

Abstract—In order to solve the problem of single-event

upset (SEU) in static-random access memory (SRAM)

based field-programmable gate arrays (FPGAs), a Fault

Masking Dual Module Redundancy (FMDMR) structure is

proposed in this paper. The FMDMR method make use of

AND/OR logic as dual-module redundancy (DMR) voter.

The AND/OR logic are built with unoccupied carry-chains

in FPGA; hence no additional hardware overhead are

brought about by the insertion of voters. Experiments on

MCNC’91 benchmarks show that the FMDMR method can

reduce 70% SEU faults on average, with a 2x hardware

overhead. It balances between area and reliability, and fits

for applications with no rigorous require for reliability.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) based on

static-random access memory (SRAM) can be

reprogrammed by users as many times as necessary, this

flexibility makes it more and more widely used in

different applications[1, 2]. But such flexibility relies on

the programming of SRAM cells, which are very

sensitive to various perturbations; especially single-event

upsets (SEUs).

Traditional FPGA hardening techniques include

triple-module redundancy (TMR) [3], periodicity

scrubbing [4], configuration bits verify and readback [5],

and dual-module redundancy (DMR) [6]. Recently,

in-place fault mitigation algorithms [7, 8], making use of

different logic masking techniques, emerges to reduce

fault rate in FPGAs. Those methods bring about low or

no cost in area, but the fault masking effect is not obvious

either.

TMR is the most straightforward fault-tolerant

technique[9], but the hardware overhead of TMR method

are excessive, generally over 200%, This huge overhead

also give rise to high power dissipation and low working

frequency. Selective TMR [10-12] can reduce the area

overhead with a small loss of SEU immunity, is being

used as an alternative to applications with no need of too

much require of reliability.

Dual-module redundancy (DMR) can reduce hardware

overhead to only 100%, but previous DMR techniques

were mostly used for fault detection. A different

comparison result means that there is something wrong

in one of the twin module and the FPGA system has to

stop to repair the error. The major disadvantage of DMR

is that it can offer neither fault localization nor fault-free

module auto switch when the fault is discovered, which

will cause a great decline on the working efficiency. To

overcome this problem, a method combines DMR and

concurrent-error detection (CED) is proposed [13], when

error occurs it needs only one clock cycle in hold

operation to detect the faulty module, and after that it will

operate normally again without performance penalties.

But the designing of CED encode and decode circuit is

very difficult, and for complex circuit it is an

impracticable task. Therefore [13] is not a suitable option

for general use.

This paper provides a fault masking module

redundancy (FMDMR) structure carried on lookup-table

(LUT) level, which adds an AND or OR logic voter after

each duplicated LUT pair. This architecture can mask

most FPGA errors induced by SEUs on the basis of logic

gates nature: AND gate output remains 0 once one of the

gate inputs is 0; OR gate output remains 1 once one of the

gate inputs is 1. Different LUT outputs have different 0/1

preference, this fact determines whether an AND or OR

logic voter will be added to the output of LUT pairs. With

the help of abundant dedicated carry-chain resources in

Xilinx FPGAs, the insertion of logic voter causes no

additional hardware overhead to the system. MCNC’91

benchmarks are applied to validate the SEU mitigation

capability of FMDMR.

II. METHOD STATEMENT

The FMDMR method is based on this principle: Logic

0 is control value for AND gates, logic 1 is control value

for OR gates. Control value means that the output of a

gate is totally controlled by certain logic value of one of

its input. For example when one input of an AND gate is

0, the output of the gate will remain 0 no matter what

other inputs are. We make use of this property of AND

gates to mask 0→1 faults in DMR circuits, and OR gates

to 1→0 faults in a similar way.

A. AND/OR Logic Act as DMR Voters

Without faults, the output of a duplicated LUT pair is

A Fault Masking Dual Module Redundancy

Method for FPGA

Meisong Zheng*, Zilong Wang*, and Lijian Li *

* Insitute of Automation, Chinese Academy of Sciences

Beijing, 100190, China, meisong.zheng@ia.ac.cn

This work was supported by National Nature Science Foundation

(61073035) under Grant and Beijing Natural Science Foundation

(4092013) under Grant.

either <0,0> or <1,1>, both of them can be voted by an

AND or OR logic voter. Therefore makes up four types

of combinations of DMR outputs and their voters as

shown in Fig. 1.

