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Abstract

Correlation filter based tracking has attracted many researchers’ attention in the recent

years for high efficiency and robustness. Most existing work has focused on exploit-

ing different characteristics with correlation filter for visual tracking, e.g., circulant

structure, kernel trick, effective feature representation and context information. De-

spite much success has been demonstrated, numerous issues remain to be addressed.

First, the target appearance model can not precisely represent the target in the tracking

process because of the influence of scale variation. Second, online correlation track-

ing algorithms often encounter the model drift problem. In this paper, we propose a

clustering based ensemble correlation tracker to deal with the above problems. Specif-

ically, we extend the tracking correlation filter by embedding a scale factor into the

kernelized matrix to handle the scale variation. Furthermore, a novel non-parametric

sequential clustering method is proposed for efficiently mining the low rank structure

of historical objects through weighted cluster centers. Moreover, to alleviate the model

drift, an object spatial distribution is obtained by matching the adaptive object template

learned from the clustered centers. Similar to a coarse-to-fine search strategy, the spa-

tial distribution not only is used for providing weakly supervised information, but also

is adopted to reduce the computational complexity in the detection procedure which

can alleviate the model drift problem effectively. In this way, the proposed approach

could estimate the object state accurately. Extensive experiments show the superiority

of the proposed method.
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1. Introduction

Visual tracking is a fundamental problem in computer vision. It refers to the task of

generating the trajectories of the moving objects and has many applications including

surveillance, autonomous driving and image guided surgery. Numerous methods have

been dedicated to generate an object trajectory by computing the translation of the5

object in consecutive frames, among which the correlation filter method is one of the

most common methods recently [1, 2, 3, 4, 5, 6]. The popularity of the correlation filter

method is due to its simplicity, high efficiency and robustness.

Correlation filter is to evaluate the similarity degree by computing the convolution

for each possible alignment of one learned template (or filter) relative to a test image.10

After its first introduction (i.e., Person’s Correlation) by Galton in 1888 [7], it has

been adopted to solve various computer vision problems, such as object detection and

recognition [8, 9], pose detection [10], correlation mining [11] and object tracking

[1]. The computation of correlation filters can be speeded up by using the convolution

theorem, which states that the convolution of two functions in the spatial domain can15

be computed in the Fourier domain as the element-wise multiplication of the Fourier

Transform of those two functions. Due to its computational efficiency, correlation filter

has attracted much attention recently for visual tracking [1, 12, 13, 14, 5, 6]. Despite

its good performance, most of these correlation methods have two main limitations, the

first of which is how to adjust the object scale efficiently. In order to consistently track20

the object, Danelljan et al. [5] proposed a separate 1-dimensional correlation filter to

estimate the target scale, but they only used the original feature space as the object

representation. In this paper, we propose a multi-scale kernelized correlation filter

as our tracking filter by embedding the scale variation into the kernelized correlation

filter while forming a separate pyramid of object representation. In addition, the use25

of adaptive learning rate based on occlusion detection is helpful in learning a robust

tracking filter online.

The second limitation is how to handle the model drift problem caused by the long-
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term occlusion or out-of-view 1, which is a very important problem for online tracking

[15]. One feasible mechanism is to estimate the possibility of the object presence (i.e.,30

the object spatial distribution) in a larger search region with a quick search strategy,

e.g., particle filter [16]. We just need a coarse object spatial distribution. It may not be

a good choice to use particle filter because it will sample many overlapping regions to

evaluate the possibility with an object template or classifier which results in too many

useless computation. Therefore, we choose a simple grid strategy with no-overlapping35

and dense samples as our auxiliary search strategy. Based on the meshing grid samples

in the large search region with some evaluation metric, the object spatial distribution

is computed to rectify the base correlation tracker. However, as said in [15], how to

learn a good evaluation metric online is an important problem. To solve the problem,

a novel non-parametric sequential clustering is proposed for efficiently mining the low40

rank structure of historical objects via compact cluster centers. We use an adaptive

object template generated from the weighted cluster centers to represent the low rank

structure and treat it as an evaluation metric. Then the spatial distribution of the object

can be obtained by matching the object template and provides some weakly supervised

information for re-correcting the object state. In this way, the online object tracker45

can exploit the low rank property of object representation [17] which is prevalent in

long-term spatial-temporal tracking and is effective to alleviate the model drift.

