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Abstract—The increased ownership of motor vehicles has 

brought many urban problems, such as traffic congestion, 

environmental pollution.  Traffic signal control is recognized as 

one of effective ways to alleviate these problems. However, it is 

still hard to automatically choose appropriate traffic signal 

timing plans for different traffic conditions due to the dynamics 

and uncertainty of transportation systems. In this paper, we 

propose a latent factor model based traffic signal timing plan 

recommendation method to address this problem. In the 

proposed method, we model the abstract traffic states as the 

“users” in recommendation systems, and timing plans as the 

“items”. And there are many explicit or implicit factors in the 

interactions between “users” and “items”. The latent factor 

model is successfully used to deal with uncertain factors which 

cannot be modeled accurately in math. The novel method 

adopted the model-free adaptive idea to solve the problem of 

modeling from the perspective of data mining and machine 

learning framework. And, the proposed method is tested by using 

simulation data generated by a microscopic traffic simulator 

called Paramics. The results are compared to the baseline 

Webster method. The results indicate that the proposed latent 

factor model based recommendation method outperforms the 

Webster method on reducing the delay. 
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I. INTRODUCTION 

Recommendation Systems (RS) have evolved and 
diversified rapidly since their inception around the early 1990s 
[1, 2] as the key concept and method in the complex systems to 
solve the problem called “information overload” [3].  They 
have become an established, promising research and 
application field drawing on and bringing together results and 
concepts from many disciplines, including AI, computer 
science, sociology, economics, psychology, data mining, and 
machine learning. They have many successful applications in 
e-commerce [4], movie and video websites [5, 6], personalized 
music radio, social network, etc., which are all complex 
systems with strong randomness and fuzzy. The essential 
function of RS is to find the best matching items for the users 
in an “information overload” environment [2]. In RS, users 
often refer to the various people, and items may be potential 
interesting merchandise, movies, videos, friends, and so on. 
The huge amount information may be useful or useless, 

definite or random, fuzzy and difficult to model, etc. 

 However, RS has yet to achieve widespread use for 
controlling traffic management systems, because there are 
many common characteristics between them, such as 
randomness, fuzzy, and nonlinear [7]. In the traffic 
management system, Traffic Signal Control (TSC) is an 
effective way to improve traffic states, and it can be understood 
as finding the best matching timing plan for the current traffic 
state. Many control methods have prevailed in both theoretical 
studies and practical applications. The theoretical research 
work about TSC could date back to the mid-20th century [8], 
which proposed a classical control strategy called the Webster 
method. As the computing technologies are developed, the 
microscopic traffic models become more and more popular, 
such as Multi-Agent Systems (MAS) [9-13]. Based on MAS, 
an Artificial Transportation Systems (ATS) can grow up in a 
bottom up way [9, 14], with drivers, vehicles, roads, traffic 
lights being modeled as autonomous, collaborative and reactive 
agents. And there are many academic and commercial traffic 
simulators such as TSIS, TRANSIMS, PARAMICS and 
TransWorld [9]. 

Although the traditional control strategies have been 
confirmed to have good effects, we have to admit that it still 
needs to be improved. In the traditional methods, relatively 
accurate models tend to be large amount of calculation, 
complex process, and difficult to achieve. We often choose to 
sacrifice some accuracy to seek a balance point which can 
ensure certain speediness and real time. It causes that many 
theoretical methods based on the quantitative and idealized 
hypothesis cannot be applied in reality, or cannot achieve the 
desired results. The main reason for the problems mentioned 
above is that, there are too many uncertain factors which are 
difficult or even impossible to model exactly in a closed form, 
such as vehicles and pedestrians, roads, weather environment, 
legal policies [9, 14]. We need to rethink traffic management 
systems and reinvestigate the use of RS for TSC.   