The FMDMR method aims at mitigating SEU induced

faults in FPGA, generally only on configuration bit will

be affected by SEU, hence it is reasonable to assume that

fault happens in one LUT once a time.

0

(b)

LUT
A
B
C
D

(a)

0

0

LUT

1LUTC
B

1

1

LUT

D

A

0

(d)

LUTC
B
A

(c)

0

0

LUT

D
1LUTC

B

1

1

LUT

D

A

Fig.1 Four types of DMR outputs and their voters

The changed output and masking effect of AND/OR

logic voter is shown in Fig. 2. In Fig. 2(a), because both

of the inputs hold the control value 0, the 0→1 fault

happens on one of the input can be masked by the AND

gate. The same case happens on Fig. 2(d). But in the

cases of Fig. 2(b) and Fig.2(c) faults happened on inputs

propagated to the outputs. A conclusion can be extracted

based on those cases: for a duplicated LUT pair, 0 → 1

fault can be masked by an AND logic, and 1 → 0 fault

can be masked by an OR logic.

0
0→1
0

1→0
1

1→0

0→1
0

1→0
1

0→1 1

(b)(a)

(d)(c)

Fig.2 Fault masked by AND/OR logic voter

With the conclusion derived from Fig. 2, the FMDMR

fault masking scheme is designed as follows:

Make a copy of every LUT in the circuit (DMR);

Insert an AND logic as DMR voters for 0-preference

LUTs;

Insert an OR logic as DMR voters for 1-preference

LUTs.

So the problem becomes which LUTs are 0-preference

and which are 1-preference. A distinction between 0 and

1 preference for every LUT is made by means of signal

probability calculation, which will be described in the

next section.

B. Logic Value Preferences of LUT Output Lines

Firstly, the concept of Signal probability (Ps) is

introduced as the probability of each LUT output line to

be sensitized to 1. Then, a threshold H is used to

determine whether an LUT is 0-preference or

1-preference. That is:

An LUT is 0-preference if its output O has a signal

probability Ps(O)≤H; 1- preference if Ps(O)＞H.

Depends on the functions and application scenarios,

different circuits have different input probabilities. For

an LUT with its input signal probabilities already known,

access probability (Pa) of each configuration bit can be

obtained, so the output signal probability can be

calculated as:

s a() (cell 1),P O P

in which cell=1 means the configuration bit contains a

logic value of 1. For example a 3-input LUT E with input

signal probabilities of Ps(I2)=0.4, Ps(I1)=0.5, Ps(I0)=0.6,

and a truth table shown as Table I; the output signal

probability Ps(E) can be calculated as:

s a 3 a 4 a 5 a 6 a 7

s 2 s 1 s 0 s 2

() () () () () ()

 (1 ()) () () () 0.78.

P E P C P C P C P C P C

P I P I P I P I

TABLE I

TRUTH TABLE OF AN EXAMPLE LUT

I2 I1 I0 E Accessed Cell

0 0 0 0 C0

0 0 1 0 C1

0 1 0 0 C2

0 1 1 1 C3

1 0 0 1 C4

1 0 1 1 C5

1 1 0 1 C6

1 1 1 1 C7

We assume all primary inputs have signal probabilities

of Ps(Ip)=0.5 for simplicity, and then propagate them to

primary outputs level by level; hence the logic value

preferences of each LUT can be obtained. We set H=0.5

in this paper, so if the signal probability of a given LUT

is greater than 0.5 it is a 1-preference LUT, otherwise it is

0-preference. Based on this, LUT E shown in Table I is

1-preference.

III. PROPOSED METHOD

A. AND/OR Logic Voters Designed with Carry-Chain

Since the FMDMR is carried on LUT level, this

method needs lots of DMR voters to vote the LUT

outputs. We make use of dedicated carry-chains in Xilinx

FPGAs to build the AND/OR logic. Since the

carry-chains are generally not used in most applications,

the insertion of voters does not bring about additional

overhead. A simplified diagram of carry-chain logic in

one slice is shown in Fig. 3, it is comprised with a

multiplexer and exclusive-or gate. Real FPGAs contain

more complex data selections and relative connections

for the multiplexer and exclusive-or gate than Fig. 3.