The main contributions of this work are summarized as follows:

• A non-parametric sequential clustering is proposed for efficiently mining the low

rank structure of historical objects represented by weighted cluster centers.50

• To alleviate model drift, an adaptive object template is learned by the weighted

clustered centers which can be used to calculate the spatial distribution of object

and provide weakly supervised information for re-correcting the object state.

• A clustering based ensemble correlation tracker is proposed to jointly capture

the target appearance by multi-scale kernelized correlation filter and to exploit55

the long-term object properties by the object template with cluster analysis.

1“out-of-view” means that the object of interest leaves the field-of-view and re-enters at a later time step.
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2. Related Work

Visual tracking has been studied extensively by many researchers over the years due

to its importance. While a comprehensive review of the tracking methods is beyond the

scope of the paper, please refer to [18, 19] for a survey, and also to [20, 21, 22, 23, 24]60

for some empirical comparisons. In this section, we introduce some related works

closely: correlation filter based tracking, ensemble methods and tracking-by-detection

approaches.

Correlation filter has been widely studied in the field of visual tracking. Bolme

et al. [1] modeled the target appearance by an adaptive correlation filter which was65

optimized by minimizing the output sum of squared error (MOSSE). The convolution

theorem can be used with correlation filter to accelerate tracking. Circulant structure

with kernels tracker (CSK), proposed by Henriques et al. [12], exploited the circular

structure of adjacent subwindows in an image for quickly learning a kernelized regular-

ized least squares regressor of the target appearance with dense sampling. Kernelized70

correlation filters (KCF) [6] was an extended version of CSK by re-interpreting cor-

relation tracking using the kernelized Ridge regression with multi-channel features.

Danelljan et al. [14] introduced color attributes to improve tracking performance in

colorful sequences and then proposed the DSST tracker [5] with accurate scale estima-

tion by one separate filter. Zhang et al. [13] utilized the spatial-temporal context in the75

Bayesian framework to interpret correlation tracking. Zhu et al. [25] proposed a multi-

scale kernel correlation tracker and online CUR filter for re-detection so as to handle

the scale variation and long-term occlusion. Different from [25], this paper proposes a

novel online clustering strategy for re-detection. In a word, all of them attempt to ex-

ploit different characteristics with correlation filters for tracking, e.g. circular structure80

[12], kernel trick [6], color attributes [14], effective feature representation (e.g. HOG)

[5, 6], the consistency of object representation in scale space [5], re-detection method

[25] and context information [13].

From the perspective of that the tracked objects are treated as labeled positive sam-

ples and the other as the training samples with some structure loss, the tracking problem85

can be considered as a supervised learning problem in each frame. Supervised learning
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algorithms are commonly described as performing the task of searching in a hypoth-

esis space to find a suitable hypothesis that makes good prediction for one particular

problem. Even if the hypothesis space contains many hypotheses that are very well-

suited for object tracking, it may be very difficult to find a good one to locate the object90

precisely.

“Ensemble methods” is a machine learning paradigm where multiple (homoge-

nous/heterogenous) individual learners are trained for the same problem, e.g., neural

network ensemble [26], bootstrap aggregating (bagging) [27], boosting [28], Bayesian

model averaging [29], [30], etc.. Avidan [31], who was the first to explicitly apply95

ensemble methods to tracking-by-detection, extended the work of [32] by adopting the

Adaboost algorithm [28] to combine a set of weak classifiers maintained with an on-

line update strategy. Along this thread, Grabner et al. [33] inspired from the online

boosting algorithm [34] introduced feature selection from a pool of features for weak

classifiers. Several other extensions to online boosting also existed, including the work100

by Banbenko et al. [35] who adopted Multiple Instance Learning in designing weak

classifiers. As a different approach [36], Random Forests undergoed online update to

grow or discard decision trees during tracking. Bai et al. [37] treated weight vector

as a random variable and estimated a Dirichlet distribution for the ensemble’s weight

vector. They all are a binary classifier realized by an ensemble method and do not105

exploit the structured data properties which can improve the tracking performance sig-

nificantly, like as [2], [38]. Meanwhile, online boosting based trackers [33, 35] only

considered the parameter state at the current time period. Clustering methods [39, 40]

are good for exploring the underlying data structure.

