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Abstract: An autonomous maneuvering decision algorithm based on experiences of pilots and tactics theories in one-
to-one air combat is proposed. Firstly a method of situation assessment based on näive Bayes is addressed, in which
the historical situation is taken into consideration when predicting the next moment situation. Then preferences of
experienced pilots and tactics theories are mathematically modeled. This model is more flexible and extensible than
that models made up from a bunch of rules, because the mathematical model is easier to code and can adaptively adjust
flying state of aircraft according to the output of situation assessment. Finally a maneuvering scoring function and a
maneuvering matrix are described. The whole process of combating is regarded as a static complete information game
where an optimal maneuvering solution by Nash equilibrium solution exists. Simulations are devised by one unmanned
aircraft running the proposed algorithm against one manned aircraft adversary. Results show that the unmanned aircraft
will reach an advantageous situation regardless of starting from offensive or defensive state.
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1 INTRODUCTION

One-to-one air combat is a pursuer-evader game where
roles of pursuer and evader change fast. The purpose of the
game is to maneuver one’s aircraft into advantageous po-
sition over adversary, and at the same time minimize own
risks of attack from the adversary.
Research of autonomous maneuvering decision of un-
manned aerial vehicle(UAV) has gone for nearly 30 years.
Differential game [1–4] is the first proposed algorithm to
solve the pursuer-evader game. During the process of of
differential game, roles of pursuer and evader are fixed,
which is quite distinct from real combat. Rule-based al-
gorithm [5, 6] is effective in specific scenes. TacAir-Soar
system developed by DARPA is the most typical rule-based
system, some of its performances are similar to experi-
enced pilots, yet the rule-based algorithm is time consum-
ing, deficient in reusability and extendibility. Every time
the same efforts are required when applied on any other
type of aircrafts with different flying parameters. Fuzzy
reasoning algorithms [7–10] output tactics in a high level
with long decision cycle, yet this method is unpractical if
there is none well-developed mechanism of re-planning. In
recent years, approximate dynamic programming [11], par-
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ticle swarm optimization [12], neural network [13, 14] and
reinforcement learning [15] are applied in air combat field
as well, yet most of these intelligent algorithms are sill in
laboratory research, due to requirements for large training
set.

At the beginning of 2015, DARPA proposed a new mode
of collaborative operation of multi UAVs in denied envi-
ronment(CODE), that UAV will develop from composite
type into unitary type. Each aircraft in a group focuses on
unique task to unload burden of situation assessment sys-
tem and communication system that are ever integrated in
one aircraft, because there are specific aircrafts taking in
charge of identification of friend and foe, situation assess-
ment and long range communication with ground station.
On the other hand, assault aircrafts require more flexible a-
bility of dogfight focuses on attacking the adversaries [16].

Algorithms mentioned above are not flexible enough to im-
plement close combat, neither rule-based system nor ex-
pert system includes all cases in air combat, because it
is improbable to enumerate all combat rules and tactics.
An algorithm that is easier to code, more timesaving and
reusable is proposed to describe experiences of pilots and
tactics theories introduced in [17, 18] in a mathematical
way. Firstly, situation assessment model based on näive
Bayes is addressed [3], it outputs a distribution of the cur-



rent situation instead of a determined value. Then several
continuous functions are discussed to present preferences
of pilots and tactics theories. Continuous functions are able
to cover all cases in air combat, because the relative posi-
tion of the unmanned aircraft and the manned aircraft falls
into a certain definition domain of the continuous function-
s. Finally a decision method based on Nash equilibrium
[5, 17] is described to output sequences of optimal maneu-
vering at discrete time moment.

2 ANALYSIS OF AUTONOMOUS MANEU-
VERING DECISION OF UAV

In the one-to-one air combat, outputs of maneuvering de-
cision system are influenced by many factors, for example,
the preferences of pilots, accuracy of situation assessmen-
t, time-consuming of algorithm, a good algorithm ought
to take all of them into consideration as inputs for the au-
tonomous decision system. We assume that the unmanned
(the blue in simulation) and the manned adversary (the red
in simulation) are both able to get precise position and ori-
entation each other, and the continuous combat process is
regarded as a discrete process, therefore the decision sys-
tem has a fixed decision cycle, and it outputs the optimal
maneuvering at tk moment, where tk = k∆t.

