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Abstract— We propose a cascade method for fast and ac-
curate traffic sign detection. The main feature of the method
is that mid-level saliency test is used to efficiently and reli-
ably eliminate background windows. Fast feature extraction is
adopted in the subsequent stages for rejecting more negatives.
Combining with neighbor scales awareness in window search,
the proposed method runs at 3∼5 fps for high resolution
(1360×800) images, 2∼7 times as fast as most state-of-the-art
methods. Compared with them, the proposed method yields
competitive performance on prohibitory signs while sacrifices
performance moderately on danger and mandatory signs.

I. INTRODUCTION

Traffic sign detection plays an important role in intelligent
traffic. One attractive application is driver assistance, in
which traffic signs are automatically detected and recognized.
Another application is automated road maintenance. It saves
the long and tedious work for checking any missing or
damaged signs along roads.

Traffic signs are designed with fixed color and shape, so
that many authors base their work on these cues. Color has
been used as a dominant cue for some segmentation-based
methods. One extracts the ROIs (Region of Interest) [1], [2],
[3], [4], [5] and verifies them in subsequent stages. Generally
color-based segmentation is sensitive to background color,
but leads to fast detection. Shape information is also adopted
by some methods such as Hough transform and fast radial
transform [6], [7], [8]. Shape-based approaches sometimes
fail on weak gradient or edge maps obtained in bad illumi-
nation. For a comprehensive comparison between methods
of the two kinds, please refer to [9].

Some approaches are based on sliding window. In this
case, a classifier is applied at all positions and scales of an
image. An important family of those approaches is based on
Viola-Jones detector [10]. It involves selecting and cascading
simple testes into a stronger classify via adaboost. [11] em-
ploys color-based Haar-like feature. Other weak features are
also adopted, such as HOG variants [12], Integral Channel
Features [13], [14] and LBP variants [15]. Additionally, some
coarse-to-fine methods [16], [17] appeared at the competition
of 2013 “German Traffic Sign Detection Benchmark” [18].
They show exciting performance but run slowly.

In this paper, we propose a cascade method based on
sliding window for fast and accurate traffic sign detection.
The pipeline of our system is shown in Fig. 1. This system
includes four cascade classifiers to reject non-sign windows
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sequentially. Only windows that pass through the current
classifier can trigger the next one. A robust saliency test
is firstly adopted to eliminate background regions. Then a
compressed feature is used in the first stage to eliminate most
irrelevant windows. In subsequent stages, features become
more discriminative and can eliminate additional negatives.
We evaluate our method on the GTSDB dataset [18]. It
runs at 3∼5 fps for high resolution (1360×800) images,
2∼7 times as fast as most state-of-the-art methods. By
comparison, our method yields competitive performance on
prohibitory signs while sacrifices performance moderately on
danger and mandatory signs.

There are three main contributions in this paper: First-
ly, we propose a cascade framework different from popu-
lar Viola-Jones like methods. It combines many speed-up
techniques and adopts multi-resolution models, and thus,
enables fast detection on high resolution images. Secondly,
we introduce a new mid-level saliency model. Based on this
robust saliency test, we can fast eliminate ∼ 60% irrelevant
windows without losing signs for prohibitory and mandatory
categories. Thirdly, we propose an efficient method to calcu-
late an integral HOG pyramid approximately. It greatly saves
time for feature extraction.

The rest of this paper is organized as follow. Section II
describes the detection method in detail. Section III presents
the experimental results and discussions. And finally, Section
IV gives concluding remarks.

II. PROPOSED METHOD

This work is partly inspired by the coarse-to-fine method
of [17] and is intended to improve the detection speed for
real-time application. Our system consists of a preprocessing
saliency test and four classification stages (Fig. 1). They
form a cascade framework with carefully-designed features
in contrast to the Viola-Jones like framework with selected
features. Given a hypothesis, we first make a decision by the
saliency test. If it is a potential sign, it will trigger the first
classifier in Stage I. This stage aims at eliminating a majority
of negative windows. We extract a compressed integral HOG
feature for a window and use a SVM classifier to evaluate
it. Stage II is a LDA (Linear Discriminant Analysis) model
learned on integral HOG feature. After the two classifiers,
typically only several hundreds windows are remaining. They
are further evaluated by a LDA model trained on HOG
in stage III and a intersection kernel SVM [19] trained
on color HOG [17] in the last stage. The early stages
eliminate most irrelevant windows and keep a high recall.
The later stages reject remaining non-sign windows and keep
a high precision. We present the proposed robust saliency test
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Fig. 1. System pipeline. Our system includes four cascade classifiers. Only
windows that pass through the current classifier can trigger the next one. A
robust saliency test is firstly adopted to eliminate background regions. Then
a compressed feature is used in the first stage to eliminate most irrelevant
windows. In subsequent stages, integral HOG, HOG and color HOG features
are extracted successively. A technique called neighbor scales awareness is
used to speed up evaluation, illustrated by the dash lines.