Zhong et al.[3] considered visual tracking in a weakly supervised learning scenario110

where (possibly noisy) labels but no ground truth are provided by multiple imperfect

oracles (i.e., trackers). Kwon and Lee [41] proposed visual tracker sampler to track a

target by searching for the appropriate trackers in each frame. They are all ensemble

methods applied in visual tracking. Different from these methods, our method is not a

heterogeneous method which focuses on the tracker space but an homogenous approach115

in which there is only one main tracker.

To leverage the stability and plasticity residing online update in visual tracking,
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Kalal et al. [4] proposed a unified tracking-learning-detection (TLD) framework where

short-term tracker and long-term online detector help each other by exploring the struc-

ture of unlabeled data, i.e., the short-term tracker provides high confident samples to120

train and update the detector, and the detector re-initializes the short-term tracker when

it fails. Hare et al. [2] proposed structure SVM by exploring the spatial label distri-

bution of the training samples as the intrinsic relative structure, which alleviated the

problem of label prediction about noise samples (i.e., label ambiguity). Zhang and

van der Maaten [38] proposed a structure preserving model with graphical structure in125

the tracking-by-detection framework which handled the model drift problem in some

extent. Danelljan et al. [5] proposed a separate 1-dimensional correlation filter to es-

timate the target scale in an image efficiently. Henriques et al. [6] proposed a circular

structure correlation filter tracker with kernel and interpreted the correlation tracking as

a ridge regression problem which can explore the spatial label distribution with dense130

samples. Inspired by the above trackers, in this work we embed the scale estimation

[5] into kernelized correlation filter tracker [6] as our multi-scale kernelized correla-

tion filter tracker and propose a novel online non-parametric sequential clustering for

learning an adaptive object template. Due to the computational efficiency of correla-

tion filter, the spatial label distribution by circular structure, accurate multi-scale object135

representations with scale estimation, and an online detection filter, the proposed track-

er effectively handles the problems of label ambiguity, scale variation, and model drift

existing in online tracking.

3. Clustering based Ensemble Correlation Tracking

3.1. Multi-scale Kernelized Correlation Tracking (MKC)140

The basic idea of correlation filter-based trackers [1, 12, 14, 5, 6, 25] is to train a

discriminative correlation filter h on an image patch {x,y} in the first frame and then

update the filter in the sequential frames, k = {0, ..., t − 1}. Each image patch x is

represented by a feature map with same spatial size M ×N . According to the circular

structure [12], each feature map x(m,n) ∈ Rd can be treated as a circular shift from x

at each spatial location (m,n) ∈ {0, 1, ...,M−1}×{0, 1, ..., N−1} correspondingly.
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The desired output y satisfies some label distribution, e.g. Gaussian, corresponding to

all samples x(m,n). The correlation filter h in each frame can be obtained by solving

the following minimization problem with l2-loss,

min
h

∑
m,n

∥φ(x(m,n)) · h− y(m,n)∥2 + λ∥h∥2. (1)

Here, φ represents the mapping function lying in a reproducing kernel Hilbert space,

· denotes element-wise multiplication and λ ≥ 0 is the impact of the regularization

term. Based on Parseval’s theorem, Eq. (1) in time domain can be transformed into the

Fourier domain. The unitary Discrete Fourier Transform (DFT) filter ĥ = F{h} can

then be solved with linear programming. According to the Representer Theorem [42],

the solution h to the objective function can be expressed as

h =
∑
m,n

α(m,n)φ(x(m,n)), (2)

where the coefficient α is defined as

Γ = F{α} =
ŷ

φ(x̂) · φ(x̂)) + λ
, (3)

For introducing the scale factor, we can replace φ(x̂) with φ(x̂; sinit, scur) which is

a non-linear feature space (i.e., kernel trick) for transforming the feature representa-

tion x̂ with size scur into another feature representation with size sinit by preserving

the consistency of multi-scale object representations in scale space. Here, sinit is the

initialized scale size of the training sample in the first frame. scur is the size of the145

training sample in the current frame. For simplicity, we denote φ(x̂; sinit, scur) as