2.1 Analysis of Model in One-to-one Aircombat
Figure 1 is a diagram describing dependence between vari-
ous factors in decision process. Nodes Su

k , Sm
k are respec-

tively pose of the unmanned and the manned, node Ck =[
ωk θk dk

]T (bearing, back-off, distance) is the rel-
ative position of the two aircrafts. N = {n1, n2, · · · , nl}
is a maneuvering base including twenty-seven types of ba-
sic fighter maneuvering(BFM), node Θk is the output of
situation assessment, node Qk is evaluation of maneuver-
ing utility, which describes preferences of pilots and tac-
tics introduced in [17]. ∀Su

k , Sm
k ∈ {S}, ∃f that f :

{Ck,Θk} → N , where S =
[
v ϕ γ x y z

]
(ve-

locity, yaw, pitch, x coordinate, y coordinate, z coordinate).
∃fc, fθ, fq that Ck = fc(S

u
k , S

m
k ), Θk = fθ(Ck,Θk−1),

Qk = fq(Ck,Θk). The purpose of the proposed algorithm
is to find out proper fc, fθ, fq and f to respectively calcu-
late the relative position of two aircrafts Ck, situation as-
sessment Θk, influence of each maneuvering to the future
state Qk and autonomous air combat strategy.

Fig. 1 Decision state diagram of UAV

Relative position Ck of the two aircrafts is one of the most
imperative inputs of autonomous decision system, assume
the body orientation is in accordance with speed diretion,

there is

Ck =
[
arccos( v⃗u·d⃗

∥v⃗u∥∥d⃗∥
) arccos( v⃗m·d⃗

∥v⃗m∥∥d⃗∥
) ∥d⃗∥

]
v⃗i =

[
cos(γi) cos(ϕi) cos(γi) sin(ϕi) sin(ϕi)

]
d⃗ =

[
xm − xu ym − yu zm − zu

]T (1)

2.2 Situation Assessment
Situation assessment outcome is an imperative input for au-
tonomous decision system, incorrect assessment outcome
may lead to task failure or even air crash. Herein the sit-
uation assessment model is based on näive Bayes, and the
probability of situation given relative position Ck is denot-
ed as P (Θk = j|Ck). Θk is classified into four types, neu-
tral, advantage, disadvantage and mutual disadvantage [5].
The types are respectively quantified by 1, 2, 3 and 4 that
satisfy

∑4
j=1 P (Θk = j|Ck) = 1, where j = {1, 2, 3, 4}.

Situation is easily inferred from Ck, for example, when the
manned is tail bited by the unmanned, it is obvious the un-
manned is in advantage, and otherwise in disadvantage if
the unmanned is tail bited by the manned. Hence there is

P (Θk+1|Ck+1)

=
P (Θk+1 = j)P (Ck+1|Θk+1 = j)∑4
1 P (Θk+1 = l)P (Ck+1|Θk+1 = l)

≈ P (Θk = j)P (Ck+1|Θk+1 = j)∑4
1 P (Θk = l)P (Ck+1|Θk+1 = l)

(2)

The prior probability of Θk+1 = j is unknown, yet the
flying state is improbable to change heavily in a short
time, due to the reality that aircraft is a large inertia ob-
ject, it is reasonable to use P (Θk = j) as prior probability
P (Θk+1 = j). At the same time, assume that probabilities
of ω, θ and d given Ck all obey uniform distribution and
independent with each other, there is

P (Ck|Θk = j)

= p(ωk|Θk = j)p(θk|Θk = j)p(dk|Θk = j) (3)