TSC is well suited to a RS method because of the 
consistency of their essential task and the successful way of RS 
dealing uncertain factors that difficult or unable to model. In 
future we will not lack of traffic data. Because detecting 
technologies are more and more mature and so many models 
and algorithms can generate so many timing plans. So we can 
learn from RS. RS think the ratings can reflect the users’ 
preference for the items, and use Latent Factor Models (LFM) 
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[15] to solve the problems about uncertain factors. LFM is an 
alternative approach that tries to explain the ratings by 
characterizing both items and users on, say, 20 to 100 factors 
inferred from the ratings patterns. Some of the factors are 
explicable, for example, for movies, the discovered factors 
might measure obvious dimensions such comedy versus drama, 
amount of action, or orientation to children; some are less well-
defined dimensions such as depth of character development or 
quirkiness; some are even completely uninterpretable 
dimensions. For users, each factor measures how much the user 
likes movies that score high on the corresponding movie factor. 
There are also some indicators that can reflect the “preference” 
of the traffic states for the timing plans, such as delay, stop 
time, flow. We can also try to explain them by characterizing 
both traffic states and timing plans on several factors inferred 
from the “ratings” patterns. The factors maybe intersection 
environment nearby, weather condition, the structure of the 
roads, etc., and more factors can’t be accurately explained, but 
it doesn’t matter for most of the factors we don’t need to know. 
From the perspective of machine learning and data mining, 
thousands of factors may be not known but good results can 
also achieve, which has been proved in RS when using LFM 
[16]. In this paper, we try to using LFM to solve the problem of 
modeling for uncertain factors in TSC, as a complement and 
optimization for traditional strategies, and this is the most 
important contribution of our work. 

A brief introduction of related algorithms is given in 
section 2. In section 3, the modeling and methodology is 
presented, and experiments are demonstrated in section 4. 
Section 5 gives the conclusions and future work. 

II. LITERATURE REVIEW 

In this section we will introduce the realization of LFM 
combining matrix factorization and RS in movies, and classic 
Webster method in TSC will also be given. 

A. Matrix Factorization Methods 

In RS the most successful realizations of LFM are based on 
the matrix factorization, which characterizes both users and 
items with factor vectors inferred from user-item rating matrix. 

For example, each item is associated with a vector f

tq  , 

and each user is represented by a vector f

sp  . Here f is the 

number of latent factors. Then matrix factorization models map 
both items and users to a joint latent factor space of 
dimensionality f, a recommendation occurs in high 
correspondence between user and item factors, and the user-
item interactions are modeled as inner products in that space. 
For example, every movie has some elements like history, 
disaster, love, or other uninterpretable factors. From the 
mathematical perspective, the idea of matrix factorization is to 

break a m n  rating matrix R down into a n f  user factor 

matrix P and an m f  item factor matrix Q, as shown in 

formulation (1), 

          *R u i P u k T Q i k   (1) 

Here, R[u][i] represents the rating of user u for item i, 
P[u][k] measures the degree of interest the user has in item 

factor k, Q[i][k] represents the share the element k owns in the 
item i, and T(Q) represent the transpose of matrix Q.  

Here we will give an example about matrix factorization. 
TABLE I, II, and III represent the rating matrix R, user factor 
matrix P, and item factor matrix Q, respectively. And Figure 1 
shows the relationships among them. From TABLE I, we can 
see that the rating Andy gave Titanic is unknown. But we know 
the scores Andy gave other two films and Hang gave all three 
films. What’s more, each film embodies three elements to 
varying degrees, and the degree of preference two persons have 
for three film elements is known. Then we could make a 
prediction about the degree Andy likes the movie Titanic 
according to the existing information aforementioned. Here we 
could easily predict that Andy will give a high rating to Titanic 
as it contains two film elements which are Andy’s favorites. 

TABLE I.  RATING MATRIX R 

Rating matrix R 2012 Pearl Harbor Titanic 

Hang 3 4 3 

Andy 3 4 ? 

TABLE II.  USER FACTOR MATRIX P 

User factor matrix P love history Disaster 

Hang 0.3 0.8 1 

Andy 1 0.5 0.7 

TABLE III.  ITEM FACTOR MATRIX Q 

Item factor matrix Q love history Disaster 

2012 0 0 5 

Pearl harbor 4 4 4 

Titanic 5 3 4 

 

Rating 

Matrix R

User Factor 

Matrix P

Item Factor 

Matrix Q
 

Figure 1. Matrix Factorization 

After getting the parameters of (1), we can use (2) to 
predict the rating of user u for movie i, 

 ,
ˆ T

u i u ir p q   (2) 

where qi represents the share each element i owns, and pu 
denotes the preference of user u for elements. 