φ(x̂). To estimate the object scale, multi-scale object representation similar to [5] is

built independently while the predicted scale factor is embedded in Kernelized cor-

relation filter. Therefore, the integrated tracker is denoted as multi-scale Kernelized

correlation tracking.150

Similar to [5], we decompose multi-scale kernelized correlation tracking into two

separate filters for translation and scale estimation. Different from [5], which only

used the original feature space as the object representation, we represent the object

with kernel feature space and extend kernelized correlation filter with a scale factor.
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Based on kernel trick [42] and circular structure [12], Henriques et al. [6] proposed155

kernelized correlation filters for visual tracking which allowed more flexible, non-linear

regression functions integrating with multi-channel features. Due to the characteristic

of the kernel trick, the model optimization is still linear in the dual space even if with

a different set of variables. Danelljan et al. [5] proposed a separate 1-dimensional

correlation filter to estimate the target scale.160

With the guarantee of the consistency of object representation in scale space, we

can scale the object representation without large loss of the intrinsic object structure.

Therefore, to reduce the computational complexity and preserve the coherence of ob-

ject representation in different scales, we resize the current training sample of scale

scur to the initial scale sinit so that the feature dimension of the object filter H is165

consistent in the whole tracking process. The current scale scur is achieved indepen-

dently by a separate scale estimate filter similar to [5]. Note that the scale estimate

filter is constructed by a normalized feature pyramid with same feature dimension for

fast convolution. Therefore, our multi-scale kernelized correlation filter tracker has the

characteristics of scale estimation and kernel trick, where the optimal scale scur can be170

achieved by scale estimation and multiple channel features can be embedded by kernel

trick naturally.

During the tracking process, the coefficients Γ of kernelized regularized Ridge re-

gression and the target appearance φ(x̂) are updated by linear interpolation:

Γt = (1− β) ∗ Γt−1 + β ∗ Γ, (4)

φt(x̂) = (1− β) ∗ φt−1(x̂) + β ∗ φ(x̂), (5)

where t is the t-th frame and β is the learning rate. Actually, this update strategy works175

well when there is no occlusion and the object appearance changes slowly.

When the object is occluded, the inappropriate update of object appearance may

lead to model drift. To deal with the problem, we introduce a simple indicator to

evaluate whether the object is occluded and adaptively adjust the learning rate. If the

object is occluded, we reduce the learning rate; otherwise, keep the learning rate. The

indicator is the overlapping rate To between the estimated object state of multi-scale

kernelized correlation tracking filter and high confident candidate bounding boxes of
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online detection filter. With the overlapping rate To and the lower overlapping rate

bound T , we adaptively adjust the learning rate β as follows:

β =

η ∗ βinit, if To < T

βinit, otherwise

(6)

where βinit is the initialization value of the learning rate β and η denotes the reducing

rate for the current learning rate.

With the convolution Theorem and circulant structure [6], the correlation scores

S(z) at all locations in the image region in t-th frame can be computed efficiently,

St(z) = F−1{Γt−1 ⊙ (φ(ẑ) · φ(x̂t−1))}, smax = max(S(z)), (7)

where the hat denotes the unitary DFT of a function and F−1 denotes the unitary

inverse DFT. Then the location of smax is considered as the object’s state.180

3.2. Online Non-parametric Sequential Clustering

In online visual object tracking, the tracked object appearance usually changes

gradually. While there are some various factors such as noise or occlusion or fast

and abrupt object motion or illumination changes or variations in pose and scale, the

object appearance will changes much. Matthews et al. [15] proposed the problem185

that how to update the template so that it remains a good model of the tracked ob-

ject. A good template update algorithm can avoid the “drifting” problem. There are

many dictionary-based trackers [43, 3, 44] which maintain dictionaries of object tem-

plates and seek to represent candidate object regions in a new frame using combina-

tions of these templates. A popular idea is using ℓ1-norm minimization to represent190

the candidates sparsely. However, it is difficult to learn a good dictionary and has high

time complexity. In this paper, we propose an incremental non-parametric sequential

clustering method where the estimated object representation vectors are clustered into

some weighted cluster centers which can be treated as the dictionary of object tem-

plates. Based on the weighted cluster centers, we can learn an adaptive object template195

considering with the balance between stability and plasticity. In the following, we will

detail the non-parametric sequential clustering approach.
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In the data stream applications (e.g., online tracking), the sample vectors X =

