
Fault Injection Method and Voter Design for Dual

Modual Redundancy FPGA Hardening

Meisong Zheng and Zilong Wang

 Institute of Automation,

Chinese Academy of Science

Beijing, 100190, China

{meisong.zheng & zilong.wang}@ia.ac.cn

Lijian Li

Institute of Automation,

Chinese Academy of Science

Beijing, 100190, China

lijian.li@ia.ac.cn

Abstract—Hardware overhead and system reliability has always

been in a dilemma in the world of FPGA designing. This paper

provides a hardware overhead free dual modular redundancy

(DMR) voter scheme using the abundant and unused carry

chains in Xilinx FPGAs. And the experimental evaluation on

MCNC benchmarks are carried on real FPGA and logic-

simulation based fault injection method, respectively.

Experimental results under the two methods are identical; hence

validates the effectiveness of logic-simulation method and the

DMR hardening scheme we have designed.

Keywords-FPGAs; fault tolerance; fault injection; redundancy

I. INTRODUCTION

Today static-random access memory (SRAM) based field-
programmable gate array (FPGAs) permits replacing
application-specific integrated circuit (ASICs) in many
applications [1, 2]. But FPGAs are highly sensitive to
radiation-induced single-event effects (SEEs) [3, 4]; hence the
utilization of FPGA in critical systems has been limited due to
reliability issues.

Redundancy is an efficient FPGA hardening technique[5],
triple module redundancy (TMR)[6, 7] can significantly
improve the reliability of a design, but it is expensive in area
required for implementation. dual module redundancy (DMR)
requires less hardware overhead but could not mask but only
detect errors unless with additional logic implemented[8].

Fault injection can be performed with various abstraction
levels, from real FPGA device to software simulation models
that runs on a customer computer [9-11]. Experiments under
real radiation environment[12] are easy to design, but are
limited to laboratory conditions and are more prone to damage
the FPGA device. Due to the intrinsic complex of FPGAs and
commercial security kept by FPGA manufacturers, the
software simulation method is not easy to design and may be
inaccurate.

This paper provides an area overhead-free DMR voter
scheme designed with abundant carry-chains in Xilinx Virtex
FPGAs. The scheme was applied to a set of MCNC benchmark
circuits to evaluate the effect, and then we present an
experimental evaluation of the technique’s efficiency by
measuring the error rates of a circuit (cm152a from the MCNC
suite) injected with every look up table (LUT) configuration bit
faults on a real FPGA.

II. DMR VOTER DESIGN AND REAL FPGA

IMPLEMENTATION

We use the proposed fault masking DMR scheme based on
fault masking effects of AND/OR logic provided in [13]. The
scheme is based on this principle: Logic 0 is control value for
AND gates, logic 1 is control value for OR gates. Control value
means that the output of a gate is totally controlled by certain
logic value of one of its input. For example when one input of
an AND gate is 0, the output of the gate will remain 0 no
matter what other inputs are. This property of AND gates can

be used to mask 0→1 faults in DMR circuits, and OR gates to

1→0 faults in a similar way.

A. Building DMR voters with carry-chains

The proposed hardening technique operates at LUT level,
we designed the AND/OR logic DMR voters using abundant
and underused carry-chains in Xilinx FPGAs; hence the
insertion of voters does not bring about additional hardware
overhead. A simplified diagram of carry-chain logic in one
slice is shown in Fig. 1, it is comprised with a multiplexer and
exclusive-or gate. Real FPGAs contain more complex data
selections and relative connections for the multiplexer and
exclusive-or gate than Fig. 1.

10

10

LUT

LUT

FF

FF

MUXCY

MUXCY

CIN

COUT

Figure 1. A simplified carry-chain in one slice

As shown in Fig. 2(a), an AND logic voter can be built with
a 2 to 1 multiplexer:

AND 1 1 2 1 20 .O O O O O O    

As shown in Fig. 2(b), an OR logic voter can be built with a
2 to 1 multiplexer combined with an exclusive-or gate:

OR 2 1 2 2 2 1 2() .O O O O O O O O      

1

00

1

0

(a) (b)

O1

O1

O2

OOR

OAND

O1

Figure 2. AND OR logic constructed by carry-chains

B. An example of cm152a hardened by the proposed scheme

For the purposed of providing a more clearly explanation,
we choose cm152a from MCNC benchmark as an example.
Microelectronics Center of North Carolina (MCNC)
benchmark suite was published for MCNC International
Workshop on Logic Synthesis, 1991. It included logic
synthesis and optimization benchmark sets from ISCAS’85 and
ISCAS’89 in addition to some other benchmarks collected
from industry and academia [14].

