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Abstract—Hardware overhead and system reliability has always 

been in a dilemma in the world of FPGA designing. This paper 

provides a hardware overhead free dual modular redundancy 

(DMR) voter scheme using the abundant and unused carry 

chains in Xilinx FPGAs. And the experimental evaluation on 

MCNC benchmarks are carried on real FPGA and logic-

simulation based fault injection method, respectively. 

Experimental results under the two methods are identical; hence 

validates the effectiveness of logic-simulation method and the 

DMR hardening scheme we have designed. 
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I.  INTRODUCTION  

Today static-random access memory (SRAM) based field-
programmable gate array (FPGAs) permits replacing 
application-specific integrated circuit (ASICs) in many 
applications [1, 2]. But FPGAs are highly sensitive to 
radiation-induced single-event effects (SEEs) [3, 4]; hence the 
utilization of FPGA in critical systems has been limited due to 
reliability issues.  

Redundancy is an efficient FPGA hardening technique[5], 
triple module redundancy (TMR)[6, 7] can significantly 
improve the reliability of a design, but it is expensive in area 
required for implementation. dual module redundancy (DMR) 
requires less hardware overhead but could not mask but only 
detect errors unless with additional logic implemented[8].  

Fault injection can be performed with various abstraction 
levels, from real FPGA device to software simulation models 
that runs on a customer computer [9-11].  Experiments under 
real radiation environment[12] are easy to design, but are 
limited to laboratory conditions and are more prone to damage 
the FPGA device. Due to the intrinsic complex of FPGAs and 
commercial security kept by FPGA manufacturers, the 
software simulation method is not easy to design and may be 
inaccurate. 

This paper provides an area overhead-free DMR voter 
scheme designed with abundant carry-chains in Xilinx Virtex 
FPGAs. The scheme was applied to a set of MCNC benchmark 
circuits to evaluate the effect, and then we present an 
experimental evaluation of the technique’s efficiency by 
measuring the error rates of a circuit (cm152a from the MCNC 
suite) injected with every look up table (LUT) configuration bit 
faults on a real FPGA. 

II. DMR VOTER DESIGN AND REAL FPGA 

IMPLEMENTATION 

We use the proposed fault masking DMR scheme based on 
fault masking effects of AND/OR logic provided in [13]. The 
scheme is based on this principle: Logic 0 is control value for 
AND gates, logic 1 is control value for OR gates. Control value 
means that the output of a gate is totally controlled by certain 
logic value of one of its input. For example when one input of 
an AND gate is 0, the output of the gate will remain 0 no 
matter what other inputs are. This property of AND gates can 

be used to mask 0→1 faults in DMR circuits, and OR gates to 

1→0 faults in a similar way.  

A. Building DMR voters with carry-chains 

The proposed hardening technique operates at LUT level, 
we designed the AND/OR logic DMR voters using abundant 
and underused carry-chains in Xilinx FPGAs; hence the 
insertion of voters does not bring about additional hardware 
overhead. A simplified diagram of carry-chain logic in one 
slice is shown in Fig. 1, it is comprised with a multiplexer and 
exclusive-or gate. Real FPGAs contain more complex data 
selections and relative connections for the multiplexer and 
exclusive-or gate than Fig. 1. 
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Figure 1.   A simplified carry-chain in one slice 



As shown in Fig. 2(a), an AND logic voter can be built with 
a 2 to 1 multiplexer: 

AND 1 1 2 1 20 .O O O O O O    
 

As shown in Fig. 2(b), an OR logic voter can be built with a 
2 to 1 multiplexer combined with an exclusive-or gate: 

OR 2 1 2 2 2 1 2( ) .O O O O O O O O      
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Figure 2.  AND OR logic constructed by carry-chains 

B. An example of cm152a hardened by the proposed scheme 

For the purposed of providing a more clearly explanation, 
we choose cm152a from MCNC benchmark as an example. 
Microelectronics Center of North Carolina (MCNC) 
benchmark suite was published for MCNC International 
Workshop on Logic Synthesis, 1991. It included logic 
synthesis and optimization benchmark sets from ISCAS’85 and 
ISCAS’89 in addition to some other benchmarks collected 
from industry and academia [14].  