{x1, ...,xi, ...} are presented only once. Suppose there are the learnt cluster sets

S = {S1, ..., Sj , ...} with their corresponding cluster centers C = {c1, ...cj , ...} and

cluster sample numbers W = {w1, ..., wj , ...}, the number of clusters K is not known

a priori. The common approach is to define the similarity function s(xi, cj), set the

threshold of similarity Θ and the number of maximum clusters K. Different choices

for the similarity function s(xi, cj) lead to different results. In this paper, the similarity

function s(xi, cj) is defined as follows:

s(xi, cj) = 0.5 ∗ (< xi, cj >

∥xi∥∥cj∥
+ 1) (8)

where < a,b >= aTb is the dot product of two vectors, ∥a∥ =
√
aTa, and cj is the

average of all vectors in the cluster set Sj . To reduce the time complexity, the cluster

center cj will be incrementally learnt as follows:

cj =
wj ∗ cj
wj + 1

+
xm

wj + 1
(9)

where wj is the number of sample in the assigned cluster cj and xm denotes a new

sample. In our solution, the previous samples will not be stored in the memory while

just keep the cluster centers C and cluster sample numbers W . The cluster sample200

numbers W can be transformed into the weights of the cluster centers.

To be specific, the idea is to assign each newly sample vector to an existing cluster

or create a new cluster for this sample, depending on the similarity to the already learnt

clusters. In the context of online tracking, the sample vector changes gradually so that

the threshold Θ and the number K are difficult to set. Herein, to avoid the above ini-205

tialized settings, we do not set the upper bound of the number K so that the clustering

algorithm becomes a non-parametric one. If the maximum similarity between the sam-

ple and the cluster centers is lower than the threshold Θ, a new cluster will be created;

otherwise, the sample will be assigned to one nearest cluster center. As shown in Algo.

1, it is implemented as follows:210

In each frame, non-parametric sequential clustering will generate the weighted

cluster centers C = {c1, ..., cm} with their corresponding weights W = {w1, ..., wm}.

Then we use the weighted cluster centers to learn an adaptive object template. To make
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Algorithm 1 Non-parametric Sequential Clustering
1: Initialize the first sample as the first cluster set S1 = {x1}, the cluster center c1 =

x1, the cluster sample number w1 = 1, the threshold of the similarity Θ = 0.85;

2: for each sample vector xi ∈ {x2, ...,xn, ...} in the data stream do

3: Find the most similar cluster Sk according to Eq. (8) so that the similarity

α = max s(xi, cj);

4: if α < Θ then

5: Create a new cluster Sm = {xi}, cm = xi, wm = 1;

6: else

7: Add the sample xi to the nearest cluster Sk = {Sk,xi}, the cluster sample

number wk = wk+1, and compute the cluster center ck according to Eq. (9).

8: end if

9: end for

the object template robust to the outliers caused by occlusion or out-of-view, we first

sort the weights W in descending order to get the median weight wc and then select

the cluster centers whose weights are no less than wc to generate the adaptive object

template o as follows.

o =

∑
i=1,...,m δ(wi − wc)wcci∑
i=1,...,m δ(wi − wc)wc

, (10)

δ(x) =

 1, if x >= 0

0, if x < 0
(11)

3.3. Clustering based Detector

There is a common sense that a re-detection module is necessary for a robust long-

term tracker in the case of tracking failure, e.g. out-of-view and long-term occlusion.

However, how to train an effective detector is difficult because it strongly depends on

the training samples, especially the labels of the training samples are hard to guarantee.215

An empirical method is to explore the spatial-temporal structure information to verify

the correctness of the training sample. In addition, the time complexity of learning

the classifier is high, and using the classifier for detection with exhaustive search is
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also time-consuming. Different from previous trackers [4, 45, 46], where the online

classifier needs to be trained, we propose a online non-parametric sequential clustering220

for learning an object template adaptively as a detector only with one parameter (i.e.,

the threshold of similarity Θ to create new clusters). Based on Sec. (3.2), we learn the

clustered object template o and treat it as clustering based detector.