10

10

LUT

LUT

FF

FF

MUXCY

MUXCY

CIN

COUT

Fig. 3 A simplified carry-chain in one slice

As shown in Fig. 4(a), an AND logic voter is built with

a multiplexer:

AND 1 1 2 1 20 .O O O O O O

As shown in Fig. 4(b), an OR logic voter is built with a

multiplexer combined with an exclusive-or gate:

OR 2 1 2 2 2 1 2() .O O O O O O O O

1

00

1

0

(a) (b)

O1

O1

O2

OOR

OAND

O1

Fig. 4 AND OR logic constructed by carry-chains

B. FMDMR Method Implementation

As stated earlier, an efficient way to reduce the final

output error is to insert AND logic voter for 0-prefence

LUTs and OR logic voter for 1-prefence LUTs. In order

to make the best use of the dedicated carry-chain,

original LUTs should be constrained in separate slices. In

Xilinx FPGAs, one slice contains 2 LUTs, so that we can

set the duplicated LUT pairs exactly in one slice and use

the dedicated carry-chain in that slice to build the logic

voter. This is realized by the ucf constrains additionally

attached to the project. Based on these the FMDMR

method is implemented as follows:

1) Map the circuit into LUT structure;

2) Calculate LUT logic value preferences level by

level, and mark 0-preference LUTs with AND voter,

1-preference LUTs with OR voter;

3) Copy LUTs in the same slice and build voter as they

have been marked in step 2, using the dedicated

carry-chain in that slice;

4) Connect the voted output to the original connections.

Step1 is implemented using RASP (Rapid System

Prototyping) synthesis and mapping tool[14], Netlists

synthesized by RASP boasts more trimly structure and

more concise format, hence are easier to be read and

disposed by our C++ procedure. What’s more the same

netlists can also be realized in Xilinx FPGAs using

Xilinx Primitives. step2 is a C++ procedure runs on a PC

with a 3.2GHz quad core CPU and 4GB memory. Step 3

is realized in verilog accompany with a ucf file indicating

the area constraint for each LUT. Step 4 is accomplished

using Xilinx synthesize, place and routing tool.

The following is an example of step 3 operates on one

LUT:

LUT3 #(

 .INIT(8'he0) // Specify LUT Contents

)LUT3_INST_L2_1 (

 .O(inter2_1), // LUT general output

 .I0(inter16), // LUT input

 .I1(inter15), // LUT input

 .I2(pi) // LUT input

);

 LUT3 #(

 .INIT(8'he0)

)LUT3_INST_L2_2 (

 .O(inter2_2),

 .I0(inter16),

 .I1(inter15),

 .I2(pi),

);

 MUXCY_L MUXCY_L_inst2 (

 .LO(inter2), // Carry local output signal

 .CI(inter2_2), // Carry input signal

 .DI(0), // Data input signal

 .S(inter2_1) // MUX select, tie to '1' or LUT4 out

);

with the ucf statements:

INST "LUT4_INST_L2_1" LOC = slice_X5Y10 | BEL = F;

INST "LUT4_INST_L2_2" LOC = slice_X5Y10 | BEL = G;

LUT3_INST_L2_1 and LUT3_INST_L2_2 are same

functional 3-LUT pairs (with configuration bits 0xe0)

with same inputs (inter16, inter15, pi); the output of them

is inter2_1 and inter2_2, respectively. An AND logic

voter is inserted by the implementation of multiplexer

MUXCY_L_inst2, it votes inter2_1 and inter2_2 with an

output inter2:

inter2=inter2_1 0+inter2_1 inter2_2

 =inter2_1 inter2_2.

The ucf statements are used to constrain the LUT pair

resides in the same slice.

IV. EXPERIMENTAL RESULTS

In this section, the proposed FMDMR method is tested

on standard MCNC’91 benchmarks by means of

logic-simulation fault injection mechanism. The

algorithm was implemented in C++ and tested on a PC

with a 3.2GHz quad core CPU and 4GB memory. In the

end of this section, the simulation results are validated on

a real FPGA.

A. Fault Injection Method

The logic simulation fault injection flow is shown in

Fig. 5.

Begin

Flip the next configuration bit

Test vectors applied

Difference on the

Output?

All vectors applied?

All configuration bits

flipped?

End

Nfault + 1

Y

N

Y

Y

N

N

Fig. 5 Logic-simulation fault injection experiment flow

We reverse the configuration bit once a time for every

LUT. Once a configuration bit is flipped, test vectors are

applied to circuit inputs and the outputs are compared

with an error-free circuit. The number of fault (Nfault) will

be added with one when a difference is detected. The

next configuration bit will be reversed after all test

vectors have been applied or a fault is detected on this

reversed configuration bit.

