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Abstract

Context information is widely used in computer vision for tracking arbitrary objects.
Most existing works focus on how to distinguish the tracked object from background
or inter-frame object similarity information or key-points supporters as their auxiliary
information to assist them in tracking. However, in most cases, how to discover and rep-
resent both the intrinsic property inside the object and surrounding information is still an
open problem. In this paper, we propose a unified context learning framework that can
capture stable structure relations of in-object parts, context parts and the object itself to
enhance the tracker’s performance. The proposed Part Context Tracker (PCT) consists of
an appearance model, an internal relation model and an context relation model. The ap-
pearance model represents the appearances of the object and parts. The internal relation
model utilizes the parts inside the object to describe the spatio-temporal structure prop-
erty directly, while the context relation model takes advantage of the latent intersection
between the object and background parts. Then the appearance model, internal relation
model and context relation model are embedded in a max-margin structured learning
framework. Furthermore, a simple robust update strategy using median filter is utilized,
which can deal with appearance change effectively and alleviate the drift problem. Ex-
tensive experiments are conducted on various benchmark dataset, and the comparisons
with state-of-the-arts demonstrate the effectiveness of our work.

1 Introduction
Visual tracking is a fundamental problem in computer vision and has a wide range of applica-
tions including surveillance, and human-computer interaction [20, 31]. For a visual tracking
algorithm, it should be designed to cope with the inevitable appearance changes due to occlu-
sion, rotation, illumination, etc. Recent progresses in object tracking [1, 3, 16, 18, 25, 35, 36]
have yielded a steady increase in performance, but designing a robust algorithm to track
generic objects in presence of occluded and deformable targets is still a major challenge.

To overcome this difficulty, numerous models have been designed, most of them focus
on building a strong appearance model to encode the variations of the object appearance and
distinguishing it from the background. Some methods [1, 5, 6, 17] exploit multiple object
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fragments or patches to represent the object appearance effectively. Meanwhile, context
information can be utilized to track and it has been employed recently in several tracking
methods [9, 15, 26, 33].

max
X∈Rd×r

tr(XT QQT X) s.t. XT X = Ir (1)

Global context is often used in tracking to assist classifying the object with background
information. However, global context cannot deal with the object deformation problem,
while the local part context interactions are relatively stable. When the target appearance
changes gradually, the intrinsic property of internal interaction between the parts inside ob-
ject and context interaction between object and background are relative stable in spatio-
temporal 3D space of tracking. To explore the structure property and stable relationship for
overcoming complex environments, we propose a novel part context model which comprises
appearance model, internal relation model and context relation model. The internal relation
model utilizes the parts inside the object to describe the spatio-temporal structure property
directly, while the context relation model takes advantage of the latent intersection between
the object and background parts or the contour information.

1.1 Related work
For online tracking in unconstrained environments, merely learning the descriptive [1, 21,
22, 36] or discriminative features [3, 14, 16] of the target cannot ensure the robustness of
the system. Yang et al. [28] constructed a context-aware tracker (CAT) to track random field
around the target instead of the target. The tracker in [15] utilizes strong motion coupling
constraints to locate the target even when the target is invisible, with the help of some avail-
able related context information. However, detecting and matching all of the local features
are expensive and the motion of the object is not easily predicted. Dinh et al. [9] develope-
d a new context framework based on distracters and supporters. Wen et al. [26] proposed a
spatio-temporal context method in which temporal context captures the historical appearance
information and spatial context model integrates key-points based contributors. Generally,
[9, 15, 26] work with the key points as auxiliary information, the main differences are how
to utilize supporters or distracters. Although the introduction of context in these trackers ex-
pands the available information which can be obtained from the scene, it may collapse when
motion blur occurs due to the utilization of key-points descriptors.

An object detection approach with structured output SVM [24] was proposed in [4].
Motivated by this success, structured learning was applied to online visual tracking [16, 29].
Inspired by deformable part-based appearance models [2, 12, 38], Zhang and van der Maaten
[34] proposed a structure preserving model and Yao et al. [30] presented part-based with
latent structural learning for tracking. Although the two approaches pay attention to the parts
of the object and their deformation cost, there are still many intrinsic properties in object
tracking (e.g. temporal constraints, context information) which have not been considered.