The clustering based detector is used to calculate a spatial distribution of object lo-

cation. Firstly, we extract the sample feature vectors Z = {z1, ..., zP } centred around225

the previous object location center using a grid strategy where the size of each sample

is the same as the previous estimated object scale scur. The grid number P determines

the context region or the larger search region. In the paper, the grid is 9 × 9. Then

we compute the similarities s = {s1, ..., sP } between the extracted vectors Z and the

object template o in Eq. (10) according to Eq. (8). We treat the similarities s as the230

spatial distribution of object learned from clustering based detector.

It should be noted that the clustering based detector is to approximate object repre-

sentation vectors in the whole historical process while multi-scale kernelized correla-

tion tracking filter pays more attention to the spatial-temporal consistency constraints

between the nearest neighbour frames, i.e., the focuses of attention between a detector235

and a tracker are different.

3.4. Clustering based Ensemble Correlation Tracker

With the multi-scale kernelized correlation tracking filter and the spatial distribu-

tion of object, we construct a clustering correlation tracker as follows.

In our tracking algorithm, the MKC tracker first computes the correlation output240

based on the previous target state. Then the preliminary target state õt (i.e., the object

center location and the size of the bounding box) is achieved by maximum response

estimation. Based on the similarities s in Sec. 3.3, we only keep the top-k samples

whose similarities exceed over 0.5. The kept samples will provides new candidate

centers. Based on the location centers of the top-k samples, we get some bounding245

boxes D̃t = {d̃1, ..., d̃k}. In this paper, k = 3. If the overlap rate between the state

õt and one of the bounding boxes D̃t is larger than T , and the similarity between

õt and the clustered template o is the largest, we consider the state õt as the correct
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target state ot in the t-th frame; otherwise, the preliminary target state õt may be not

correct, and then we take use of D̃t. To be specific, for each candidate bounding box250

we use the multi-scale kernelized correlation tracking filter to obtain the correlation

score s̃i. Then the scores of the preliminary state s̃1 and the top-k candidate scores

constructed the total scores s̃ = {s̃1, ..., s̃k, s̃k+1}. To preserve the spatial-temporal

consistency structure in consecutive frames, we re-correct all candidate scores with

the object spatial distribution and spatial Gaussian distribution. The spatial Gaussian255

distribution is based on the spatial distance between the candidate bounding box center

and the last estimated object center. Then the corresponding candidate state of the

maximum candidate score is chose as the final object target state ot.

4. Experiments

We evaluate our collaborative tracker on two public challenging benchmark data260

sets, Online Tracking Benchmark (OTB) [21] and Princeton Tracking Benchmark [22],

by following their evaluation protocols rigorously. There are totally 145 sequences

used to evaluate the proposed approach (i.e., 50 sequences in OTB and 95 validated

sequences in Princeton Tracking Benchmark). There are seven sequences with more

than 1000 frames and 19 sequences with more than 500 frames in OTB. In all the265

experiments, we use the same parameter values for all sequences in two benchmark

datasets.

We denote the proposed multi-scale kernelized correlation tracker as MKC and

clustering based ensemble correlation tracker as CECT. Our approaches are imple-

mented in Matlab. The experiments are performed on an Intel(R) Core(TM) i5-2400270

CPU with 2 core, 3.10 GHz and 20G RAM. In OTB, our algorithm performs well at

12.0 frames per second (FPS) average in all sequences where KCF is 175.9 FPS, DSST

is 34.3 FPS, MKC is 67.9 FPS, respectively.

4.1. Implementation Details

To speed up the detection process, we resize the object to keep the minimum value275

of width or height as a small value (e.g., 32). Then we resize the test image with the

13



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

 

 

CECT [0.598]

MKC [0.579]

DSST [0.559]

TGPR [0.529]

KCF [0.517]

SCM [0.499]

Struck [0.474]

CN [0.452]

TLD [0.437]

ASLA [0.434]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

CECT [0.810]

MKC [0.784]

TGPR [0.766]

KCF [0.743]

DSST [0.743]

Struck [0.656]

SCM [0.649]

CN [0.633]

TLD [0.608]

VTD [0.576]