B. Parameter Learning 

There is a question in the example aforementioned: there is 
a missing entry. How can the rating matrix be broken up into 
two complete matrixes? In fact, the rating matrix is often sparse, 
as users usually do not give a rating to each movie. Early 



researches relied on imputation to fill in missing ratings, and 
make the rating matrix dense. But the imputation could be very 
expensive as the data increased, and inaccurate imputation 
might distort the data considerably. So machine learning is 
taken into account. [17, 18, 19] model the known ratings 
directly, and avoid over fitting through a regularized model. To 
obtain the parameters in (1), the system should try to minimize 
the cost function (3) according to the set of known ratings: 

 
2 22

,

(u,i)

min (r p q ) ( )T

u i u i u ip q





     (3) 

where   is the training set in machine learning, and the rating 

rui in   is known.   is a constant which controls the degree of 

regularization, and it is usually determined by cross-validation. 
Many optimization approaches can applied to minimize (3), 
such as stochastic gradient descent and Alternating Least 
Squares (ALS). 

C. Webster Signal Control 

So far the fixed-time signal control mainly includes 
Webster method in Britain, ARRB method in Australia, HCM 
method in America and so on. Here we try an experiment on 
Webster method, which is based on the vehicles’ delay time 
when travelling through the intersection. And the output 
parameters in Webster method contain the cycle time, delay 
time, effective green time of every phase etc.  

The control target of Webster method is to minimize the 
total delay of the vehicles. Then the best signal cycle can be 
given by 

 0

1.5 5

1

L
C

Y





  (4) 

where 
0C  is the best signal cycle time with the unit seconds. L  

is the total loss time in a cycle with the unit seconds, Y  is the 

traffic flow rate. In fact, we often take 
00.75C   to 

01.5C   as the 

best cycle time. 

The total loss time can be described as follows, 

 L nl AR    (5) 

where l   is the loss time of every phase, n  is the phase 

number. Here AR  stands for the all-red time in a cycle. 

The traffic flow rate Y  is the sum of the flow rate of all 
lanes with the maximum traffic flow in every phase, and Y  can 
be described by 

 
1

n

i

i

Y y


   (6) 

Critical lane refers to the lane which has the largest traffic 
flow in each signal phase. Traffic flow rate of critical lane is 
equal to the ratio of the traffic flow to the saturation flow. 

III. MODELING AND METHODOLOGY 

In this part, we will first model for “users”, “items” and 
“ratings” in the transportation systems. Then the elaboration for 
the application of matrix factorization will be given. 

A.  Modeling for “Ratings” 

The “ratings” in the transportation systems should reflect 
the degree of traffic states’ “preference” for timing plans, i.e. 
whether the timing plans are suitable to the traffic states. And 
we should know the improvement of traffic states according to 
the “ratings”. So that we could judge whether the timing plans 
are better than the original one. In order to identify the 
congestion degree scientifically, and compare the pros and 
cons of different control strategies, we may select the delay 
time as the performance indicator. Because it is significant in 
traffic signal retiming and coordination of existing signals [20]. 

Delay displays statistics for links according to average 
delay per vehicle. The units for delay are seconds and it is 
defined as the actual time taken by vehicles to traverse the link 
minus their free flow time. 

What we should note here is that, in RS, the higher the 
rating is, the better, while in the transportation systems, the 
lower the value of delay is, the better. The value of delay time 
may range very large, so the pre-process is necessary. 

B. Modeling for “Users” and “Items” 

Our goal is to find the most suitable timing plan for the 
current traffic state. So unquestionably the “items” would be 
timing plans, and the “users” would be the abstract traffic states. 
In this case, each timing plan is associated with a vector 

f

tq  , and each traffic state is represented by a vector 
f

sp  . 

Link

Turning Lane

 

Figure 2. An intersection 

Abstract traffic states should be based on the intersections. 
The model of a single intersection is shown in Figure 2. There 
are several lanes on each link. We model the vehicles in a lane 
as a queue with the fixed capacity. No more vehicles will enter 
the queue when the capacity is exhausted. The right most and 
left most are set to be turning lanes. When turning, we assume 
the vehicles follow given paths.  

 
Figure 3. Phase sequence of the traffic lights 



There are usually several phases in the traffic lights of an 
intersection. Figure 3 shows a common phase sequence which 
represents a general order of different phases. 4 phases are 
included, and they constitute a “cycle” that is the time for an 
intersection to traverse all phases at a pre-set order. 