1.2 Our approach
The Part Context Tracker (PCT) consists of an appearance model, an internal relation model
and an context relation model. The internal relation model formulates the temporal relations
of the object itself or the in-object parts themselves and the spatio-temporal relations between
the object and in-object parts. The context relation model constructs the spatio-temporal
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relations between the in-object parts and the context parts and the temporal relations of the
context parts themselves. Hence the physical properties and the appearance information are
considered in the optimization process through parts and relations. The contributions are as
follows:

(1) We first propose a unified context framework which formulates the single object
tracking as a part context learning problem.

(2) The in-object parts and context parts are selected so that we not only pay attention to
the appearance of object, but also focus on the relations among the object, the in-object parts
and the context parts.

(3) A simple robust update strategy using median filter is utilized, thereby enabling the
tracker to deal with appearance change effectively and alleviate the drift problem.
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Figure 1: Illustration of our Part Context Tracking framework using the "sylvester" video.

2 Part Context Tracking
In this section, we show how to represent and track an object with parts in a unified frame-
work. We first introduce the part context formulation and then describe the model training
problem with a structured learning approach. After the learning mechanism, we develop an
online learning strategy to update the model parameters efficiently.

2.1 Model definition
Our framework not only models the object with in-object parts, but also incorporates the
interaction between the object and background with context parts. The deformable configu-
ration [11, 13] together with the temporal structure of these parts are also considered in.

In Fig. 1, with the object bounding box as the root R, the in-object parts I are defined
as the parts selected inside R, which covers part of the object appearance. The contex-
t parts C are selected from the overlapping area between the object and the background.
For a target with K in-object parts and M context parts, the configuration is denoted as B =
(B0,B1, ...,BK ,BK+1, ...,BK+M). Where B0 stands for the target bounding box R, (B1, ...,BK)∈
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I are the K in-object part boxes, and (BK+1, ...,BK+M) ∈C are the M context part boxes. The
corresponding features of the root and parts are represented as X =(x0, ...,xK ,xK+1, ...,xK+M).
In a word, our framework models the object with three components:

M = MA +MI +MC, (2)

where MA, MI and MC are the appearance model, the internal relation model and the context
relation model respectively.

For online tracking, an appearance model is essential. It represents the intrinsic property
of one object or the discriminative information between the object and background. To better
mine the information, we factorize the appearance model MA as Eq. (2):

MA = AR +AI +AC

= wT
RΦR(x0)+

K

∑
i=1

wT
I ΦI(xi)+

K+M

∑
i=K+1

wT
CΦC(xi).

(3)

where AR, AI and AC are the global root appearance model, in-object parts appearance model
and context parts model separately. ΦR, ΦI and ΦC denote the root appearance feature, the
in-object parts appearance feature and the context parts appearance feature. wR, wI and wC
are the weights of appearance features correspondingly. xi is the ith part corresponding to
bounding box Bi = (ci,ri,wi,hi) with center location Bi,c = (ci,ri), width wi and height hi.

In addition to the appearance model, all relatively stable spatio-temporal relations be-
tween the object and its corresponding parts frame-to-frame should be utilized in tracking.
Therefore we design the internal relation model to formulate the interactions between root
and the in-object parts, which includes the spatial constraints and the temporal constraints
between them, we define MI as:

MI = SI +ER +EI

=
K

∑
i=1

wT
R,IΦR,I(x0,xi)+

−1

∑
t=−H

wT
t,RΦ(xt

0,x0)+
−1

∑
t=−H

K

∑
i=1

wT
t,IΦ(xt

i ,xi)
(4)

where SI , ER, and EI are spatial relation between root and in-object parts, temporal relation
between root and their historical roots, and temporal relation between in-object parts and
their historical information respectively. ΦR,I(x0,xi) denotes the spatial interaction function
between the root B0 and in-object part Bi. Φ(xt

0,x0) is the temporal relation function of the
bounding box B0 in the last tth frame and the current frame. Likely, Φ(xt

i ,xi) is the bounding
box Bi’s temporal relation function. wR,I , wt,R and wt,I are the weights correspondingly.
Similar to [12], the spatial interaction between xi and x j is fc = (c j− ci,r j− ri) and:

Φ(xi,x j) = ( fc, f 2
c ). (5)

Herein, fc and f 2
c can preserve the relative and absolute information between xi and x j. For

detail, the temporal relation function Φxt
i ,xi

can be represented as:

Φ(xt
i ,xi) = exp(−(||Bt

i,c−Bi,c||2/δ 2)) (6)

where δ is a constant value, H is upper bound of the last frames
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Except internal relations inside the object, some information in latent intersection area
between the object and background is neglected by previous works, such as the partial con-
tour and the object are consensus in motion. To make full use of the information, we formu-
late the context relation model to express the interactions between root and the context parts,
which also includes the spatial and temporal constraints between them. Similar to Eq. (4),
we describe the context relation model mathematically as:

MC = SC +SC,I +EC

=
M

∑
j=1

wT
R,CΦR,C(x0,xi)+

K

∑
i=1

M

∑
j=1

wT
C,IΦC,I(xi,x j)+

−1

∑
t=−H

M

∑
j=1

wT
t,CΦ(xt

j,x j)
(7)

where SC, SC,I and EC denote spatial relation between root and context parts, spatial relation
between in-object parts and context parts, and temporal relation between context parts and
their historical information. ΦR,C(x0,x j) denotes the spatial interaction function between
the root B0 and context part B j, ΦC,I(xi,x j) denotes the spatial interaction function between
the in-object part Bi and the context part B j. Φ(xt

j,x j) denotes the bounding box B j’s tem-
poral relation function. wR,C, wC,I and wt,C are the weights corresponding to ΦR,C(x0,x j),
ΦC,I(xi,x j) and Φ(xt

j,x j) respectively.
For the linear property, the model of object and its configuration can be simplified as:

M = wT Φ(X) (8)

where
w = [wT

R ,w
T
I wT

C ,w
T
R,I ,w

T
R,C,w

T
I,C,w

T
t,R,w

T
t,I ,w

T
t,C]

T , (9)

Φ(X) =[ΦT
R(x0),ΦT

I (xi),ΦT
C(xi),

K

∑
i=1

ΦT
R,I(x0,xi),

−1

∑
t=−H

ΦT (xt
0,x0),

−1

∑
t=−H

K

∑
i=1

ΦT (xt
i ,xi),

M

∑
j=1

ΦT
R,C(x0,xi),

K

∑
i=1

M

∑
j=1

ΦT
C,I(xi,x j),

−1

∑
t=−H

M

∑
j=1

ΦT (xt
j,x j)]

T

(10)

w is the model parameter we need to learn. Given a configuration B in a frame F , there needs
a function to measure how best the configuration B matches object model M. We compute
the similarity score as follows,

S(F,B,M) = S(F,B,MA)+S(F,B,MI)+S(F,B,MC) (11)

2.2 Optimization
In this section, we will describe the optimization of the proposed discriminative model from
three aspects: inference, model learning and update strategy.

2.2.1 Inference

Even if the object appearance varies because of the influence of internal and external factors,
the intrinsic relation between the object and intra-object parts or context parts could remain
relatively stable in a short-time or long period time. Based on the assumption, given the
definition of M, a model is constructed to constrain the deformation of parts by modeling
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their temporal and spatial relationships with the root. Adding pairwise or higher order in-
teractions between arbitrary parts can capture more structural information, but it will result
a loopy graph which is not efficient in inference. To avoid the problem, we not only keep
the model to be tree-structured, but also introduce the temporal relationships based on the
historical information without adding large computational complexity.

In tracking, there is strong correlation across continuous frames. We set the search radius
r around the last object location. The bigger r is, the larger the computational complexity
is. Standard sliding window procedure is used to scan images in different locations of the
search radius with a fixed scale to determine how much the special window corresponds to
the object. For each scanning window in image F , we first fit the window to structure model
M to get the part configuration on it, and then calculate the score of the window according
to the inferred configuration by Eq. (2)-(11).

The fitting step aims to find the candidate object’s configuration B∗ with the highest
match score according to the learned model M on all configurations of a sliding window.
Mathematically, the optimization problem is to find B∗ that satisfies:

B∗0 = argmax
B

S(F,B,M) = argmax
B

wT Φ(X) (12)

The score of each part in the model is independent once the root is specified, so that we
can maximize the following problem instead:

B∗i = argmax
Bi

S(F,Bi,M) = argmax
Bi

wT Φ(xi) (13)

where Φ(xi) are the related items with xi in Φ(X). The complexity of maximizing one single
sliding window is high, but benefiting from the generalized distance transform proposed in
[10], the average complexity in simultaneously optimizing all the the sliding windows is of
linear complexity with the search radius.