Figure 1: Precision and success plots of overall performance comparison for the 50 videos with 51 target

objects in the benchmark [21] (best-viewed in high-resolution). The mean precision scores for each tracker

are reported in the legends. Our methods are shown in red and green. In both cases our approaches

(CECT and MKC) perform favorably better than the state-of-the-art tracking methods. OPE denotes one-

pass evaluation [21].

same scale ratio of the object. The parameters in our multi-scale kernelized correlation

tracking filter are same as [6, 5]. The object template feature is represented by color

histograms. To consider the local color distribution of the target object, its bounding

box is divided into 2 × 2 blocks, and the CIE Lab color histogram with 48 bins is280

extracted from each block. Hence the feature vector has the dimension of 192. If the

sequence is gray-scale, the feature vector has the dimension of 64. In Eq. (6), T = 0.05

and η = 0.1, which are mainly set empirically without too much research.

4.2. OTB

We evaluate our methods with nine state-of-the-art trackers. The trackers used for285

comparison are: VTD [41], TLD [4], Struck [2], ASLA [47], SCM [3], CN [14], KCF

[6], TPGR [48], DSST [5] and our trackers (MKC [25] and CECT). The overall perfor-

mance is shown in Fig. 1. The public codes of the comparative trackers are provided by

the authors and the parameters are fine tuning. All algorithms are compared in terms of

the initial positions in the first frame coming from [21]. Their results are also provided290
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with the benchmark evaluation [21] except KCF, CN, TGPR2 and DSST. Here, KCF

used HOG feature and the gaussian kernel which achieved the best performance in [6].

CN’s source code was originated from [14]. It was modified to adopt the raw pixel

features as [6] for handling the grey-scale images.

To evaluate the performance of the proposed method, we follow the metric used in295

[21], where distance precision is the relative number of frames in the sequence where

the center location error of the target and the ground truth is smaller than a certain

threshold (e.g., 20 pixels), and overlap precision is denoted as the percentage of frames

where the their bounding box overlap exceeds a threshold (e.g., 0.5). Fig. 1 shows

precision and success plots which contains the mean distance and overlap precision300

over all the 50 sequences. The trackers in the legend are ranked using the mean pre-

cision score in precision plots and the area under the curve (AUC) in success plots,

respectively. Only the top 10 trackers are displayed for clarity.
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Figure 2: Precision plots of different attributes (best-viewed on high-resolution display) generated by the

toolkit [21]. The valued appearing in the title denotes the number of videos associated with the respective

attribute. The proposed methods in this paper perform favorably against state-of-the-art algorithms.

As shown in Fig. 1, our approach CECT improves the baseline HOG-based KCF

tracker with a significant gain in accuracy. To be specific, our MKC and CECT tracker305

improves the overlap success rate of their baseline methods from 51.7% to 57.9%, and

from 57.9% to 59.8%. Moreover, our MKC tracker improves the precision rate of the

2The results of TGPR came from http://www.dabi.temple.edu/˜hbling/code/TGPR.htm.
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Figure 3: Success plots of different attributes generated by the toolkit [21]. The proposed methods (MKC

and CECT) obtain better or comparable performance in all the subsets.

baseline method KCF from 74.3% to 78.4% because of accurate scale estimation, and

then CECT boosts the MKC tracker with a gain of 2.6% due to the object template

learnt by cluster analysis. DSST, which has shown to obtain the top-1 performance in310

the challenge of VOT2014 [24] than most of the state-of-the-art trackers. For merging

the correlation filter tracker with kernel representation and an adaptive object template

with clustering for detection, our MKC and CECT tracker outperform the DSST track-

er 2% and 3.9% in overlap success rate, and 4.1% and 6.7% in distance precision

(20 pixels), respectively. Overall, our trackers are better than the other trackers and315

achieves a significant improvement. Certainly, according to the attribute of scale vari-

ation in Fig. 2 and Fig. 3, we find that DSST is better than the proposed trackers MKC

and CECT in handling the problem of scale variation.