Cm152a is an 8 to 1 multiplexer with eleven inputs and one
output, the state of three select inputs pi, pj, pk controls which
of the eight inputs of pa, pb, pc, pd, pe, pf, pg, ph will be
chosen to the output pl. The 4-input LUT structure of cm152a
synthesized by Rapid System Prototyping (RASP) synthesis
and mapping tool [15] is shown in Fig. 3.

L15 L2

pd
ph

pa
pe

pc
pg
pk

pi
pb
pf

L16

L9

L10

Ll
pl

pj

Figure 3. 4-input LUT structure circuit of cm152a

 We use the DMR hardening method proposed in [13],
because of all LUTs in the cm152a circuit are 0-preference
(more prone to have an output of logic 0). AND logic voters
are inserted as shown in Fig.4, the AND logic voters are built
by a 2 to 1 multiplexer in carry-chains as illustrated in Fig 2(a).

L15

L15'

L2

pd

ph

pa

pe

pc

pg
pk

pi
pb

pf

L16

L16'

L9

L9'

L10

L10'

L2'

Ll

Ll'

pl

pj

Figure 4. DMR hardening of cm152a

C. Hardening Method Implementation on Real FPGA

For consistency, we use Xilinx Virtex-4 Slice/CLB
primitives to implement the cm152a circuit on a real FPGA,
the topological structure carried on real FPGA are kept the
same with results synthesis by RASP. Because netlists
synthesized by RASP boasts more trimly structure; hence are
easier to be read and disposed by our C++ procedure for logic-
simulation experiments in Section III.

Take the LUT L9 implementation as an example; we
realized the function of L9 in a Virtex-4 FPGA as follows:

LUT4 #(
 .INIT(16'h3120) // Specify LUT Contents

)LUT4_INST_L9 (

 .O(inter9), // LUT general output
 .I0(pk), // LUT input

 .I1(pj), // LUT input

 .I2(pe), // LUT input
 .I3(pa) // LUT input

);

Where .INIT(16’h3120) means the configuration bits of
LUT L9 is 0x3120; .I0 to .I3 are inputs of LUT L9, and .O is the
output of LUT L9. For the DMR hardened circuit, the
duplication of LUT L9 and the AND logic voter insertion:

LUT4 #(
 .INIT(16'h3120) // Specify LUT Contents

)LUT4_INST_L9_1 (

 .O(inter9_1), // LUT general output
 .I0(pk), // LUT input

 .I1(pj), // LUT input

 .I2(pe), // LUT input
 .I3(pa) // LUT input

);

 LUT4 #(
 .INIT(16'h3120)

)LUT4_INST_L9_2 (

 .O(inter9_2),

 .I0(pk),

 .I1(pj),

 .I2(pe),
 .I3(pa)

);

 MUXCY_L MUXCY_L_inst9 (
 .LO(inter9), // Carry local output signal

 .CI(inter9_2), // Carry input signal

Identify applicable sponsor/s here. If no sponsors, delete this text box.
(sponsors)

 .DI(0), // Data input signal

 .S(inter9_1) // MUX select, tie to '1' or LUT4 out
);

with the ucf statements:

INST "LUT4_INST_L9_1" LOC = slice_X3Y11 | BEL = F;

INST "LUT4_INST_L9_2" LOC = slice_X3Y11 | BEL = G;

The ucf statements are used to constrain the duplicated
LUT resides in the same slice with the original LUT. The
netlist of duplicated L9 and the AND logic voter synthesized by
Xilinx ISE is shown in Fig. 5, captured from the FPGA Editor
tool. The two LUTs are same in configuration bits and inputs,
the output of upper LUT inter9_2 is routed back as the carry
input of MUXCY, so the output of MUXCY:

XB=inter9_1 0+inter9_1 inter9_2=inter9_1 inter9_2  

The implantation of MUXCY realized the AND logic voter
for inter9_1 and inter9_2.