Once a fault injected to an LUT, the fault effect

depends on its redundancy property. Only on the

following two cases will the injected fault really reverse

the LUT configuration bit:

1) LUT pair voted by AND logic whereas the fault is 1

→0.

2) LUT pair voted by OR logic whereas the fault is 0

→1.

Otherwise the fault point LUT remains its

configuration memory, means that it is immune to the

injected faults.

For circuits with input number less than 12, such as

cm152a and alu2, we applied full input space simulation

for every injected fault. For circuit with input number

more than 12, such as c1355 and c432, we applied 1,000

test vectors generated by a linear-feedback shift register

(LFSR).

B. Experimental Results and Analysis

Some results of combinational MCNC’91 benchmark

circuits are shown in Table II. Column 2 titled with

“Ninputs” shows the number of primary inputs of each

circuit; column 3 titled with “Nlut” shows the number of

LUTs of each circuit; and column 4 titled with “Nbits”

shows the total number of configuration bits of each

circuit. Columns 5 titled with “FORI” shows the number

of configuration bits propagates fault to the output while

flipped in the original circuit; Columns 6 titled with

“FFMDMR” shows the number of configuration bits

propagates fault to the output in the FMDMR hardened

circuit. The last column titled with “Reduced” shows the

percent of faults reduced by the FMDMR method

compared with the original circuits.

TABLE II

EXPERIMENTAL RESULTS

Circuits Ninputs Nlut Nbits FORI FFMDMR Reduced

cm82a 5 4 64 32 16 50.00

cm42a 4 10 160 160 10 93.75

cm138a 6 10 160 96 10 89.58

cm152a 11 6 96 79 23 70.89

cc 21 26 416 237 61 74.26

c8 28 39 624 410 122 70.24

c1355 41 74 1184 1081 467 56.80

c499 41 74 1184 1077 464 56.92

ttt2 24 75 1200 737 231 68.66

term1 34 88 1408 656 174 73.48

c432 36 124 1984 1128 448 60.28

x1 51 143 2288 1277 370 71.03

c880 60 174 2784 1712 500 70.79

alu2 10 197 3152 1666 400 75.99

Average

1193 739 235 70.19

From Table II, we can see that 62% (739/1193) of the

configuration bits are SEU sensitive without protection;

while the RTMR hardened FPGA reduced that

proportion to 20% (235/1193). Compared with the

original circuit, FMDMR method can reduce 70% faults

on average, for some circuits like cm42a and cm138a

even 90%.

C. Verification Test on Real FPGA

We also implemented the FMDMR method on a real

FPGA in order to verify the validity. The test platform is

based on Xilinx XC4VSX35 with a 100MHz oscillator

and 4 LEDs. We implemented the cm152a circuit on the

FPGA and inject faults on its configuration bits.

The experiment scheme is shown in Fig. 6. The

Golden part is error-free circuit without fault injection.

The ORI and FMDMR part represents the original

cm152a circuit and the FMDMR hardened cm152a

circuit, both of the ORI and FMDMR circuit is

configured with one configuration bit fault in one LUT.

The configuration bit faults are injected at the time of

FPGA configuration. When FPGA configuration is

finished, Input vectors are applied to the three circuits

with the frequency of 100MHz on the test board, and the

outputs of ORI and FMDMR are compared with the

Golden one. Differences between the outputs drive the

test board LEDs, LED1 represents error detected in ORI

circuit; while LED0 represents error detected in

FMDMR circuit.

ORI Error_ORI

FMDMR

Golden
Input Vectors

Error_FMDMR

LED1

LED0

Fig. 6 Real FPGA test scheme

The cm152a circuit is composed with one 3-input LUT

and five 4-input LUTs, hence the total LUT

configuration bits equals to 5×2
4
+1×2

3
=88. So the

FPGA is reconfigured 96 times, the state of LED1 and

LED0 are recorded after each reconfiguration.

Lightening of LED1 represents an error detected in ORI

circuit; while lightening of LED0 represents an error

detected in FMDMR circuit.

The experiment showed 79 times of ORI circuit errors

(NError_ORI=79) and 23 times of FMDMR circuit errors

(NError_FMDMR=23). This result behaves the same with the

logic-simulation fault injection mechanism described in

Section IV-C, further demonstrates the reasonability of

FMDMR.