Attribute-based Evaluation: There are several factors which can affect the per-

formance of a visual tracker. In the recent benchmark evaluation [21], the sequences320

are annotated with 11 different attributes, which are named as: occlusion, deformation,

illumination variation, fast motion, motion blur, out-of-plane rotation, scale variation,

background clutter, out-of-view, low resolution and in-plane rotation. These sequence

subsets with different dominant attributes can facilitate the analysis of the performance

of trackers for each challenging factor. Fig. 2 and Fig. 3 show example precision plots325

and success plots of different attributes. Different methods have their special charac-
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Table 1: Results on the Princeton Tracking Benchmark: successful rates (%) and rankings (in parenthe-

ses) for different categorizations. The best results are in red and the second best in blue.

Algo.
Avg. target type target size movement occlusion motion type

Rank human animal rigid large small slow fast yes no passive active

CECT 1.09 58(1) 53(2) 65(1) 61(1) 58(1) 71(1) 55(1) 51(1) 71(1) 66(1) 57(1)

KCF 1.91 40(2) 55(1) 63(2) 45(2) 56(2) 63(2) 47(2) 39(2) 68(2) 63(2) 47(2)

Struck 3.82 35(3) 47(4) 53(5) 45(3) 44(5) 58(3) 39(3) 30(5) 64(3) 54(5) 41(3)

VTD 3.27 31(5) 49(2) 54(3) 39(4) 46(2) 57(3) 37(3) 28(5) 63(3) 55(3) 38(3)

RGBdet 4.36 27(7) 41(5) 55(2) 32(7) 46(3) 51(5) 36(4) 35(2) 47(6) 56(2) 34(5)

CT 5.36 31(4) 47(4) 37(7) 39(3) 34(7) 49(6) 31(5) 23(8) 54(4) 42(7) 34(4)

TLD 5.64 29(6) 35(7) 44(5) 32(6) 38(5) 52(4) 30(7) 34(3) 39(7) 50(5) 31(7)

MIL 5.82 32(3) 37(6) 38(6) 37(5) 35(6) 46(7) 31(6) 26(6) 49(5) 40(8) 34(6)

SemiB 7.73 22(8) 33(8) 33(8) 24(8) 32(8) 38(8) 24(8) 25(7) 33(8) 42(6) 23(8)

OF 9.00 18(9) 11(9) 23(9) 20(9) 17(9) 18(9) 19(9) 16(9) 22(9) 23(9) 17(9)

teristics in different attributes. Please refer to [21] for more details.

As shown in Fig. 2, CECT provides superior results compared to existing methods

in the following attributes, including illumination variation, out-of-plane rotation, mo-

tion blur, occlusion, deformation and so on, mainly because of the grid strategy with330

the adaptive object template by cluster analysis. The object template extends the search

region with some guarantee by non-parametric sequential clustering. The comparison

of the object template and the search grid strategy can re-correct some object states.

4.3. Princeton Tracking Benchmark

Princeton Tracking Benchmark was constructed by Song and Xiao [22], which con-335

sisted of 100 videos with both RGB and depth data in high diverse challenging factors,

including object deformation, occlusion, moving camera, and complex environments.

The dataset is valuable in evaluating the effectiveness of different tracking algorithms,

even if only use the RGB data.
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Meanwhile, the authors also provide an online evaluation website and reserve the340

ground truth of 95 out of the 100 sequences for the fair comparison. Until now, there are

eight state-of-the-art trackers only using RGB data and nineteen public RGBD trackers.

Because we only use the RGB data, the paper compare the proposed CECT tracker

with the other eight RGB trackers, including Struck [2], VTD [41], CT [49], TLD [4],

MIL [35], SemiB [50], OF [22]. Table 1 shows our results generated by the website345

automatically after we submitted our tracking results online. The results show that

the proposed CECT tracker again achieves the state-of-the-art performance over other

trackers.

5. Conclusion

In this paper, we propose a clustering based ensemble correlation tracker to handle350

the scale variation and model drift in online tracking. To be specific, multi-scale kernel-

ized tracking filter not only better represent the object with kernel feature space, but al-

so accurately estimate the object scale. Moreover, we develop a robust non-parametric

sequential clustering for learning an adaptive object template which extends the search

region and alleviates the model drift caused by occlusion or out-of-views. Finally, ex-355

tensive experiments show that our tracker outperforms the state-of-the-art methods on

two tracking benchmark data sets including 145 challenging sequences.
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