
  

Abstract—In order to solve the problem of single-event 

upset (SEU) in static-random access memory (SRAM) 

based field-programmable gate arrays (FPGAs), a Fault 

Masking Dual Module Redundancy (FMDMR) structure is 

proposed in this paper. The FMDMR method make use of 

AND/OR logic as dual-module redundancy (DMR) voter. 

The AND/OR logic are built with unoccupied carry-chains 

in FPGA; hence no additional hardware overhead are 

brought about by the insertion of voters. Experiments on 

MCNC’91 benchmarks show that the FMDMR method can 

reduce 70% SEU faults on average, with a 2x hardware 

overhead. It balances between area and reliability, and fits 

for applications with no rigorous require for reliability.  

I. INTRODUCTION 

Field-programmable gate arrays (FPGAs) based on 

static-random access memory (SRAM) can be 

reprogrammed by users as many times as necessary, this 

flexibility makes it more and more widely used in 

different applications[1, 2]. But such flexibility relies on 

the programming of SRAM cells, which are very 

sensitive to various perturbations; especially single-event 

upsets (SEUs). 

Traditional FPGA hardening techniques include 

triple-module redundancy (TMR) [3], periodicity 

scrubbing [4], configuration bits verify and readback [5], 

and dual-module redundancy (DMR) [6]. Recently, 

in-place fault mitigation algorithms [7, 8], making use of 

different logic masking techniques, emerges to reduce 

fault rate in FPGAs. Those methods bring about low or 

no cost in area, but the fault masking effect is not obvious 

either. 

TMR is the most straightforward fault-tolerant 

technique[9], but the hardware overhead of TMR method 

are excessive, generally over 200%, This huge overhead 

also give rise to high power dissipation and low working 

frequency. Selective TMR [10-12] can reduce the area 

overhead with a small loss of SEU immunity, is being 

used as an alternative to applications with no need of too 

much require of reliability. 

Dual-module redundancy (DMR) can reduce hardware 

overhead to only 100%, but previous DMR techniques 

were mostly used for fault detection. A different 

comparison result means that there is something wrong 

in one of the twin module and the FPGA system has to 

stop to repair the error. The major disadvantage of DMR 

is that it can offer neither fault localization nor fault-free 

module auto switch when the fault is discovered, which 

will cause a great decline on the working efficiency. To 

overcome this problem, a method combines DMR and 

concurrent-error detection (CED) is proposed [13], when 

error occurs it needs only one clock cycle in hold 

operation to detect the faulty module, and after that it will  

operate normally again without performance  penalties. 

But the designing of CED encode and decode circuit is 

very difficult, and for complex circuit it is an 

impracticable task. Therefore [13] is not a suitable option 

for general use. 

This paper provides a fault masking module 

redundancy (FMDMR) structure carried on lookup-table 

(LUT) level, which adds an AND or OR logic voter after 

each duplicated LUT pair. This architecture can mask 

most FPGA errors induced by SEUs on the basis of logic 

gates nature: AND gate output remains 0 once one of the 

gate inputs is 0; OR gate output remains 1 once one of the 

gate inputs is 1. Different LUT outputs have different 0/1 

preference, this fact determines whether an AND or OR 

logic voter will be added to the output of LUT pairs. With 

the help of abundant dedicated carry-chain resources in 

Xilinx FPGAs, the insertion of logic voter causes no 

additional hardware overhead to the system. MCNC’91 

benchmarks are applied to validate the SEU mitigation 

capability of FMDMR. 

II. METHOD STATEMENT 

The FMDMR method is based on this principle: Logic 

0 is control value for AND gates, logic 1 is control value 

for OR gates. Control value means that the output of a 

gate is totally controlled by certain logic value of one of 

its input. For example when one input of an AND gate is 

0, the output of the gate will remain 0 no matter what 

other inputs are. We make use of this property of AND 

gates to mask 0→1 faults in DMR circuits, and OR gates 

to 1→0 faults in a similar way.  

A. AND/OR Logic Act as DMR Voters 

Without faults, the output of a duplicated LUT pair is 
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either <0,0> or <1,1>,  both of them can be voted by an 

AND or OR logic voter. Therefore makes up four types 

of combinations of DMR outputs and their voters as 

shown in Fig. 1.  

