estimation algo-
rithms [15, 16] can provide relatively reliable joint coordi-
nates. Based on those coordinates, effective and efficient
approaches for action recognition have been developed re-
cently [5, 19, 26].

Temporal dynamics of postures over time can be mod-
eled as a time series problem, which is crucial for sequence-
based action recognition [4, 8, 9]. As a kind of low-level
feature, skeleton joint coordinates can be used to repre-
sent human postures and their temporal evolution. Most of
the existing skeleton based action recognition approaches
model actions based on well-designed hand-crafted local
features. Simultaneously, Temporal Pyramids (TPs) and
its variants are often employed to capture the local tempo-
ral evolution [10, 19, 20]. A following dictionary learn-
ing model is employed to generate the representation for
the whole sequence [20]. For the restriction from the width
of time windows, the TPs methods can only utilize limited
contextual information. Moreover, temporal dynamics of
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Figure 2: Image representations obtained on the Berkeley MHAD dataset [12].

sequences is ignored in the global representation based on
a learned dictionary. Alternatively, some time series mod-
els, mainly Dynamic Time Warpings (DTWs) [19] and Hid-
den Markov Models (HMMs) [11, 21, 23], are applied to
model the global temporal evolution, yet it is very difficult
to obtain the temporal aligned sequences and the emission
distributions of HMMs. Recently, an end-to-end approach
based on Recurrent Neural Network (RNN) was proposed
for skeleton based action recognition [1].

Almost all the existing methods for skeleton based action
recognition concern that how to utilize the contextual infor-
mation to capture temporal dynamics in sequences. HMMs
and RNNs based approaches directly model the temporal
dynamics as a time series problem. However, the tem-
poral dynamics of sequences can be easily transformed as
the spatial structure characteristics in images. As an archi-
tecture with hierarchical adaptive 2D filter banks, Convo-
lutional Neural Network (CNN) has the advantage of en-
coding structural information and can be used for repre-
sentation learning in many tasks. In this paper, we pro-
pose a CNN model for skeleton based action recognition.
Firstly, we represent each skeleton sequence as a special
image, in which the temporal dynamics of the sequence
is encoded as changes in rows and the spatial structure of
each frame is represented as columns (Fig. 1). A follow-
ing CNN model is employed for feature learning and recog-
nition. To represent the skeleton structure compactly, we
employ the encoding style in [1] that human skeleton is
divided into five parts and joints in each part are concate-
nated according to their physical connections. And three
components (x, y, z) of each joint are represented as the
corresponding three components (R,G,B) of each pixel.
Considering that the length of skeleton sequences are vari-
able, we resize the generated images to an uniform size yet
the frequency of actions is changed with different scales.
So spatial-temporal synchronous pooling is used to over-
come this variable-frequency problem. We evaluate our ap-
proach on two benchmark datasets and obtain excellent per-
formance.

The main contributions of our work can be summarized
as follows. Firstly, we propose an idea to represent action
sequences as images as well as preserving the original tem-
poral dynamics and spatial structure information. Secondly,
based on such representation, we propose a CNN model for

skeleton based action recognition, in which the sample 2D
max-pooling plays the role of spatial-temporal synchronous
pooling and can overcome the different sequence length and
variable-frequency problems. Finally, we demonstrate that
our proposed end-to-end model can rapidly handle skele-
ton based action recognition very well without any sophis-
ticated processing. And this idea can be easily transfered to
other time series problems.

The remainder of this paper is organized as follows. In
Section 2, we introduce our proposed model in detail. Then
we provide our experimental results in Section 3. Finally,
we conclude the paper in Section 4.

2. Our Method
In this section, we first detail how to represent a sequence

as an image, and then we introduce our hierarchical model
for skeleton based action recognition. Finally, more details
about training and testing are provided.