3 MODEL OF EXPERIENCES OF PILOTS
AND TACTICS KNOWLEDGE

3.1 Representation Model of Tactics Theories
Typical tactics of one-to-one air combat, including com-
posite maneuvering and basic maneuvering, are introduced
in [17]. Life cycle of composite maneuvering are longer
compared with basic maneuvering, because composite ma-
neuvering primarily aim at changing defensive state into
offensive state and maintaining offensive state to reach a
proper weapon launch position. Most often, it is difficult to
build a mathematical model for composite maneuvering at
the tactical level, yet bearing ω, angle-off θ and distance d
change constantly due to maneuvering implementation. ω,
θ and d are the bottom states that constantly change dur-
ing the process of air combat, thus the proposed algorithm
focuses on a general model for tactics introduced in [17]
and preferences of pilots in terms of ω, θ and d. In order
to better model tactics, a weapon launch area is introduced



firstly

Ti = {Ck = ψ(Ck) ≤ 0} (i = u,m)

ψ(Ck) =
[
ωk − ωT θk − θT dk − dT

]
(4)

ωT , θT , dT are fixed value, the larger the value is, the
stronger the strick capability of the airborne weapon is.
The purpose of the decision system is to maneuver the un-
manned to force the manned fly into Ti.
A position utility function uj(·) is introduced to quantize
influences of ω, θ and d on future situation. Larger uj(·)
indicates more benefits for future state after implementing
a certain maneuvering in situation state j. In any situation
state, both ω and θ should be reduced to achieve Ti, that is
uj(ω) ∝ 1

ω , uj(θ) ∝ 1
θ (see Eq. (5) and Eq. (6)). It reduces

risks to be attacked by the adversary when in disadvantage
state and increases probability of reaching weapon launch
position when in advantage state. Case of d is complex, d
should be reduced when the unmanned and the manned are
far away, because influences of ω and θ are much less im-
perative for future state than that of dwhen the two aircrafts
are wide apart. When the two aircrafts are much close, es-
pecially when one is pursuing the other, ω and θ should be
adjusted instead of d for better weapon launching position.
In a summarization, uj(·) is

uj(ω) = 1− ω

π
(5)

uj(θ) = 1− θ

π
(6)

uj(d) =


1− d

RD
j = 1, 4

1
RD

j = 3

u2(d) j = 2

u2(d) =

(
1−

(
β1

β1 + dk+1

)2
)
e
−
(

dk+1−Ri
β2

)2

+(
1− dk+1

RD

)
ε (dk+1 −Rp) (7)

RD is a parameter to control the rate of convergence of
u2(d), Ri, Rp are respectively the minimum and optimum
range of weapon launching. Figure 2 is curve of u2(d), in
which Ri = 3000m, Rp = 5000m and RD = 15000m.
Figure 2 indicates that in order to get larger u2(d), deci-
sion system will reduce range d when d > 3000m, and
maintain in d = 3000m when d < 3000m, this regula-
tion prevents crashing when the unmanned is tail biting the
manned. ε(dk+1) is a step function that enables the un-
manned to fast approach the manned otherwise due to slow
attenuation of u2(d), speed of the unmanned is small when
d is large.

3.2 Adjusted Weight of Ck

Pilots have various preferences on various situation for the
same maneuvering, herein a weight vector αj is applied
to quantify such preferences. Effects on maneuvering are
finally represented by changes of ω ,θ and d. When two
aircrafts are flying in different directions, d and ω should

Fig. 2 Curve of u2(d)

be reduced to avoid being followed by the other, because
θ is less imperative to situation variation at this moment.
When the unmanned is in advantage and at the same time
the two aircrafts get closer, effects of ω and θ on situation
state increase as well as that of d decreases. Table 1 is detail
value of αj .

aj =
[
αj,ω αj,θ αj,d

]
αj,ω + αj,θ + αj,d = 1 (8)

α2,ω = e
− d

Rp , α2,d = 1− α2,ω

Table 1 Weight of Ck in various situation state
Θk j αj,ω αj,θ αj,d

Neutral 1 0.2 0.1 0.7
Advantage 2 ** 0.0 **

Mutual disadvantage 3 0.0 0.7 0.3
Disadvantage 4 0.2 0.1 0.7

3.3 Representation Model of Maneuvering Utility
With utility function uj(·) and weight vector αj of various
maneuvering in situation Θk = j, a weighted sum denot-
ed in Qk is introduced to describe the utility of a certain
maneuvering in different situation state, that is