Fig. 2. Robust saliency test on some example images. The first column
shows the original images. The second column gives the salient pixels by
masking the pixels of which saliency values are small. We can see that
the sign, in the last example image, is not much salient because of bad
illumination, but our test can preserve it well.

and the method for fast feature calculation in the first two
subsections. Moreover, we adopt multi-resolution models and
use the speed-up technique of neighbor scales awareness to
fast prune windows in the first stage. The two techniques
will be described in the last subsection.

A. Mid-level Saliency and Saliency Test

We propose a robust saliency test to reject non-sign win-
dows. It involves novel mid-level saliency, which is different
from general saliency because it is based on robust mid-level
features (eg. HOG) other than low-level features (eg. color
pixels). Intuitively, a mid-level representation designed with
boost step is robust in itself, which helps to make more
reliable saliency than a low-level representation. The results
on some example images are illustrated in Fig. 2. In the last
example image, the sign is not much salient because of bad

illumination, but can be preserved well by our method.
In this research, we use the simple center-surround

method, as it is fast and easy to implement. [20] proposes
this method on the assumption that saliency reflects the local
contrast of an image region with respect to its neighborhood.
In this case, saliency is computed as the distance between
the average feature vector of the pixels of an image sub-
region and the average feature vector of the pixels of its
neighborhood. Let v be a feature vector. Let w0 and w1

denote a center and a surround region respectively. Let | · |
be the area covered by a region. Let D denote the distance
between two vectors. At position (i, j), saliency value V (i, j)
can be evaluated as:

V (i, j) = D

(
1

|w0|
∑
p∈w0

vp ,
1

|w1|
∑
q∈w1

vq

)
(1)

Generally, we compute multiple saliency by applying sev-
eral outer windows of different scales, obtaining the final
saliency:

V (i, j) =
∑
S
Vs(i, j) (2)

, S is the set of scales.
Our goal is a binary map indicating whether an image pixel

is salient or not using saliency maps. We calculate center-
surround saliency on a compressed HOG feature map, where
a feature vector of each cell is obtained by summing over
the four normalization for a fixed orientation. This saliency
is denoted by V1. Additionally, we build a saliency map
specified by V2 on non-normalized HOG feature. The two
saliency maps are up-scaled to the size of the original image
after smoothed by a gaussian filter. The former saliency is
insensitive to illumination change or color distortion, for its
being based on local normalized HOG. It is referred to as
mid-level saliency in our research. The later saliency is not
much robust for lack of local normalization on feature. But
it also helps to eliminate flat regions, where the difference
between aggregated oriented gradients is very small. We use
two thresholds T1 and T2 on V1 and V2 to get binary maps
respectively. The final indication map is got by performing
an AND operation on the two binary maps. We can calculate
the area of the saliency region in a window easily by using
integral image. A window will be rejected if its saliency area
is below than a fixed threshold.

B. Features and Fast Feature Calculation

Many different HOG variants are introduced in different
stages of our system, including integral HOG and its variants,
standard HOG and color HOG.

1) Integral HOG [21]: Gradient orientation at each pixel is
discretized into N bins, forming N oriented gradient maps.
Integral images for these maps are computed and stored.
Then it is easy to compute integral HOG feature for any
rectangular region in image. The representation power of
integral HOG is inferior to HOG for lose of boost steps (eg.
tri-linear interpolation), but it is more easier to compute than
HOG, especially for rectangular regions of any size.
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Fig. 3. Methods for integral HOG. Column (a) shows the general method:
Oriented gradient maps are calculated separately. Column (b) illustrates the
method of [23]. In this case, the oriented gradient maps of Is are calculated
approximately by resampling those of I using equation (4). Column (c)
shows using the N orientation channels of I with a enlarged cell to calculate
integral HOG for Is.

b) Compressed integral HOG: A more simple and low-
dimensional feature is introduced, involving compression on
integral HOG. Recalling the computation of integral HOG
feature, the summation of each cell is normalized by four dif-
ferent normalization factors resulting in a 4×N dimensional
vector. We simplify this feature vector by summing over the
four normalization for a fixed orientation and by summing
over N orientations for a fixed normalization, finally obtain
a 4+N dimensional vector. This technique is firstly used
by [22] for HOG, showing no or little lost in description
power. We utilize this simple method in the first stage to
reduce original integral HOG and get a low-dimensional one.