2.2.2 Model learning

Like other trackers [3, 16, 34], to enhance its adaptivity and robustness, we need to update
the model online. In general, most of online trackers use the tracked object configuration
in previous frames as positive examples to update. We argue this method and choose to
update the parameters in our structural model while the last object configuration satisfied
some conditions (e.g. an update threshold or occlusion detection). We utilize the method of
setting an adaptive update threshold for clarity. While exceeding the threshold, we assume it
as a true positive example (F,X ,B) at frame F .

Function S measures the compatibility between training pairs, and gives a high score to
those which are well matched. By Eq. (8), it can be learned in a large-margin framework
from a set of training sample pairs {(F,B1), ...,(F,Bn)} by minimizing the following convex
object function:

min
w,η≥0

1
2
||w||2 +C

n
Σ

i=1
ηi s.t.∀i,∀B ̸= Bi : ⟨w,δΦi(B)⟩ ≥ ∆(Bi,B)−ηi (14)

where δΦi(B) = Φ(F,Bi)−Φ(F,B). This optimization aims to ensure that the value of
S(F,Bi,M) is greater than S(F,B,M) for B ̸= Bi, by a margin which depends on a loss func-
tion ∆. Herein, ∆(Bi,B) measures dissimilarity between Bi and B, as in [4, 16, 34]:

∆(Bi,B) = 1− B∩Bi

B∪Bi
. (15)
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where the two bounding boxes B and Bi are both measured in pixels.
For training the structure SVM efficiently, we adopt the cutting plane algorithm [24] to

select the most violated constraints to train. The most violated constraint can transform to
structure SVM loss ℓ by configuration B:

ℓ(w;F,B) = max
B

[S(F,Bi,M)−S(F,B,M)+∆(B,Bi)] (16)

Like [7, 34], we use a passive-aggressive algorithm to perform the parameter update in the
tracking process. The passive-aggressive algorithm sets the step size in such a way as to sub-
stantially decrease the loss without parameter updating too large. In particular, the passive-
aggressive update algorithm uses the following parameter updates:

w← w− ℓ(w;F,B)
||d||2 +0.5

d. (17)

Herein, d = ∇wS(w;F, B̂)−∇wS(w;F,B) is gradient of the structured SVM loss, and B̂ =
argmaxB(S(w;F,B)+∆(Bi,B).

2.2.3 Update strategy

When to update the object model is one of the critical problems to avoid drifting inherently
in tracking process. If the object is occluded by other object, the model don’t need to be
updated. But if the object is self-occluded (e.g. rotation) or appearance changes due to
illumination, the model updating is necessary. However, evaluating whether and when the
appearance changes (e.g. occlusion) is a difficult problem. Therefore, most of the tracking
algorithms update the appearance model every frame.

Like [34], we only update the weight vector wi corresponding to part bounding box
Bi when the exponentiated score for that object exceeds some threshold to avoid erroneous
update of our appearance model. Different from [34], the threshold is adaptive and generated
by median filter for leveraging the adaptivity and stability of the object model. The initial
threshold V1 in the first frame is set as a constant. Then the threshold in tth frame Vt is:

Vt = median
i={0,1,...,K+M}

exp(
area(B0)

area(Bi)
wT

i Φ(xi)) (18)

where area(Bi) denotes the area of bounding box Bi, and K +M are the total number of

parts. In particular, we only update the wi whenever exp( area(Bt
0)

area(Bt
i)

wT
i Φ(xi)) >= max(V1,Vt),

max(V1,Vt) is to get the maximum value from V1 and Vt .

3 Experiments
To evaluate the performance of our part context learning tracker (PCT), ten challenging se-
quences from prior works [3, 19, 22, 23, 27, 32] are used. The sequences have differen-
t challenging aspects such as illumination variation, occlusion and out-of-view, etc. The
quantitative comparison results with several state-of-the-art trackers: MIL [3], TLD [18],
ContextTracker (CXT) [9], Struck [16], SCM [37], PartTracker (PT) [30], structure preserv-
ing tracker (SPOT) [34] and our tracker are shown in Fig. 2 and Table 2. Their source
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codes or binary codes are provided by the authors and the parameters are tuned finely. All
algorithms are compared in terms of the same initial positions in the first frame in [27].