C.  Adding Biases 

However, a lot of intersections are influenced by different 
intrinsic properties and environment in reality, which may 
make traffic congested or unobstructed when the same traffic 
flow appears. There are some cases that can explain this 
phenomenon.  

Case 1, the structure of the intersection. Some structures of 
the intersection are prone to traffic jams. For example, road A 
shown in Figure 4 is smaller than other three roads. 

Intersection

Road

Lane on

the Road

A

 
Figure 4. Road A is narrow in Case 1 

Case 2, the special environment nearby. For example there 
is a school near road B, shown in Figure 5. Usually there 
should be a traffic light for the students to cross the road. In 
this case the traffic is not smooth. 

Intersection

Road

Lane on

the Road

School

B

 
Figure 5. Road B with a traffic light  

Case 3, if the four roads of the intersection are wide enough, 
congestion will be not likely to happen.  

In these cases the inherent properties of traffic states are 
different, some may lead to large delay, while some do not. It is 
similar to partial users like giving low scores and moderate 
users enjoy giving high marks in RS. In the same way, some 
timing plans with unreasonable design is easy to cause traffic 
jams, while some may be generated by accuracy models and 
algorithms, which is perfect for most situations. These are the 
biases or intercepts of themselves, independent of any 
interactions of the traffic states and the timing plans, which 
should be considered and can express by the following formula, 

 
st s tb u b b     (7) 

The bias involved in “rating” rst is denoted by bst and 
accounts for the traffic states of intersection and timing plan 
effects. The average rating is denoted by u, while the 
parameters bs and bt indicate the observed deviations of traffic 
state s and timing plan t, respectively, from u. 

D. Application of Matrix Factorization 

According to what have been mentioned in section II, the 
matrix factorization model here should map both traffic states 
and timing plans to a joint latent factor space with the 
dimensionality f. The dimensionality f relates to the factors like 
weather conditions and pedestrian, or even other factors which 
cannot be modeled. But in fact they affect the traffic states and 
should not be ignored. So the interactions should be modeled 
as inner products in the space as shown in formula (8), which is 
called Model 1. 

 ˆ T

st t sr q p   (8) 

Take the bias into account, then the prediction model is 
called Model 2 shown in formula (9), 

 ˆ T

st s t t sr u b b q p      (9) 

To learn the parameters, the systems should minimizes the 
regularized squared error in the set   where the delays of 

pairs (traffic state, timing plan) are known. And the 
formulation for (8) is 

 
2 22

(s,t)

min (r p q ) ( )T

st s t s tp q





     (10) 

The formulation for (9) is 
2 22 2 2

(s,t)

min (r u b p q ) (b b )T

st s t s t s t s tb p q





          (11) 

The process is as follows: 

Step 1: normalize the original dataset and divide it into M 
sets randomly according to the uniform distribution. Then 
choose one as test set, and other M-1 sets are training sets. 

Step 2: in the training set, use stochastic gradient descent 
method to get the minimum of formulation (10) and (11). Then 
the parameters in formulation (8) and (9) can be inferred.  

Step 3: predict the delay ratings through the test set, and get 
the RMSE. Obviously, the smaller the RMSE is, the better. 

Step 4: use the best model aforementioned to predict the 
delay ratings of the current traffic state for the timing plans that 
never be used before, and choose the best one. Then compare 
the best one with the delays of other timing plans that the 
traffic state has used before to decide the final best timing plan. 

Step 5: After applying the timing plan in the actual 
operation, the system should record the newest delay of the pair 
of traffic state and timing plan, to further enrich database. 



IV. COMPUTATIONAL EXPERIMENTS 

A. Description of Dataset 

The experiment data is generated by microscopic traffic 
simulation software Paramics, and the simulation network is 
shown in Figure 2. Among them, 4 roads all have two links, 
every link has three lanes, and the length of each link is 500 
meters. The duration of simulation is 1 hour, while the time 
step is set to be 0.5s. 

When performing simulation, we collect the data from the 
10th minute to the end of the simulation, because the first ten 
minutes are used as road initialization time. In the simulation, 
we set 7 kinds of different traffic ODs representing 7 different 
traffic states from unimpeded to congested states. And 22 
signal timing plans were generated. Then 154 groups of delay 
values and 154 groups of stop time are obtained. In reality, it is 
impossible that every intersection has used every kind of 
timing plans. So we randomly choose 70 groups from the 154 
groups above as the known experiment data.  