The FMDMR method aims at mitigating SEU induced 

faults in FPGA, generally only on configuration bit will 

be affected by SEU, hence it is reasonable to assume that 

fault happens in one LUT once a time. 
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Fig.1 Four types of DMR outputs and their voters 

 

The changed output and masking effect of AND/OR 

logic voter is shown in Fig. 2. In Fig. 2(a), because both 

of the inputs hold the control value 0, the 0→1 fault 

happens on one of the input can be masked by the AND 

gate. The same case happens on Fig. 2(d). But in the 

cases of Fig. 2(b) and Fig.2(c) faults happened on inputs 

propagated to the outputs. A conclusion can be extracted 

based on those cases: for a duplicated LUT pair, 0 → 1 

fault can be masked by an AND logic, and 1 → 0 fault 

can be masked by an OR logic. 
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Fig.2 Fault masked by AND/OR logic voter 

 

With the conclusion derived from Fig. 2, the FMDMR 

fault masking scheme is designed as follows: 

Make a copy of every LUT in the circuit (DMR); 

Insert an AND logic as DMR voters for 0-preference 

LUTs; 

Insert an OR logic as DMR voters for 1-preference 

LUTs. 

So the problem becomes which LUTs are 0-preference 

and which are 1-preference. A distinction between 0 and 

1 preference for every LUT is made by means of signal 

probability calculation, which will be described in the 

next section. 

B. Logic Value Preferences of LUT Output Lines 

Firstly, the concept of Signal probability (Ps) is 

introduced as the probability of each LUT output line to 

be sensitized to 1. Then, a threshold H is used to 

determine whether an LUT is 0-preference or 

1-preference. That is: 

An LUT is 0-preference if its output O has a signal 

probability Ps(O)≤H; 1- preference if Ps(O)＞H.  

Depends on the functions and application scenarios, 

different circuits have different input probabilities. For 

an LUT with its input signal probabilities already known, 

access probability (Pa) of each configuration bit can be 

obtained, so the output signal probability can be 

calculated as: 

s a( ) (cell 1),P O P   

in which cell=1 means the configuration bit contains a 

logic value of 1. For example a 3-input LUT E with input 

signal probabilities of Ps(I2)=0.4,  Ps(I1)=0.5, Ps(I0)=0.6, 

and a truth table shown as Table I; the output signal 

probability Ps(E) can be calculated as: 

s a 3 a 4 a 5 a 6 a 7

s 2 s 1 s 0 s 2

( ) ( ) ( ) ( ) ( ) ( )

         (1 ( )) ( ) ( ) ( ) 0.78.
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TABLE I  

TRUTH TABLE OF AN EXAMPLE LUT 

I2 I1 I0 E Accessed Cell 

0 0 0 0 C0 

0 0 1 0 C1 

0 1 0 0 C2 

0 1 1 1 C3 

1 0 0 1 C4 

1 0 1 1 C5 

1 1 0 1 C6 

1 1 1 1 C7 

 

We assume all primary inputs have signal probabilities 

of Ps(Ip)=0.5 for simplicity, and then propagate them to 

primary outputs level by level; hence the logic value 

preferences of each LUT can be obtained. We set H=0.5 

in this paper, so if the signal probability of a given LUT 

is greater than 0.5 it is a 1-preference LUT, otherwise it is 

0-preference. Based on this, LUT E shown in Table I is 

1-preference. 

III. PROPOSED METHOD  

A. AND/OR Logic Voters Designed with Carry-Chain 

Since the FMDMR is carried on LUT level, this 

method needs lots of DMR voters to vote the LUT 

outputs. We make use of dedicated carry-chains in Xilinx 

FPGAs to build the AND/OR logic. Since the 

carry-chains are generally not used in most applications, 

the insertion of voters does not bring about additional 



  

overhead. A simplified diagram of carry-chain logic in 

one slice is shown in Fig. 3, it is comprised with a 

multiplexer and exclusive-or gate. Real FPGAs contain 

more complex data selections and relative connections 

for the multiplexer and exclusive-or gate than Fig. 3. 
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Fig. 3 A simplified carry-chain in one slice 

As shown in Fig. 4(a), an AND logic voter is built with 

a multiplexer: 

AND 1 1 2 1 20 .O O O O O O      

As shown in Fig. 4(b), an OR logic voter is built with a 

multiplexer combined with an exclusive-or gate: 

OR 2 1 2 2 2 1 2( ) .O O O O O O O O        
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Fig. 4 AND OR logic constructed by carry-chains 

 

B. FMDMR Method Implementation 

As stated earlier, an efficient way to reduce the final 

output error is to insert AND logic voter for 0-prefence 

LUTs and OR logic voter for 1-prefence LUTs. In order 

to make the best use of the dedicated carry-chain, 

original LUTs should be constrained in separate slices. In 

Xilinx FPGAs, one slice contains 2 LUTs, so that we can 

set the duplicated LUT pairs exactly in one slice and use 

the dedicated carry-chain in that slice to build the logic 

voter. This is realized by the ucf constrains additionally 

attached to the project. Based on these the FMDMR 

method is implemented as follows: 

1) Map the circuit into LUT structure; 

2) Calculate LUT logic value preferences level by 

level, and mark 0-preference LUTs with AND voter, 

1-preference LUTs with OR voter;  

3) Copy LUTs in the same slice and build voter as they 

have been marked in step 2, using the dedicated 

carry-chain in that slice; 

4) Connect the voted output to the original connections. 