Implementation Details The scale, number and location of parts are influential to the
tracking algorithm. Since this paper doesn’t focus on part initialisation, we use a simple
heuristic method to initialize the parts in first frame as Fig. 1 where the part scale is 0.618
times of the object, the number K of in-parts is two and the number M of context parts is
three. HOG feature [8, 12] is used as the appearance model’s feature. In Eq. (14), C = 1.
PCT ran at about 1 fps using matlab on the desktop (Intel Core Dual CPUs, i5-2400, 3.1
GHz, 4G RAM).
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Figure 2: Plots of overall performance comparison for the ten videos following the same
evaluation protocol proposed in the benchmark [27]. The proposed method ("PCT") obtain
better performance in terms of precision (left) and success (right) plot

Evaluation of the update schema In order to evaluate the performance of differen-
t update thresholds and our update strategy, we conduct the experiments on Sylvester and
MountainBike sequences using different update thresholds and our strategy. From the exper-
imental results as Table 1, we can see that the update threshold affects the performance of our
trackers heavily because it determines the update rate and the leverage between adaptivity
and stability of the tracker. To reduce the time complexity in parameter fine-tuning and make
our tracker more robust, the median filter update strategy we propose can get the competitive
results from Table 1.

Table 1: Comparison results of average error center location in pixel between different update
thresholds and adaptive median filter update thresholds. The bold and underlined represents
the best and second respectively.

Thresholds 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ours
Sylvester 10.2 35.9 15.1 5.9 6.7 15.4 13.9 15.6 10.2 11.1 5.5

MountainBike 9.4 10.0 9.2 9.7 9.8 49.2 90.2 7.9 12.9 89.2 7.6

Comparison of different tracking approaches Overall, our method outperforms them
consistently (shown in Fig. 2). Table 2 summarises the average center location error per-
formance of the compared tracking algorithms over the sequences. As mentioned in Table
2, our tracker outperforms the structure SVM based trackers such as Struck [16], PT [30]
and SPOT [34] in most of the sequences for more context information which are used in our
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tracker. Fig. 3 shows the center location error per frame with the compared trackers and why
some trackers lose the target in several key frames. We can see that our tracking algorithm
obtains the best result on eight sequences, As for sequences David and Suv, the tracking
performance of our tracker is slightly lower than SCM [37], it’s partly due to our tracker
doesn’t process the scale variation or the boundary well. In addition, Fig. 4 shows the com-
parison on different subsets such as occlusion and illumination. It shows that our method can
handle occlusion, illumination and out-of-view well. In general, the robustness of our PCT
tracker lies in the context parts with spatial and temporal compositional structures which are
discriminatively trained online to account for the variations.

Table 2: Average center errors between the tracking results and ground truth. The bold and
underlined represent the best, the second respectively.

Methods Trellis Singer2 David Suv Lemming Liquor Tiger1 Tiger2 Sylvester M.Bike
MIL 71.5 22.5 24.4 82.2 171.2 141.9 37.3 29.7 11.9 73.0
TLD 31.1 58.3 5.1 13.0 16.0 37.6 49.5 37.1 7.3 216.1
CXT 7.0 163.6 6.1 9.9 61.4 131.8 45.4 41.4 14.8 178.8

Struck 6.9 174.3 9.9 49.8 37.8 91.0 128.7 21.6 6.3 8.6
SCM 7.0 113.6 4.3 4.6 185.7 99.2 93.5 141.2 8.0 10.6
PT 8.2 173.8 46.6 35.3 135.5 94.9 33.3 47.5 6.3 9.1

SPOT 4.1 220.2 4.6 11.6 149.4 10.3 23.4 38.1 9.3 181.8
PCT 4.0 11.1 4.8 6.9 7.3 5.4 11.8 18.9 5.5 7.6
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Figure 3: Comparisons on the center distance error per frame corresponding to Table 2.

4 Conclusion
This paper presents a unified context framework for simultaneously tracking and learning ob-
jects with spatial and temporal context information. Our PCT tracker consists of an appear-
ance model, an internal relation model and an context relation model in a structured learning
framework, which is robust to certain conditions of occlusion, illumination and out-of-view.
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Figure 4: Several comparisons in different subsets(occlusion, illumination variation, out-of-
plane rotation, deformation and out-of-view) divided based on main variation of the object
to be tracked. The details of the subsets refer to [27]. The proposed method ("PCT") obtains
better or comparable performance in all the subsets.

To avoid the drifting problem due to update, we propose a novel update strategy to decide
when to train some parts of the object model online. Experiments on challenging video
sequences show that PCT tracker performs better than several state-of-the-art approaches.
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