Figure 5. Duplicated LUTs voted by an AND logic voter

III. LOGIC-SIMULATION BASED FAULT INJECTION

We tested the proposed DMR method on standard

MCNC’91 benchmarks. In this section, we carried on our

work as a logic-simulation fault injection mechanism. The

algorithm was implemented in C++ on a PC with 3.2GHz

quad core CPU and 4GB memory.

A. Experimental Flow

The logic-simulation based fault injection experiment are
designed as follows:

1) Preparing the input file: The proposed hardening
method is tested on the combinational circuits of the MCNC’91
benchmark suit. The netlists are mapped into 4-input LUTs
using RASP.

2) DMR hardening operation: The DMR hardening
algorithm proposed in [13] is coded in C++ language on a PC.

3) Fault injection and evaluation: We reverse the
configuration bit once a time for every LUT. Once a
configuration bit is flipped, test vectors are applied to inputs
and the outputs are compared with an error-free circuit. The
number of fault will be added with one when a difference is
detected. The next configuration bit will be reversed after all
test vectors have been applied or a fault is detected on this
reversed configuration bit.

Once the SEU simulator injects a fault on an LUT, the fault
effect depends on its redundancy property. Only on the
following two cases will the injected fault really reverse the
LUT configuration bit:

 LUT pair voted by an AND logic whereas the fault is

1→0.

 LUT pair voted by an OR logic whereas the fault is 0

→1.

Otherwise the fault point LUT remains its configuration
memory, means that it is immune to the injected faults.

B. Results and Analysis

Some results of combinational MCNC’91 benchmark
circuits are shown in Table I. Column 2 titled with “Ninputs”
shows the number of primary inputs of each circuit; column 3
titled with “Nlut” shows the number of LUTs of each circuit;
and column 4 titled with “Nbits” shows the total number of
configuration bits of each circuit. Columns 5 titled with “FORI”
shows the number of configuration bits propagates fault to the
output while flipped in the original circuit; Columns 6 titled
with “FDMR” shows the number of configuration bits
propagates fault to the output in the DMR hardened circuit.
The last column titled with “Reduced” shows the percent of
faults reduced by the proposed DMR method compared with
the original circuits.

TABLE I. EXPERIMENTAL RESULTS ON SIMULATION

Circuits Ninputs Nlut Nbits FORI FDMR Reduced

cm152a 11 6 96 79 23 70.89

c8 28 39 624 410 122 70.24

c880 60 174 2784 1712 500 70.79

alu2 10 197 3152 1666 400 75.99

miex3 14 1397 22352 10903 1314 87.95

alu4 14 1522 24352 12165 994 91.80

des 256 1591 25456 18580 4400 76.32

seq 41 1750 28000 9993 796 92.03

apex2 39 1878 30048 7531 215 97.15

Average

15207 7004 974 86.09

From Table I, we can see that 46% (7004/15207) of the
configuration bits are SEU sensitive without protection; while
the DMR hardened FPGA reduced that proportion to 6.4%
(974/15207). Compared with the original circuit, DMR method

can reduce 86% faults on average, for some circuits like alu4
and seq even more than 90%.

IV. FAULT INJECTION EXPERIMENTS ON REAL FPGA

In order to verify the validity of the proposed method, we
implemented the technique on a Virtex-4 FPGA on a customer
designed test circuit board. The board is based on XC4VSX35
with a 100MHz oscillator and 4 LEDs. We implemented the
cm152a circuit on the FPGA and inject faults on its
configuration bits.

A. Experimental Scheme

The experiment scheme is shown in Fig. 6. The golden part
is error-free circuit with no fault injection. The ORI and DMR
part represents original cm152a circuit and the DMR hardened
cm152a circuit with one configuration bit fault in one LUT.
The configuration bit faults are injected at the time of FPGA
configuration. When FPGA configuration is finished, Input
vectors are applied to the 3 circuits with the frequency of
100MHz on the test board, and the outputs of ORI and DMR
are compared with the golden one. Differences between the
outputs drive the test board LEDs, LED1 represents error
detected in ORI circuit; while LED0 represents error detected
in DMR hardened circuit.

ORI Error_ORI

DMR

Golden
Input Vectors

Error_DMR

LED1

LED0

Figure 6. Real FPGA test scheme

B. Results and Discussion

The cm152a circuit is composed with one 3-input LUT and
five 4-input LUTs, hence the total LUT configuration bits

equals to 5×2
4
+1×2

3
=88. So the FPGA is reconfigured 96

times, the state of LED1 and LED0 are recorded after each
reconfiguration. Lighten of LED1 represents an error detected
in ORI circuit; while lighten of LED0 represents an error
detected in DMR circuit.