Additionally, we also use HOG and a variant of color HOG
[17] to construct classifiers in the last two stages.

Below we show the proposed method for the fast calcula-
tion of integral HOG based on [23]. Let I denote an m×n
discrete signal, and Is denote I obtained at scale s. R(I, s)
is defined as I downsampled by s (s <1). C denotes features
of an image. Suppose we have computed C = Ω(I), here
being N gradient orientation maps. To get Cs, the general
approach is to compute:

Cs = Ω(Is) = Ω(R(I, s)) (3)

, ignoring the information contained in C = Ω(I). [23]
proposes an approximation method:

Cs ≈ R(C, s) · s−λΩ (4)

−λΩ is a parameter related to feature type, so is shared by
oriented gradient maps. According to equation (4), the N
orientation maps of Is can be obtained approximately by
scaling those of I . The authors [23] use equation (4) for the
fast calculation of integral channel features.

Let ws and w be a pair of corresponding windows in Is

(a)

(b)

(c)

Fig. 4. Construction of an integral HOG pyramid. (a) is the general method
calculating oriented gradient maps and feature for each scale separately. (b)
shows the method of [23] scaling orientation maps of neighbor scale. (c)
specifies our scheme sharing the same oriented gradient channels locally
between several scales with changeable search window.

and I , respectively. We can further get

1

|ws|
∑
i,j∈ws

Cs(i, j) ≈
1

|w|
∑
i,j∈w

C(i, j)s−λΩ (5)

Consider the task of computing the integral HOG of Is
with cell ws. We should first sum the oriented gradients
within ws on Cs. The general method uses Cs obtained by
equation (3). An alternative method is using Cs obtained by
equation (4). The proposed method performs summation on
C with the enlarged cell w = ws/s according to equation
(5). It avoids explicit computation of Cs and leads to the
same feature as using Cs by equation (4), because the factor
s−λΩ will be canceled after normalization. Different methods
are shown in Fig. 3. Column (a) shows the general method:
Oriented gradient maps are calculated separately. Column (b)
illustrates the method of [23], in which the oriented gradient
maps of Is are calculated approximately by resampling those
of I using equation (4). Column (c) shows using the N
orientation channels of I with a enlarged cell to calculate
integral HOG for Is. This method results in the same features
as method using [23], but with much efficiency.

In order to calculate an integral HOG pyramid fast, we
compute oriented gradient maps on a sparse set of scales,
which is illustrated in Fig. 4 .
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C. Cascade Sign Detection

Inspired by [13], we adopt neighbor scales awareness to
speed-up detection. We also use multi-resolution models [24]
to adaptively make use of the cues contained in different
resolution signs. The two techniques contribute greatly to
the fast speed and effectiveness of our system.

1) Neighbor scales awareness: The responses of detector
at nearby locations and scales are correlated [25], [13]. In
our work, we use a simple scheme named as neighbor scales
awareness which makes use of the correlation of detector
responses at nearby scales. Let α be a hypothesis at scale s in
search space. Let N (α) be the neighborhood of α excluding
the neighbors at s. We define N (α) = [w × h × (d − 1)]
of width w, height h, and depth (d− 1) (number of scales).
Let SI be the classifier responses in stage I. If ∃α′ ∈ N (α)
which satisfies that SI(α

′
) is no less than a given threshold,

we will test α in stage II directly, omitting evaluation in stage
I. Otherwise we prune α and don’t put it forward. We use a
neighborhood size of N = [3× 3× 2]. In this case, stage I
is performed once every two scales, as illustrated in Fig. 1.

2) Multi-resolution models: Inspired by the work of [24],
we use two models with different resolution in the first two
stages, one of 20×20 pixels for small traffic signs (<40×40
pixels) and the other one of 40×40 pixels for large signs
(≥40×40 pixels). For low resolution signs, we use all the
four stages. For high resolution signs, more reliable and
richer information can be obtained, leading to good detection
no need of the third stage. When calculating integral HOG
for these two models, a part of oriented gradient maps can
be shared. We postpone details until section III.