Step1 is implemented using RASP (Rapid System 

Prototyping) synthesis and mapping tool[14], Netlists 

synthesized by RASP boasts more trimly structure and 

more concise format, hence are easier to be read and 

disposed by our C++ procedure. What’s more the same 

netlists can also be realized in Xilinx FPGAs using 

Xilinx Primitives. step2 is a C++ procedure runs on a PC 

with a 3.2GHz quad core CPU and 4GB memory. Step 3 

is realized in verilog accompany with a ucf file indicating 

the area constraint for each LUT. Step 4 is accomplished 

using Xilinx synthesize, place and routing tool. 

The following is an example of step 3 operates on one 

LUT: 

LUT3 #( 

   .INIT(8'he0)     // Specify LUT Contents 

  )LUT3_INST_L2_1 ( 

     .O(inter2_1),       // LUT general output 

   .I0(inter16),     // LUT input 

   .I1(inter15),     // LUT input 

   .I2(pi)       // LUT input 

   ); 

  LUT3 #( 

   .INIT(8'he0) 

  )LUT3_INST_L2_2 ( 

     .O(inter2_2), 

   .I0(inter16), 

   .I1(inter15), 

   .I2(pi), 

  ); 

  MUXCY_L MUXCY_L_inst2 ( 

      .LO(inter2),    // Carry local output signal 

      .CI(inter2_2),    // Carry input signal 

      .DI(0),     // Data input signal 

      .S(inter2_1)       // MUX select, tie to '1' or LUT4 out 

   ); 

with the ucf statements: 

INST "LUT4_INST_L2_1"  LOC = slice_X5Y10 | BEL = F; 

INST "LUT4_INST_L2_2"  LOC = slice_X5Y10 | BEL = G; 

LUT3_INST_L2_1 and LUT3_INST_L2_2 are same 

functional 3-LUT pairs (with configuration bits 0xe0) 

with same inputs (inter16, inter15, pi); the output of them 

is inter2_1 and inter2_2, respectively. An AND logic 

voter is inserted by the implementation of multiplexer 

MUXCY_L_inst2, it votes inter2_1 and inter2_2 with an 

output inter2: 

inter2=inter2_1 0+inter2_1 inter2_2

         =inter2_1 inter2_2.

 


 

The ucf statements are used to constrain the LUT pair 

resides in the same slice.  



  

IV. EXPERIMENTAL RESULTS 

In this section, the proposed FMDMR method is tested 

on standard MCNC’91 benchmarks by means of 

logic-simulation fault injection mechanism. The 

algorithm was implemented in C++ and tested on a PC 

with a 3.2GHz quad core CPU and 4GB memory. In the 

end of this section, the simulation results are validated on 

a real FPGA. 

A. Fault Injection Method 

The logic simulation fault injection flow is shown in 

Fig. 5.  
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Fig. 5 Logic-simulation fault injection experiment flow 

 

We reverse the configuration bit once a time for every 

LUT. Once a configuration bit is flipped, test vectors are 

applied to circuit inputs and the outputs are compared 

with an error-free circuit. The number of fault (Nfault) will 

be added with one when a difference is detected. The 

next configuration bit will be reversed after all test 

vectors have been applied or a fault is detected on this 

reversed configuration bit.  

Once a fault injected to an LUT, the fault effect 

depends on its redundancy property. Only on the 

following two cases will the injected fault really reverse 

the LUT configuration bit: 

1) LUT pair voted by AND logic whereas the fault is 1

→0. 

2) LUT pair voted by OR logic whereas the fault is 0

→1. 

Otherwise the fault point LUT remains its 

configuration memory, means that it is immune to the 

injected faults. 

For circuits with input number less than 12, such as 

cm152a and alu2, we applied full input space simulation 

for every injected fault. For circuit with input number 

more than 12, such as c1355 and c432, we applied 1,000 

test vectors generated by a linear-feedback shift register 

(LFSR).  