The experiment showed 79 times of ORI circuit errors
(Error_ORI=79) accomplished with 23 times of DMR
hardened circuit errors (Error_DMR=23). This result behaves
the same with the logic-simulation fault injection mechanism
described in Section-III, validates the correctness of the
simulation method we have designed, and further demonstrates
the reasonability of the DMR hardening method.

V. CONCLUSION

This paper presents a new DMR voter built with the
abundant carry-chain resources in Xilinx FPGAs, which brings
about no hardware overhead when insertion. We also provided

a method to implement the DMR scheme and voter on real
FPGAs using Xilinx Virtex primitives. Both of simulation
experiments and real FPGA configuration bits flipping are
carried on MCNC’91 benchmarks and results showed that the
DMR method is effective in terms of fault masking and
overhead saving. Also, identical results on the two experiments
proved that the simulative fault injection method is reasonable.

REFERENCES

[1] A. Lifa, P. Eles, and Z. Peng, "A Reconfigurable Framework for
Performance Enhancement With Dynamic FPGA Configuration
Prefetching," Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 35, pp. 100-113, 2016.

[2] Y. R. Qu and V. K. Prasanna, "High-Performance and Dynamically
Updatable Packet Classification Engine on FPGA," Parallel and
Distributed Systems, IEEE Transactions on, vol. 27, pp. 197-209, 2016.

[3] P. Bernardi, M. S. Reorda, L. Sterpone, and M. Violante, "On the
evaluation of SEU sensitiveness in SRAM-based FPGAs," in On-Line
Testing Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE
International, 2004, pp. 115-120.

[4] Altera, "Reliabilty report 55 1h," 2013.

[5] J. Tarrillo, F. Lima Kastensmidt, P. Rech, C. Frost, and C. Valderrama,
"Neutron Cross-Section of N-Modular Redundancy Technique in
SRAM-Based FPGAs," Nuclear Science, IEEE Transactions on, vol. 61,
pp. 1558-1566, 2014.

[6] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, "A fault
injection analysis of Virtex FPGA TMR design methodology," in
Radiation and Its Effects on Components and Systems, 2001. 6th
European Conference on, 2001, pp. 275-282.

[7] U. Kretzschmar, A. Astarloa, J. Lazaro, M. Garay, and J. Del Ser,
"Robustness of different TMR granularities in shared wishbone
architectures on SRAM FPGA," in Reconfigurable Computing and
FPGAs (ReConFig), 2012 International Conference on, 2012, pp. 1-6.

[8] F. G. de Lima Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro,
and R. Reis, "Designing fault-tolerant techniques for SRAM-based
FPGAs," Design & Test of Computers, IEEE, vol. 21, pp. 552-562, 2004.

[9] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin,
"Accelerator validation of an FPGA SEU simulator," Nuclear Science,
IEEE Transactions on, vol. 50, pp. 2147-2157, 2003.

[10] G. L. Nazar, P. Rech, C. Frost, and L. Carro, "Radiation and Fault
Injection Testing of a Fine-Grained Error Detection Technique for
FPGAs," Nuclear Science, IEEE Transactions on, vol. 60, pp. 2742-2749,
2013.

[11] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, "Fault
Simulation and Emulation Tools to Augment Radiation-Hardness
Assurance Testing," Nuclear Science, IEEE Transactions on, vol. 60, pp.
2119-2142, 2013.

[12] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, "Static
Proton and Heavy Ion Testing of the Xilinx Virtex-5 Device," in
Radiation Effects Data Workshop, 2007 IEEE, 2007, pp. 177-184.

[13] Z. W. Meisong Zheng, Lijian Li, "DAO Dual Module Redundancy with
ANDOR Logic Voter for FPGA Hardening " 2015.

[14] R. Njuguna, "A Survey of FPGA Benchmarks," vol.
http://www.cse.wustl.edu/~jain/cse567-08/index.html, November 24,
2008 2008.

[15] J. Cong, J. Peck, and Y. Ding, "RASP: A general logic synthesis system
for SRAM-based FPGAs," in Proceedings of the 1996 ACM fourth
international symposium on Field-programmable gate arrays, 1996, pp.
137-143.