III. EXPERIMENT

We evaluate our method on the GTSDB dataset [18] which
consists of a training (600 images, 846 traffic signs) and a test
set (300 images, 360 traffic signs). Traffic signs are divided
into three main categories and other minority categories.
The three categories used to evaluate detection methods
are prohibitory signs, danger signs and mandatory signs.
Details about the experiment are described in the following
subsections.

A. Parameter Selection and Training

We use the GTSDB dataset to test our system. Traffic
signs int this dataset vary between 16 and 128 pixels w.r.t
the longer edge. We choose 20×20 as the size of the
smallest search window, which can be used to detect the
smallest signs. To detect traffic signs of different sizes, an
integral HOG pyramid is constructed using a scaling factor
of 1.08. The full pyramid includes 25 feature maps with
pyr small = 9 and pyr large = 16 maps for models
of 20×20 and 40×40 pixels respectively. Oriented gradient
channels are computed once every scale interval = 3 scales
and shared by different scales locally. For HOG and integral
HOG, gradients are calculated by choosing the color channel
with the largest gradient magnitude at each pixel. Signed
gradient orientation over 0 − 360◦ is discretized by N = 8
bins for all the HOG varaints. In the first two stage, we

TABLE I
SAFELY REJECTED BACKGROUND PIXELS AND WINDOWS.

Rejected pixels Rejected windows
43.46% 62.41%

use changeable search window and two resolution models
(20×20 and 40×40). Hence for each model, there are actual
three search window sizes: ×1, ×1.081 and ×1.082. In the
last two stages, we use fixed search windows of 20×20
pixels and of 40×40 respectively. Uniformly, we describe
windows of different sizes by 5×5 cells and blocks of 2×2
cells (eg. For a window of 20×20 pixels, each cell is of
4×4 pixels; For a window of 40×40 pixels, each cell is of
8×8 pixels; Blocks of both windows include 2×2 cells.).
Moreover, orientation channels are also shared by the two
resolution models. Suppose given orientation gradient maps
of the full size image, we can calculate integral HOG for
signs of 20×20 pixels using a 20×20 search window (cell
of 4×4 pixels). Also we can get feature for signs of 40×40
pixels with a 40×40 search window (cell of 8×8 pixels).
Hence, we only need to compute orientation channels at 6
(dmax(pyr small, pyr large)/scale intervale) scales. For
center-surround saliency computation, we calculate HOG
with cells of 8×8 pixels. The inner window includes only
one N dimensional vector. Three outer windows are used
including 3×3, 5×5 and 7×7 feature pixels separately.

The training set is used to train our models. Traffic signs
are cut from training images with certain margin pixels and
jittered by random translation, rotation and scaling. Negative
samples for the first three stages are randomly selected square
windows which don’t overlap with traffic signs. Linear classi-
fiers in the first three stages are trained in one round. The last
IKSVM classifier is learned in multiple rounds via iteratively
mining hard negatives. For simplification, we share the same
thresholds of stage I and stage IV classifiers for all the
three categories, and the same thresholds of the saliency test
for prohibitory and mandatory signs. The parameters of the
second and the third stages are selected on the training set
by keeping a trade-off between speed and accuracy.

B. Results

1) Saliency test: Our saliency test consists of two saliency
maps V1 and V2 with their thresholds T1 and T2. A setting
of T2 = 0.0012 is selected in our experiments to ensure that
no traffic sign pixel is eliminated under any illumination on
the training set.

Let D be a distribution over V1. Let x be a pixel and
X be the set of the pixels in the training images. Let X3

be the set of all the pixels of traffic signs. Given T2, X
can be divided into two parts X1 = {x|x ∈ X , V2(x) <
T2} and X2 = {x|x ∈ X , V2(x) >= T2} denoting the
pixels rejected and retained by V2 respectively. Here X , X1

and X2 are all called sets of background pixels, because
compared with them, traffic sign pixels can be negligible
in a full image. V1 is binned uniformly and three histograms
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TABLE II
RUNTIME AND PERFORMANCE