2.1. From Skeleton Sequences to Images

How to transform a sequence to an image while preserv-
ing its spatial-temporal information is very important. In-
spired by [1], all human skeleton joints in each frame are
divided into five main parts according to human physical
structure, i.e., two arms, two legs and a trunk. For pre-
serving the local motion characteristics, joints in each part
are concatenated as a vector by their physical connections,
e.g., each arm can be represented as [hand, wrist, elbow,
shoulder]. Then the five parts are concatenated as the rep-
resentation of each frame. Projections on three orthogonal
planes are represented separately and treated as the three
components of RGB images, i.e., Ri = [xi1, xi2, . . . , xiN ],
Gi = [yi1, yi2, . . . , yiN ], Bi = [zi1, zi2, . . . , ziN ], where
i denotes the frame index and N indicates the number of
frames in a sequence. Finally, representations of all frames
are arranged in chronological order to represent the whole
sequence (Fig. 2). In this case, spatial distribution of mo-
tion characteristics of each part is very clear, and the global
discrimination is pretty obvious. Given the variable-length
problem, the arranged float matrix is quantified to integral
image representation, i.e.,

p = floor
(
255 ∗ p− cmin

cmax − cmin

)
(1)
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Figure 3: The framework of our model based on hierarchical spatial-temporal adaptive filter banks.

then the image is resized to an uniform size 60 × 60. The
p indicates the pixel value and the floor function means
rounding down. The cmax and cmin are the maximum and
minimum of all joint coordinates in the training set, respec-
tively.

2.2. Hierarchical Architecture for Skeleton Based
Action Recognition

Recognizing actions depends on not only human pose in
each time but also its temporal dynamics [1, 4, 8]. Gener-
ally, an adaptive filter bank can learn the filter coefficients
adaptively and separate the input signal into multiple com-
ponents. And those components can be analyzed in differ-
ent domains corresponding to the diverse filter character-
istics. Given that the essence of CNN is composed of a
range of adaptive 2D filter banks, different from traditional
HMMs or other time series models based approaches di-
rectly modelling action recognition as a time series prob-
lem, we propose a CNN based model to capture the spatial-
temporal information in the sequences after transforming
them to special image representations.

Our proposed model is shown in Fig. 3, which includes
4 cascaded adaptive filter banks. All filter sizes are 3 × 3
and all strides during convolution are set to 1 for treat-
ing CNN as hierarchical adaptive filter banks. Considering
that the original action frequencies are changed in different
scales when resizing and same actions performed by dif-
ferent subjects may have various frequencies, we adopt the
max-pooling strategy following each of the first three filter
banks. For the special structure of input images (Fig. 2),
the scale-invariance of max-pooling along horizontal axis
is transformed as the frequency-invariance of actions. And
max-pooling along vertical axis can select more discrim-
inative skeleton joints for different actions. After feature
extraction, a feed-forward neural network with two fully-
connected layers is employed for classification. The first
fully-connected layer contains 128 neurons, and the num-
ber of neurons in the second one is equal to that of actions.

ReLU neuron is adopted in all layers. The loss function is
as follows [1]:

L(X) = −
M−1∑
m=0

ln

C−1∑
k=0

δ(k − r)p(Ck|xm) (2)

where M indicates the number of samples in training set X
and C denotes the number of categories. δ(·) is the Kro-
necker function, and p(Ck|xm) means the probability that
sample xm belongs to action Ck.

2.3. Training and Testing

Our model is trained by the back propagation algorithm.
In order to improve the convergence speed, mean removal
is employed for all input images. During training, we ran-
domly select a patch from each original image with size
52 × 52. Given that temporal dynamics of a skeleton se-
quence is always embodied in two directions, we randomly
flip the training images horizontally to utilize the forward
and backward temporal dynamics. During testing, five
patches selected form the four corners and the center and
their horizontal flips are used. The final recognition is ob-
tained by voting.

3. Experiments
In this section, we evaluate our model compared with

several recent works on two benchmark datasets: Berkeley
Multimodal Human Action Dataset (Berkeley MHAD) [12]
and ChaLearn gesture recognition dataset [2]. We also dis-
cuss the computational efficiency of our model.

3.1. Evaluation Dataset

Berkeley MHAD [12]: It is generated by a multimodal ac-
quisition system and an optical motion capture system is
employed to capture the 3D position of skeleton joints with
the frequency of 480Hz. There are 659 valid samples in this
dataset, which consists of 11 actions performed by 12 sub-
jects with 5 repetitions of each action. And each frame in a



sequence contains 35 joints accurately extracted according
to the 3D marker trajectory.
ChaLearn Gesture Recognition Dataset [2]: It is the
ChaLearn 2013 Multi-model gesture dataset, which con-
tains 23 hours of Kinect data with 27 persons performing
20 Italian gestures. This dataset provides RGB, depth, fore-
ground segmentation and Kinect skeletons. This dataset is
split into training, validation and testing sets, and contains
total 955 videos, each of which lasts 1-2 minutes and in-
volves 8-20 non-continuous gestures.