Cm152a is an 8 to 1 multiplexer with eleven inputs and one 
output,  the state of three select inputs pi, pj, pk controls which 
of the eight inputs of pa, pb, pc, pd, pe, pf, pg, ph will be 
chosen to the output pl. The 4-input LUT structure of cm152a 
synthesized by Rapid System Prototyping (RASP) synthesis 
and mapping tool [15]  is shown in Fig. 3.  
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Figure 3.  4-input LUT structure circuit of cm152a 

 We use the DMR hardening method proposed in [13], 
because of all LUTs in the cm152a circuit are 0-preference 
(more prone to have an output of logic 0). AND logic voters 
are inserted as shown in Fig.4, the AND logic voters are built 
by a 2 to 1 multiplexer in carry-chains as illustrated in Fig 2(a).  
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Figure 4.  DMR hardening of cm152a  

C. Hardening Method Implementation on Real FPGA 

For consistency, we use Xilinx Virtex-4 Slice/CLB 
primitives to implement the cm152a circuit on a real FPGA, 
the topological structure carried on real FPGA are kept the 
same with results synthesis by RASP. Because netlists 
synthesized by RASP boasts more trimly structure; hence are 
easier to be read and disposed by our C++ procedure for logic-
simulation experiments in Section III.  

Take the LUT L9 implementation as an example; we 
realized the function of L9 in a Virtex-4 FPGA as follows: 

LUT4 #( 
  .INIT(16'h3120)  // Specify LUT Contents 

  )LUT4_INST_L9 ( 

     .O(inter9),    // LUT general output 
  .I0(pk),   // LUT input 

  .I1(pj),   // LUT input 

  .I2(pe),   // LUT input 
  .I3(pa)   // LUT input 

  ); 

Where .INIT(16’h3120) means the configuration bits of 
LUT L9 is 0x3120; .I0 to .I3 are inputs of LUT L9, and .O is the 
output of LUT L9. For the DMR hardened circuit, the 
duplication of LUT L9 and the AND logic voter insertion: 

LUT4 #( 
  .INIT(16'h3120)  // Specify LUT Contents 

  )LUT4_INST_L9_1 ( 

     .O(inter9_1),    // LUT general output 
  .I0(pk),   // LUT input 

  .I1(pj),   // LUT input 

  .I2(pe),   // LUT input 
  .I3(pa)   // LUT input 

  ); 

  LUT4 #( 
  .INIT(16'h3120) 

  )LUT4_INST_L9_2 ( 

     .O(inter9_2), 

  .I0(pk), 

  .I1(pj), 

  .I2(pe), 
  .I3(pa) 

  ); 

  MUXCY_L MUXCY_L_inst9 ( 
       .LO(inter9),   // Carry local output signal 

       .CI(inter9_2),    // Carry input signal 

Identify applicable sponsor/s here. If no sponsors, delete this text box. 
(sponsors) 



       .DI(0),   // Data input signal 

       .S(inter9_1)      // MUX select, tie to '1' or LUT4 out 
   ); 

with the ucf statements: 

INST "LUT4_INST_L9_1"  LOC = slice_X3Y11 | BEL = F; 

INST "LUT4_INST_L9_2"  LOC = slice_X3Y11 | BEL = G; 

The ucf statements are used to constrain the duplicated 
LUT resides in the same slice with the original LUT. The 
netlist of duplicated L9 and the AND logic voter synthesized by 
Xilinx ISE is shown in Fig. 5, captured from the FPGA Editor 
tool. The two LUTs are same in configuration bits and inputs, 
the output of upper LUT inter9_2 is routed back as the carry 
input of MUXCY, so the output of MUXCY: 

XB=inter9_1 0+inter9_1 inter9_2=inter9_1 inter9_2    

The implantation of MUXCY realized the AND logic voter 
for inter9_1 and inter9_2. 

 
Figure 5.  Duplicated LUTs voted by an AND logic voter 

III. LOGIC-SIMULATION BASED FAULT INJECTION 

We tested the proposed DMR method on standard 

MCNC’91 benchmarks. In this section, we carried on our 

work as a logic-simulation fault injection mechanism. The 

algorithm was implemented in C++ on a PC with 3.2GHz 

quad core CPU and 4GB memory. 

A. Experimental Flow 

The logic-simulation based fault injection experiment are 
designed as follows: 

1) Preparing the input file: The proposed hardening 
method is tested on the combinational circuits of the MCNC’91 
benchmark suit. The netlists are mapped into 4-input LUTs 
using RASP. 

2) DMR hardening operation: The DMR hardening 
algorithm proposed in [13] is coded in C++ language on a PC.  

3)  Fault injection and evaluation: We reverse the 
configuration bit once a time for every LUT. Once a 
configuration bit is flipped, test vectors are applied to inputs 
and the outputs are compared with an error-free circuit. The 
number of fault will be added with one when a difference is 
detected. The next configuration bit will be reversed after all 
test vectors have been applied or a fault is detected on this 
reversed configuration bit.  