 Because of no additional hardware overhead is

brought about by the insertion of voters, the total

overhead of FMDMR is only 2x of the original circuit

while TMR method uses 3x of the original area. In

conclusion, FMDMR is an effective FPGA reinforce

method.

V. CONCLUSION

This paper presents a fault masking DMR technique

(FMDMR) with AND/OR logic voter for FPGA SEU

mitigation. Compared to traditional DMR methods, this

architecture needs neither reset to recover from errors nor

additional error judgment circuit to switch to the

fault-free part. What’s more, the insertion of voters does

not induce additional hardware overhead.

Results on MCNC’91 benchmark show that circuits

hardened by FMDMR can reach a relatively high SEU

immunity level at a reasonable area overhead. Since

SEUs are probability events, FMDMR can guarantee the

stability of system operation combine with a certain

frequency of FPGA scrubbing. It could be applicable to

scenarios in which a very high reliability is not

mandatory, while area is constrained.

REFERENCES

[1] G. Ge, M. E. Kaye, and Z. Yun, "Enhancement of

Gaussian background modelling algorithm for

moving object detection & its implementation

on FPGA," in IEEE 28th Canadian Conference on

Electrical and Computer Engineering (CCECE),

2015, pp. 118-122.

[2] C. E. Kennedy and M. Mozaffari-Kermani,

"Generalized parallel CRC computation on FPGA,"

in IEEE 28th Canadian Conference on Electrical

and Computer Engineering (CCECE), 2015, pp.

107-113.

[3] C. Carmichael, "XAPP197.Triple modular

redundancy design techniques for Virtex FPGA’s

(DRAFT)," 2006.

[4] C. C. Brendan Bridgford, Chen Wei Tseng,

"XAPP779.Correcting Single-Event Upsets in

Virtex-II Platform FPGA Configuration Memory,"

February 19 2007.

[5] K. Chapman, " XAPP864. SEU Strategies for

Virtex-5 Devices," V2.0, April 1, 2010.

[6] H. H. Ng, " XAPP564. PPC405 Lockstep System

on ML310," January 29, 2007.

[7] U. Kretzschmar, A. Astarloa, J. Lazaro, M. Garay,

and J. Del Ser, "Robustness of different TMR

granularities in shared wishbone architectures on

SRAM FPGA," in International Conference on

Reconfigurable Computing and FPGAs

(ReConFig) , 2012, pp. 1-6.

[8] H. Keheng, H. Yu, and L. Xiaowei,

"Reliability-Oriented Placement and Routing

Algorithm for SRAM-Based FPGAs," IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 22, pp. 256-269, 2014.

[9] H. El-Razouk and Z. Abid, "A New

Transistor-Redundant Voter for Defect-Tolerant

Digital Circuits," in Canadian Conference on

Electrical and Computer Engineering(CCECE'06),

2006, pp. 1078-1081.

[10] P. K. Samudrala, J. Ramos, and S. Katkoori,

"Selective triple Modular redundancy (STMR)

based single-event upset (SEU) tolerant synthesis

for FPGAs," IEEE Transactions on Nuclear

Science, vol. 51, pp. 2957-2969, 2004.

[11] V. Chandrasekhar, S. N. Mahammad, V.

Muralidaran, and V. Kamakoti, "Reduced Triple

Modular Redundancy for Tolerating SEUs in

SRAM-based FPGAs," in Proceedings of NASA

International Conference on Military Applications

in Programmable Logic Devices (MAPLD), 2005.

[12] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K.

Morgan, and M. Wirthlin, "Fine-Grain SEU

Mitigation for FPGAs Using Partial TMR," IEEE

Transactions on Nuclear Science, vol. 55, pp.

2274-2280, 2008.

[13] F. G. de Lima Kastensmidt, G. Neuberger, R. F.

Hentschke, L. Carro, and R. Reis, "Designing

fault-tolerant techniques for SRAM-based FPGAs,"

IEEE transactions on Design & Test of Computers,

vol. 21, no. 6, pp. 552-562, 2004.

[14] J. Cong, J. Peck, and Y. Ding, "RASP: A general

logic synthesis system for SRAM-based FPGAs,"

in Proceedings of the ACM fourth international

symposium on Field-programmable gate arrays,

1996, pp. 137-143.