3.2. Experimental Results and Analysis

Berkeley MHAD: We follow the experimental protocol
proposed in [12]. The 384 sequences of the first 7 sub-
jects are used for training while the 275 sequences of the
last 5 subjects are used for testing. We compare our pro-
posed approach with Ofli et al. [13], Vantigodi et al. [17],
Vantigodi et al. [18], Kapsouras et al. [6] and Du et al. [1].
All the comparative methods on this dataset are directly
from their corresponding papers, and the rest likewise. The
experimental results are shown in Tab. 1. We can see that
our method can achieve the 100% accuracy without any
other pre- or post-processing. In contrast to those hand-
crafted features based approaches [6, 13, 17, 18], our ap-
proach, like [1], is an effective end-to-end solution to skele-
ton based action recognition.

Table 1: Experimental results on the Berkeley MHAD [12].

Method Accuracy (%)
Ofli et al., 2014 [13] 95.37
Vantigodi et al., 2013 [17] 96.06
Vantigodi et al., 2014 [18] 97.58
Kapsouras et al., 2014 [6] 98.18
Du et al., 2015 [1] 100
Ours 100

ChaLearn Gesture Recognition Dataset: In this more
challenging dataset, the ground segments are provided and
contain 6850 training samples with 39 frames average
length, 3454 validation samples and 3579 test samples. We
follow the experimental protocol adopted in [3, 14, 22, 25]
and provide precision, recall and F1-score measures on the
validation set. We compare our model with Yao et al. [25],
Wu et al. [22], Pfister et al. [14], and Fernando et al. [3].
The experimental results are shown in Tab. 2. It is clear that
our method significantly surpass the state-of-the-art preci-
sion by more than 15 percentage, which demonstrate that
it is a great success to transform temporal dynamics in se-
quences into spatial structure information in images for se-
quence representation learning. One of the possible rea-
sons for the excellent performance may be that our model
can well handle the global temporal dynamics in sequences
than the comparative methods. And comparing with those

(a) Filters (a) Convergence Curves
Epoch

Figure 4: Filters and convergence curves on the ChaLearn
gesture recognition dataset.

recently proposed approaches, our method is simple and
straightforward for skeleton based action recognition. Fil-
ters and the convergence curves are shown in Fig. 4.

Table 2: Experimental results on the ChaLearn gesture
recognition dataset [2].

Method Precision Recall F1-score
Yao et al., 2014 [25] - - 56.0
Wu et al., 2013 [22] 59.9 59.3 59.6
Pfister et al., 2014 [14] 61.2 62.3 61.7
Fernando et al., 2015 [3] 75.3 75.1 75.2
Ours 91.16 91.25 91.21

3.3. Computational Efficiency Analysis

We take the ChaLearn gesture recognition dataset for an
example to illustrate the efficiency of our proposed model
implemented based on ConvNet [7]. With the implementa-
tion on NVIDIA Titan GK110, we spend about 1.95ms per
sequence in training and about 2.27ms per sequence (select
5 patches and flip for voting) in testing.

4. Conclusion and Future Work
In this paper, we have proposed a simple end-to-end but

high-efficiency and high-precision framework for skeleton
based action recognition. We first represented human skele-
ton sequences as images to transform the temporal dynam-
ics of sequences into the spatial structure information in
images. Then a hierarchical architecture based on CNN
was proposed for feature representation learning and clas-
sification. Experimental results on two publicly available
datasets demonstrated the excellent performance of the pro-
posed model.

Current model classifies actions based on the global spa-
tial and temporal information in skeleton sequences, which
requires that the noise distribution in different segments of
the same sequence are consistent. That means if data er-
ror of local fragments in the input sequences is particularly
highlighted, the recognition rate may be cut down. In the
future, we will consider the local features as an assistance
to overcome this problem.
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