Once the SEU simulator injects a fault on an LUT, the fault 
effect depends on its redundancy property. Only on the 
following two cases will the injected fault really reverse the 
LUT configuration bit: 

  LUT pair voted by an AND logic whereas the fault is 

1→0. 

 LUT pair voted by an OR logic whereas the fault is 0

→1. 

Otherwise the fault point LUT remains its configuration 
memory, means that it is immune to the injected faults. 

B. Results and Analysis 

Some results of combinational MCNC’91 benchmark 
circuits are shown in Table I. Column 2 titled with “Ninputs” 
shows the number of primary inputs of each circuit; column 3 
titled with “Nlut” shows the number of LUTs of each circuit; 
and column 4 titled with “Nbits” shows the total number of 
configuration bits of each circuit.  Columns 5 titled with “FORI” 
shows the number of configuration bits propagates fault to the 
output while flipped in the original circuit; Columns 6 titled 
with “FDMR” shows the number of configuration bits 
propagates fault to the output in the DMR hardened circuit. 
The last column titled with “Reduced” shows the percent of 
faults reduced by the proposed DMR method compared with 
the original circuits. 

TABLE I.  EXPERIMENTAL RESULTS ON SIMULATION 

Circuits Ninputs Nlut Nbits FORI FDMR Reduced 

cm152a 11 6 96 79 23 70.89 

c8 28 39 624 410 122 70.24 

c880 60 174 2784 1712 500 70.79 

alu2 10 197 3152 1666 400 75.99 

miex3 14 1397 22352 10903 1314 87.95 

alu4 14 1522 24352 12165 994 91.80 

des 256 1591 25456 18580 4400 76.32 

seq 41 1750 28000 9993 796 92.03 

apex2 39 1878 30048 7531 215 97.15 

Average 
  

15207 7004 974 86.09 

From Table I, we can see that 46% (7004/15207) of the 
configuration bits are SEU sensitive without protection; while 
the DMR hardened FPGA reduced that proportion to 6.4% 
(974/15207). Compared with the original circuit, DMR method 



can reduce 86% faults on average, for some circuits like alu4 
and seq even more than 90%. 

IV. FAULT INJECTION EXPERIMENTS ON REAL FPGA 

In order to verify the validity of the proposed method, we 
implemented the technique on a Virtex-4 FPGA on a customer 
designed test circuit board. The board is based on XC4VSX35 
with a 100MHz oscillator and 4 LEDs. We implemented the 
cm152a circuit on the FPGA and inject faults on its 
configuration bits.  

A. Experimental Scheme 

The experiment scheme is shown in Fig. 6. The golden part 
is error-free circuit with no fault injection. The ORI and DMR 
part represents original cm152a circuit and the DMR hardened 
cm152a circuit with one configuration bit fault in one LUT. 
The configuration bit faults are injected at the time of FPGA 
configuration. When FPGA configuration is finished, Input 
vectors are applied to the 3 circuits with the frequency of 
100MHz on the test board, and the outputs of ORI and DMR 
are compared with the golden one. Differences between the 
outputs drive the test board LEDs, LED1 represents error 
detected in ORI circuit; while LED0 represents error detected 
in DMR hardened circuit.  
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Figure 6.  Real FPGA test scheme 

B. Results and Discussion 

The cm152a circuit is composed with one 3-input LUT and 
five 4-input LUTs, hence the total LUT configuration bits 

equals to 5×2
4
+1×2

3
=88.  So the FPGA is reconfigured 96 

times, the state of LED1 and LED0 are recorded after each 
reconfiguration. Lighten of LED1 represents an error detected 
in ORI circuit; while lighten of LED0 represents an error 
detected in DMR circuit.  

The experiment showed 79 times of ORI circuit errors 
(Error_ORI=79) accomplished with 23 times of DMR 
hardened circuit errors (Error_DMR=23). This result behaves 
the same with the logic-simulation fault injection mechanism 
described in Section-III, validates the correctness of the 
simulation method we have designed, and further demonstrates 
the reasonability of the DMR hardening method. 

V. CONCLUSION 

This paper presents a new DMR voter built with the 
abundant carry-chain resources in Xilinx FPGAs, which brings 
about no hardware overhead when insertion. We also provided 

a method to implement the DMR scheme and voter on real 
FPGAs using Xilinx Virtex primitives.  Both of simulation 
experiments and real FPGA configuration bits flipping are 
carried on MCNC’91 benchmarks and results showed that the 
DMR method is effective in terms of fault masking and 
overhead saving. Also, identical results on the two experiments 
proved that the simulative fault injection method is reasonable. 
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