Qk = fq(Θk, Ck) =

[U(1, Ck) U(2, Ck) U(3, Ck) U(4, Ck)]
T

U(j, Ck) = αj,ωuj(ω) + αj,θuj(θ) + αj,duj(d)(9)

The current situation state is not a determined value but
obeys a probability distribution, here we take P (Θk+1 =
j|Ck+1) as the weight of U(j, Ck) to generate a weighted
sum denoted in Jk+1, and Jk+1 is the final utility of ma-
neuvering at k + 1 moment given k moment situation.

Jk+1 = P (Θk+1|Ck+1)
TQ(Θk+1|Ck+1) =

4∑
j=1

P (Θk+1 = j|Ck+1)
TQ(Θk+1 = j|Ck+1)(10)

the larger Jk+1 is, the more probably the unmanned will
be superior to the adversary after certain maneuvering is
implemented.

3.4 Autonomous Decision Based on Nash Equilibrium
The basic seven kinds of maneuvering in NASA standard
[19] are extended to twenty-seven in this paper, assuming



the unmanned is able to adjust its vertical overloadNx, tan-
gential overload Nz and roll angle ϕ at the same time.

Nk = {∆n(r1, r2, r3) ∈ {−1, 0, 1}}
∆n(r1, r2, r3) =

[
r1Nx r2Nz r3ϕ

]
(11)

Nx = 3, Nz = 7, ϕ =
π

3

Various maneuvering of the unmanned and the manned
compose a game matrix M27×27. At moment k, Mi,j con-
sists of two elements, Jk+1 of the unmanned implementing
the ith maneuvering and Jk+1 of the manned implementing
the jth maneuvering. The optimal solution falls into three
cases: The unique Nash equilibrium solution of M27×27,
or the Nash equilibrium solution that maximizes Jk+1 of
the unmanned if M27×27 has more than one Nash equilib-
rium solutions, or solution based on Max-min method [3]
if M27×27 has none Nash equilibrium solution.
Researchers tend to use Nash equilibrium in high order as
the optimal solution, yet computational complexity of Nash
equilibrium increases exponentially as the depth of game
tree grows. Herein the optimal solution is in the first order,
because the situation of air combat changes fast, and it is
impractical to predict the optimal payoff of maneuvering
several steps later at cost of real-time.

4 EXPERIMENTS

Aircrafts in all simulations were one unmanned aircraft
(blue) running autonomous decision algorithm and one
manned (red) aircraft handled by operator with rocker and
accelerator equipments. Parameters of the two aircrafts are
detailed in Table 2.

Table 2 Parameters of the manned and the unmanned

parameters manned unmanned

max speed 300m/s 300m/s

min speed 50m/s 50m/s

weapon(1km) [15 4 2] [15 4 2]

T [π/6 π/6 3000] [π/6 π/3 3000]

The three parameters in weapon vector are respectively the
value of RD , Rp and Ri (see Eq. (7)). The three param-
eters in T are respctively the value of ωT , θT and dT (see
Eq. (4)).

4.1 Experiments of Experiences Knowledge Model
In this experiment, we compared the influence on flying
state of two different u2(d), one was introduced in [17]
where u2(d) = 1 − d

RD
, one was proposed in this paper.

Outputs of these two model are respectively the left three
subfigures (see Fig. 3(a), 3(c), 3(e)) and the right subfig-
ures (see Fig. 3(b), 3(d), 3(f)). Bearing and angle-off in
Fig. 3(a) and 3(b) show that when the two aircrafts got
closer, flying state of the unmanned aircraft running new
model was more stable, and the unmanned aircraft was able
to maintain a proper position of weapon for longer time.
Because of instability, the unmanned running old model
missed opportunity to attack the adversary.