Team/Method Prohibitive Danger Mandatory
AUC Time(ms) AUC Time(ms) AUC Time(ms)

wgy@HIT501 [17] 100% ∼1122 99.91% ∼1179 100% ∼1232
visics [14] 100% ∼400∗ 100% ∼400∗ 96.98% ∼400∗ *GPU
LITS1 [16] 100% 400∼1000 98.85% 400∼1000 92% 400∼1000
BolognaSVLab [26] 99.98% ∼1667 98.72% ∼794 95.76% ∼571
NII-UIT 98.11% - - - 86.97% -
wff - - 99.78% - 97.62% -
milan - - 96.55% - 95.76% -
SFC-tree[15] 100% ∼192∗ 99.20% * 98.57% * *Total time
WaDe+MSER[27] 99.99% ∼1667 99.79% ∼794 98.17% ∼571
Ours 99.87% ∼227 95.72% ∼301 91.14% ∼288
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Fig. 5. Distributions of the three sets of pixels over V1. There are some
interesting observations: The values of saliency V1 varies slightly, from 0 to
1.4; A large number of background pixels specified by X1 can be rejected
by using threshold on V2; The distributions of X2 and X3 over V1 are
compact and present a separable trend, which means that we can apply a
threshold reliably on V1 to eliminate other background pixels belonging to
X2; If a setting of T1 = 0.4 is selected, shown by the black dot line, totally
about 40% background pixels can be eliminated and only 0.09% pixels of
sign pixels are rejected.
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Fig. 6. Precision-Recall curves and AUCs. The AUCs of our system are
99.87% for prohibitory signs, 95.72% for danger signs and 91.14% for
mandatory signs.

D(X1), D(X2) and D(X3) are obtained. For X3, we only use
prohibitory and mandatory categories and exploit the inner
area (×0.8) of a annotation box, in case of being mixed with
background pixels. The three distributions over V1 are shown
in Fig. 5. We maintain them in a same level by enlarging
the distribution of traffic signs. We also use threshold T1

on V1 map shown by the dark dot line. Only pixels whose
values of both two saliency are high enough can be reserved.
Thus, for each window, we can get its salient area. If this
area is below a fixed threshold of 0.8, it will be rejected.
We can compute this area easily with the help of integral
image. This saliency evaluation is not adopted for danger
sign category, because it is triangular and introduces many
background pixels in a square search window. Table I shows
the percentages of pixels and windows that can be safely
eliminated on the training set.

2) Performance: We implement our system in C++ and
optimize our code with SSE instructions but on a single
core of a modern PC. We use the single AUC (area under
precision-recall curve) score to measure this system as [18].
In this paper, three sign categories are detected separately.
Precision-recall curves and AUC scores are illustrated in
Fig. 6. The AUCs are 99.87% for prohibitory signs, 95.72%
for danger signs and 91.14% for mandatory signs. In Table II,
we compare this result with other methods on GTSDB. The
first part are methods that have participated in competition
on this dataset. The second part are methods reported by
literature.

As illustrated in Fig. 5, the proposed mid-level saliency
is robust and can separate background and sign pixels well.
This is also demonstrated by the rejected pixels and windows
in Table I, where ∼ 40% pixels and ∼ 60% windows of the
training images can be eliminated safely.

The runtime and performance of the proposed method is
illustrated in Table II in comparison with other methods [17],
[14], [16], [26], [15], [27]. Our method is both efficiency
and effectiveness, in terms of AUC and runtime. It takes
227∼301ms to detect traffic signs on a high resolution
image, 2∼7 times faster than most state-of-the-art methods.
For prohibitory signs, the performance is competitive with
them. For danger signs our system shows compromising
performance partly due to the loss of recall in the early
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three stages, as illustrated in 6. This price for fast speed is a
little bigger than prohibitory signs because of the classifiers
of the early stages are not strong enough and insensitive
to the deformation of triangular signs especially to the
rotation deformation. Actually the problem resulting from
deformation is partly handled in methods of [17], [26] with
additional computing cost. The detection of mandatory signs
is most difficult among the three categories in this dataset
partly due to the large intra-class variance and also due to
the lack of sufficient positives. For this category, our system
can’t maintain a good precision in which the early stages
keep a high recall but reserve so many hypotheses that the
last stage can’t classify them correctly. From the numbers in
Table II, [15] yields faster and more accurate detection than
the proposed method. However, the result [15] is reported
with an additional large train set beyond this dataset.

A point that should be mentioned is that our method
involves more tunable parameters than previous ones, thus
it has room for improvement by parameter optimization.

IV. CONCLUSIONS

The carefully-designed traffic sign detection system pro-
posed in this paper works fast and effectively. This can be
partly attributed to the robust mid-level saliency test and
fast feature extraction. Additionally, utilizations of neighbor
scales awareness and multi-resolution models are also impor-
tant to its good performance. Experiments shows the promise
of our method. It runs at 2∼7 times as fast as most state-of-
the-art methods. Compared with them, the proposed method
yields competitive performance on prohibitory signs while
sacrifices performance moderately on danger and mandatory
signs. In the further, we will explore the relationship between
the parameters of the four stages to further improve the
performance.
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