B. Experimental Results and Analysis 

Some results of combinational MCNC’91 benchmark 

circuits are shown in Table II. Column 2 titled with 

“Ninputs” shows the number of primary inputs of each 

circuit; column 3 titled with “Nlut” shows the number of 

LUTs of each circuit; and column 4 titled with “Nbits” 

shows the total number of configuration bits of each 

circuit.  Columns 5 titled with “FORI” shows the number 

of configuration bits propagates fault to the output while 

flipped in the original circuit; Columns 6 titled with 

“FFMDMR” shows the number of configuration bits 

propagates fault to the output in the FMDMR hardened 

circuit. The last column titled with “Reduced” shows the 

percent of faults reduced by the FMDMR method 

compared with the original circuits. 

 

TABLE II 

EXPERIMENTAL RESULTS 

Circuits Ninputs Nlut Nbits FORI FFMDMR Reduced 

cm82a 5 4 64 32 16 50.00 

cm42a 4 10 160 160 10 93.75 

cm138a 6 10 160 96 10 89.58 

cm152a 11 6 96 79 23 70.89 

cc 21 26 416 237 61 74.26 

c8 28 39 624 410 122 70.24 

c1355 41 74 1184 1081 467 56.80 

c499 41 74 1184 1077 464 56.92 

ttt2 24 75 1200 737 231 68.66 

term1 34 88 1408 656 174 73.48 

c432 36 124 1984 1128 448 60.28 

x1 51 143 2288 1277 370 71.03 

c880 60 174 2784 1712 500 70.79 

alu2 10 197 3152 1666 400 75.99 

Average 
  

1193 739 235 70.19 

 

From Table II, we can see that 62% (739/1193) of the 

configuration bits are SEU sensitive without protection; 

while the RTMR hardened FPGA reduced that 

proportion to 20% (235/1193). Compared with the 

original circuit, FMDMR method can reduce 70% faults 

on average, for some circuits like cm42a and cm138a 

even 90%. 

 

C. Verification Test on Real FPGA 

We also implemented the FMDMR method on a real 

FPGA in order to verify the validity. The test platform is 



  

based on Xilinx XC4VSX35 with a 100MHz oscillator 

and 4 LEDs. We implemented the cm152a circuit on the 

FPGA and inject faults on its configuration bits.  

The experiment scheme is shown in Fig. 6. The 

Golden part is error-free circuit without fault injection. 

The ORI and FMDMR part represents the original 

cm152a circuit and the FMDMR hardened cm152a 

circuit, both of the ORI and FMDMR circuit is 

configured with one configuration bit fault in one LUT. 

The configuration bit faults are injected at the time of 

FPGA configuration. When FPGA configuration is 

finished, Input vectors are applied to the three circuits 

with the frequency of 100MHz on the test board, and the 

outputs of ORI and FMDMR are compared with the 

Golden one. Differences between the outputs drive the 

test board LEDs, LED1 represents error detected in ORI 

circuit; while LED0 represents error detected in 

FMDMR circuit.  
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Fig. 6 Real FPGA test scheme 

The cm152a circuit is composed with one 3-input LUT 

and five 4-input LUTs, hence the total LUT 

configuration bits equals to 5×2
4
+1×2

3
=88.  So the 

FPGA is reconfigured 96 times, the state of LED1 and 

LED0 are recorded after each reconfiguration. 

Lightening of LED1 represents an error detected in ORI 

circuit; while lightening of LED0 represents an error 

detected in FMDMR circuit.  

The experiment showed 79 times of ORI circuit errors 

(NError_ORI=79) and 23 times of FMDMR circuit errors 

(NError_FMDMR=23). This result behaves the same with the 

logic-simulation fault injection mechanism described in 

Section IV-C, further demonstrates the reasonability of 

FMDMR. 

 Because of no additional hardware overhead is 

brought about by the insertion of voters, the total 

overhead of FMDMR is only 2x of the original circuit 

while TMR method uses 3x of the original area. In 

conclusion, FMDMR is an effective FPGA reinforce 

method.  

V. CONCLUSION 

This paper presents a fault masking DMR technique 

(FMDMR) with AND/OR logic voter for FPGA SEU 

mitigation. Compared to traditional DMR methods, this 

architecture needs neither reset to recover from errors nor 

additional error judgment circuit to switch to the 

fault-free part. What’s more, the insertion of voters does 

not induce additional hardware overhead. 

Results on MCNC’91 benchmark show that circuits 

hardened by FMDMR can reach a relatively high SEU 

immunity level at a reasonable area overhead. Since 

SEUs are probability events, FMDMR can guarantee the 

stability of system operation combine with a certain 

frequency of FPGA scrubbing. It could be applicable to 

scenarios in which a very high reliability is not 

mandatory, while area is constrained. 
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