(a) situation of old model (b) situation of new model

(c) v and d of old model (d) v and d of new model

(e) 3D output of old model (f) 3D output of new model

Fig. 3 Model comparison of experiences knowledge

4.2 Decision Effect of Various Order Solution

Table 3 Time consumption in various order(ms)
group 1 2 3 4 5 6

first order 15 16 16 15 15 16
second order 760 780 768 770 781 769

There were six groups of experiments with two decision
systems respectively running the first-order algorithm and
the second-order algorithm. Table 3 is comparison of time
consumption of these two algorithms. Figure 4(a) and 4(b)
show that solution of the first-order is only approximate-
ly 3 seconds delay to the second-order solution, yet time
consumption of the first-order is one over forty-five of the
second-order, therefore the first-order decision system is
more competitive in air combat which requires real-time.

(a) maneuvering of second-order (b) maneuvering of first-order

Fig. 4 Maneuver output of various order

4.3 Autonomous Decision Based Nash Equilibrium

There were three groups simulations in which the un-
manned is respectively in advantage state, mutual disad-
vantage state and disadvantage state.



4.3.1 Advantage Initial State

Table 4 Initial state of the unmanned and the manned
Role Velocity Yaw Pitch X/km Y/km Z/km
blue 250m/s 0.75π 0 2 2 8
red 300m/s 0 0 5 5 8

In this experiment, the unmanned initiated in advantage and
at the same time the target was in weapon launch range.
Figure 5(a) shows that the unmanned maintained advan-
tageous state in the whole combat duration. When the
manned tended to change from defensive to offensive by
climbing up, the unmanned quickly climbed up to follow
the manned. The two aircrafts were in stalemate state at
the end of simulation time.

(a) situation assessment (b) d and v of blue (c) 3D output

Fig. 5 Simulation of the unmanned in advantage state

4.3.2 Mutual disadvantage initial state

Table 5 Initial state of the unmanned and the manned
Role Velocity Yaw Pitch X/km Y/km Z/km
blue 250m/s −0.75π 0 4 4 8
red 300m/s 0.25π 0 2 2 8

In this experiment, the two aircraft initiated in different
directions, both of them took lateral climbing after tacti-
cal intervention. Figure 6(a) and 6(c) show that the un-
manned quickly gained advantageous state from mutual
disadvantage state, and the unmanned successfully pursued
the manned with a lead-pursuit attack at the twelfth sec-
ond.

(a) situation assessment (b) d and v of blue (c) 3D output

Fig. 6 Simulation of the unmanned in mutual disadvantage state

4.3.3 Disadvantage state

Table 6 Initial state of the unmanned and the manned
Role Velocity Yaw Pitch X/km Y/km Z/km
blue 250m/s 0 0 6 6 8
red 300m/s 0.25π 0 2 2 8

In this experiment the situation state gradually changed
from disadvantage to mutual disadvantage, and finally
reached advantage at the fifteenth second, in Fig. 7(a) is the
detail. The unmanned firstly reduced bearing and angle-off
of the manned until reached in weapon launch range. At

the twentieth second, the unmanned got control of the air,
and followed the manned with a rear-pursuit at the thirtieth
second.

(a) situation assessment (b) d and v of blue (c) 3D output

Fig. 7 Simulation of the unmanned in disadvantage state

5 CONCLUSION

An autonomous maneuvering decision algorithm based on
experiences of pilots and tactics theories in one-to-one air
combat is proposed. Situation is more rigorously reflected
by a probability distribution from the näive Bayes situa-
tion assessment method, it provides more reasonable out-
comes for autonomous decision. The mathematical model
of preferences of pilots and tactics theories is able to cov-
er all probable cases in air combat, and at the same time
this model is reusable and extendable. Aircraft running this
algorithm is able to automatically maneuver into advanta-
geous positions over the adversary, and reduce risks of be-
ing attacked by the adversary. When the proposed algorith-
m is applied on any other type of aircrafts, only maneuver-
ing parameters and weapon launch parameters need to be
changed. Statical data of all repeated experiments shows
that the winning rate of the unmanned aircraft running the
proposed algorithm is more than 90%, the proposed algo-
rithm is proved to be capable for one-to-one air combat.
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