Additionally, we get 7 optimal signal control plans 
according to the Webster method. In the Webster method, the 
related parameters are shown in TABLE IV. 

TABLE IV.  WEBSTER PARAMETERS 

AR (s) L (s) S (vehs/s) 
minimum 

green time (s) 
maximum 

green time (s) 
optimum 
cycle (s) 

3 5 2000 7 41 C0 

B. Training and Selecting 

We divide the dataset into 7 subsets, then train the model 
through k-fold cross-validation and stochastic gradient descent 
method. We tried many different parameterizations for 
factorization. Here we set k = 4, the learning rate r = 0.01, and 
the regularization parameter   = 0.05. We adjust the number 

of latent factors f to find the best model. The RMSE of models 
without bias and with bias are shown in Figure 6. 
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Figure 6. RMSE of models with different parameters 

From Figure 6 we can obtain two conclusions. One is that 
the overall performance of Model 2 is superior to Model 1, i.e. 
the performance of the model with bias is better; the other is 
that the accuracy of each factor model is improved by 
increasing the number of involved parameters, which is 
equivalent to increasing the dimensionality of factor model.  In 
conclusion we would like to choose Model 2. And its best 

performance is RMSE = 2.0488, while Model 1’s is 2.8949, 
which is much higher than Model 2’s.  

C. Result Analysis 

Based on the model selected above, we predicted the delay 
ratings for 7 traffic states under different timing plans which 
haven’t been used before. Then according to the predictions, 7 
best matching timing plans can be chosen which is described in 
section III. The cycles of timing plans and the corresponding 
delays are shown in TABLE V (the unit of delay is seconds). 

TABLE V.  DELAY UNDER LFM 

 S1 S2 S3 S4 S5 S6 S7 

Ci 120 72 40 48 88 148 120 

Delay 176.1 65.3 35.4 53.7 111.2 280.4 1144 

TABLE VI.  DELAY UNDER WEBSTER 

 S1 S2 S3 S4 S5 S6 S7 

Cwi 140 88 64 72 104 176 176 

Delay 228.3 86.4 49.9 60 129.2 541.3 1297.2 

The best cycles from Webster are 1 7~w wC C , and the 

corresponding delays are shown in TABLE VI (the unit of 
delay time is seconds). 

More intuitively, Figure 7 shows the comparison between 
the two results: 
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Figure 7. Delay comparison 

From Figure 7, we can deduce the conclusion that under the 
same traffic demand, the overall delay of timing plan when 
using latent factor model is less than that of Webster method. 
But there are some delays of LFM that are very close to the 
corresponding delays of Webster, which have no definite 
advantage, such as S3 and S4. And although some results of 
LFM outperform that of Webster, they are still barely 
satisfactory, such as S6 and S7. Because there are no better 
timing plan in the database, LFM cannot mine a more ideal 
timing plan for the traffic states. However, the experiment 
results have proved that LFM idea in RS outperforms the 
Webster, and we can make it perform better through two 
possible aspects. One is about the dataset. As LFM is based on 
machine learning framework, the ample dataset is necessary. 
So we may establish a database which includes the delay of 



pairs of timing plans and traffic states as many as possible, and 
update or enrich with the method mentioned in this paper 
continuously.  Another is the accuracy of the model. Although 
LFM can consider many factors that are clear or fuzzy, they are 
all static. Transportation system is a complex system of 
dynamic change with high speed, so the neighbor information 
in time domain should be taken into account in order to be 
closer to the reality.  These are what we could do to improve 
the traffic states better. Anyhow, the methods have proved that 
it can be used into traffic signal control as a complement and 
optimization to traditional timing strategies. 

V. CONCLUSION & FUTURE WORK 

In this paper we applied LFM into TSC from the 

perspective of interactions between traffic states and timing 

plans. It can effectively model the uncertain factors which are 

difficult or even impossible to be modeled by traditional 

control strategies. What’s more, we trained some models to 

optimize the traffic states, then compared with the classic 

method Webster. The experiments achieved a good result, 

which could prove the feasibility of our new idea. 

In the future, we will focus on the following aspects: 1) the 

establishment of database which contains enough data of 

various traffic states and timing plans, 2) the usage of other 

models and algorithms in RS and the optimization of them. 
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